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An Algorithm for Higher
Order Hopf Normal Forms

Normal form theory is important for studying the qualitative behavior of nonlinear
oscillators. In some cases, higher order normal forms are required to understand the
dynamic behavior near an equilibrium or a periodic orbit. However, the computation
of high-order normal forms is usually quite complicated. This article provides an
explicit formula for the normalization of nonlinear differential equations. The higher
order normal form is given explicitly. Hlustrative examples include a cubic system, a
quadratic system and a Duffing—Van der Pol system. We use exact arithmetic and find
that the undamped Duffing equation can be represented by an exact polynomial
differential amplitude equation in a finite number of terms. © 1995 John Wily & Sons,

Inc.

INTRODUCTION

The invariant manifold of a nonlinear oscillator
near an equilibrium or a periodic orbit is deter-
mined by the structure of its vector field. Two
often-used mathematical tools to simplify the
original system are center manifold and normal
forms. The normal form theory is a technique of
transforming the original nonlinear differential
equation to a simpler standard form by appropri-
ate changes of coordinates, so that the essential
features of the manifold become more evident.
Basic references on normal forms and their appli-
cations may be found in Poincaré (1889),
Birkhoff (1927), Arnold (1983), Chow and Hole
(1982), Guckenheimer and Holmes (1983), Iooss
and Joseph (1980), Sethna and Sell (1978), Van
der Beek (1989), Vakakis and Rand (1992), and
Leung and Zhang (1994). In this article a compu-
tational approach based on the classical normal
form theory of Poincare and Birkhoff is intro-
duced. The relationship of the coefficients be-
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tween the original equations and the normal form
equations is explicitly constructed. The tech-
nique presented in our approach follows the idea
of Takens (1973). A linear operator and its adja-
cent operator are defined with an inner product
on the space of homogeneous polynomials. The
resultant normal form keeps only the resonant
terms, which cannot be eliminated by a nonlinear
polynomial changes of variables, in the kernel of
the adjacent linear operator. The normal form
simplifies the original systems so that the dy-
namic stability and bifurcation can be studied in a
standard manner and the classification of mani-
fold in the neighborhood of an equilibrium or a
periodic orbit can be achieved with relatively lit-
tle efforts. This article is a further development
of previous work (Leung and Zhang, 1994). The
higher order normal forms of several typical non-
linear oscillators: cubic system, quadratic sys-
tem, and Duffing—Van der Pol system are pro-
vided and the steady-state solutions of the
method are compared with existing results.
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TRANSFORMATION TO NORMAL FORM

Consider the nonlinear ordinary differential
equations

u=flu), feCRY (1)

where f is an n-vector function of u, differentia-
ble up to order r. Suppose Eq. (1) has a fixed
point at u = uy. We first perform a few linear
transformations to simplify eq. (1). By the vari-
able change v = u — u,, we eliminate the constant
terms and shift the fixed point to the origin under
which Eq. (1) becomes

v = f(v + up) = H(v), )

where H(v) is at least linear in v. We next split
the linear part of the ordinary differential equa-
tion and write (2) as follows

v = D,HO) + H(), )

where H(v) = H(v) — D,HO and, H() =
O(lv]?) is at least quadratic in v and D, denotes
differentiation with respect to v. We further
transform D, H(0) into Jordan canonical form by
the canonical matrix T, i.e., v = Tx, and obtain

% =T 'D,HO)Tx + T 'H(Tx). )
which can be written alternatively as
x =Jx + F(x). (5)

where J is the Jordan Canonical form of D, H(0)
and F(x) is the nonlinear part of the equation. In
Poincaré’s normal form theory, the nonlinear
function F(x) is expanded by a series of homoge-
neous polynomials,

x=Jx + Fy(x) + F3(x) + - -+ + F{x) ©6)
+ O(lx|*1)

where Fj, € H,, which is the set of homogeneous
polynomials or order k. To transform Eq. (6) into
its normal form, Poincaré introduces a nearly
identity nonlinear coordinate transformation of
the form

x =y + l(y), @)

where iy(y) is kth order in y, h(y) € Hy, 2 =
k=r.

Substituting Eq. (7) into Eq. (6) gives

X=U+ Dyh(y)y = J(y + l(y)) @®)
+ o+ Fl(y + hi(y)) + O(y|),

where I denotes the n X n identity matrix and the
term (I + Dyh(y)) is invertible for sufficient
small y so that

(I + Dy (y)~™' = I — Dyl(y) + O(yP). 9

Substituting Eq. (9) into Eq. (8) and applying
similar nearly identity nonlinear transformations
up to the kth order, we obtain

y=Jy+ Fy)+ -+ Fi\(y) + Fi(y)
+ (Jh(y) — Dyh(y)Jdy) + O(y[Fh (10)

=Jy + F(y) + -« + F_y(y) + Fi(y)
+ ad;iy(y) + O(y [+

where the overbar is used to represent the origi-
nal polynomial matrices and ad;/;(y) denotes an
adjacent operator equivalent to the function of
the Lie Bracket, :

ad,h(y) = Li(HY) = Jh(y) — Dyh()Jy. (1)

To simplify the terms of order k as much as pos-
sible, we choose a specific form for 4(y) such
that

Fi(y) = L,(Hp). (12)

If Fi(y) is the range of L;(Hy), then all terms of
order k can be eliminated completely from Egq.
(10). Otherwise we must find a complementary
space Gy to Ly(Hy) and let H, = L;(Hy) © Gy so
that only terms of order k which are in G, remain
in the resultant expression. It is interesting to
note that simplifying terms at order k would not
affect the coefficients of any lower terms. How-
ever, terms of order higher than k will be
changed. Therefore, it is only necessary to keep
track of the way that the higher order terms are
modified by the successive coordinate transfor-
mations. This will be discussed in the next sec-
tion.

NORMAL FORMS OF OSCILLATING
SYSTEMS

We now specialize the normal form formulation
in two-dimensions for the Hopf bifurcation be-



low. Consider a system with a small perturbed
parameter g and an equilibrium point with eigen-
values *iwy, wg > 0.

x=f(x,n), xER:, uER! (13)

where we suppose, after shifting of origin and
canonical transformation,

f0,0) =0, D.f(0,0) = .
wo 0

Furthermore, the Taylor expansion of Eq. (13)
gives

x=Ax + Fy(x) + F3(x) + - - - + F{(x) (14)
+ O(|x|*Y),
where
A = D, f(0, 0) + D%, f(0, O)u
| Be —(ap + wo)], as)
| (ap + o) Bu
- yi
Fyu(y) ayp an de
= = . 1
F) LFn(y)] [bzo by boz] 6 (16
y2

We would like to find a coordinate transforma-
tion (7) so that the nonlinear terms of order k£ + 1
in the new system of function y vanish rather
than of order & in the original system of function
x. Inserting y = (y;, ¥2) € R? and Iy(y) = (hi(y),
hi(y )T € H, into (13), we have the Lie bracket,

0 —wo|hu
s e
0

_[ahkl/a)’l ahkl/ayZ][O —wo][)’l}
dhldy; dhwloy,|lwe 0 |yl

(17)

Second-Order Normal Form

If the smallest order of nonlinear terms appearing
in (13) is two, we try to find a transformation #,
of the form

x=y+ h(y). (18)

Algorithm for Higher Order Hopf Normal Forms 309

where
2
vyl
hai(y) ,20 iy . .
ho(y) = =\, ; i=2-].
b1 S dyyig
=0 (19)

Perform the Lie bracket operation to each basis
element on H>,

H2=

DL

thus,

-0 T

N
I
< <
[T
<
v
~——
h
<
S
< o
-t
~——
I
e

0 )
PAZRY)

— W .
2y1y2

The matrix representation of L;(H,) can then be
written as

L;(H,) = span

y} yi»2 ¥ 0 0 0 , X
'AJ :Hz’AJ

0 0 0 yi yiy: ¥
(20)
where
Jo -1t o -1 o 0}
2 0 -2 0 -1 0
01 0 0 0 -1
AT®d 0 0 0 -1 o
01 0 2 -2
0 0 1 0 1 o0
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Because the det[A}] = 8w, > 0, which does not
vanish for wy > 0, we obtain the following null
complementary space for the homogeneous
equations A3 ¢ = {0},

G, =¢£={0}, £€RS @n

Therefore, we can eliminate the quadratic term
completely from Eq. (10) by means of the sec-
ond-order coordinate transformation (19) and get
the second-order normal form

{yl = By — (ap + o)y, + Oy, [

= (ap + wo)y1 + B y2 + O(yi P, |y2P) .
(22)

The coefficients in Eq. (19) are required for fur-
ther development and are found by Egs. (10)-
(12). Substituting Eq. (19) into (10) and truncat-
ing to the Mth degree yields

M

y = > (—1ND,h(MIN
N=0

{ay + ami + 3 3 BB )
n m=0
M
=Ay + D, F0 () (23)
n=2
where
[F‘n?(y)] 2 apyih
F(y) = = ;
FQ(y)

S bpyivh| @9

n=2-- M, i=2-].

in which, the number in the superscript parenthe-
ses refers to the index of coordinate transforma-
tion. From Eq. (22) we know that the comple-
mentary space of second-order normal form, G,,
is null so that we have the following equation

F{(y) = Fx(y) + Jhy(y) — Dyhy(y) - J -y = 0.

25)

Then, we find coefficients ¢y, d; in Eq. (19) by
solving the linear algebraic equation, Eq. (25),

20 by + ai + 2by |

i —2ay — by + 2ap

o | = 3‘_(010 2bw — an +be | . (26)
d —ay + by — 2ap

di —2byy + an + 2bg

| doz | L —2a0 — bu — an_

Third-Order Normal Form

We further perform the nearly identity transfor-
mation (7) to third order to obtain the more accu-
rate nonlinear description of Eq. (14) in the
neighborhood of the original singular point.

x =y + h(y). 27N

where y represents the new coordinate and x is
its old one.

3
iy
()] |2 .
hs()’)=h()= 3 =3
Yy > dyyiyh
j=0

The third-order monomial base is given by

AN AN AN AWAL
H; = span {(0) ( 0 ) ( 0 ), (0) (y?),
0 0 0
Vv [ \vii (n3) @9

Similar to Eq. (20), the matrix representation of
L;(Hj3) is given by

L;(Hs = H3 - A} (30)
where
A13= Wy
0 -1 0 0 -1 0 0 07
30 -2 0 0 -1 0 O
0 2 0 -3 0 -1 0
0 0 1 0 0 0 0 -1
1 0o 0 0 0 -1 0 O
01 0 0 3 0 -2 0
0 0 1 0 0 0 -3
lo 0 0 1 0 0 1 0 J




We observe that the homogenous equations
A€ = {0}, £ € R® have two zero eigenvectors for
the matrix A3 corresponding to its two zero ei-
genvalues,

eT:{(l’O’ 1’0’0, ’0’ )T
©,-1,0, -1, 1,0, 1, 07y, @D

Thus, A} has a complementary space spanned by
the monomial basis (29),

G3 = H3 . eT
vyt + Y\ 207 + ¥D\) (32)
e R R Y AT WA

Finally, through a proper coordinate transforma-
tion, we determine the third-order normal form
of the original system,

1= Buy — (ap ‘;‘ wo)y? + aiyi(yi + ¥)
— byt + ¥D) + O, |y2P)

¥2 = (ap wo)yi + Buy2 + aiy(yi + ¥3)
+ biyi(yi + ¥ + Oy P, |32
(33)

where a; and b; are to be determined.

We now want to develop a systematic proce-
dure to evaluate the coefficients of normal forms
and the normal transformations of third order.
We see from Eq. (11)

M
= > (~DNDh(y)IV

N=0
M n
{4y4-Ahxy)4—22 =0D AY)[h( nm}
M
= Ay + FP(y) + >, FO(y) (34)
n=3

where
1 nzf(y) Jj=0 aSJZ)yIIyJZ
Fglz)(y) = = ;

(3 i
j=0

s, M,i=2—j.

(35)
n-_—3,...

We know from Eq. (24) that the third-order nor-
mal form is equal to its complement space so that

FP(y) = F{P(y) + J - hs(y) — Dhy(y) - J - y
= Gi(y). (36)
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The resultant linear equation is

Aj-E=n (37N
where

_ T
& = {c30, €21, C125 Co35 dao, da1, diz, do3}

n = {a$§ — ay, aff + by, af — a,, aff + by, BY
- by, b&']) — day, bﬁlz) — by, 61813) —af

or
B —Ill¢é a 18
“lr Bllal " (s (38)
in which
0 -1 0 0 C3p
B=30~20;é:021;
0 2 0 -3 Ci2
B 0 1 0 Co3
—d30 aS{)) - a;
J= d21, 5 agil)—i-b],
dp 052) - a
| do; aly + b,
[ b9 — b,
5 = b&’l) - a '
by — b,
_b613) - ai

Dividing Eq. (38) into two parts, we obtain

{wo(Bz+I)-é=B~d—5
(39)

wB2+1)-d=B-b+a

Note that there are two more unknowns existing
in Eq. (39) than the number of equations. How-
ever, the coefficients of the normal form a;, b,
can be evaluated independently by performing an
orthogonal linear transformation on one of the
equations in Eq. (39),

0 -1 0 1
-3 0 10
T= , (40)
0 3 01
1 0 10

where T is the canonical matrix consisting of the
eigenvectors of B2 + I. The second equation in
(39) becomes
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0 % 0 i{l-2 0 2 o0{flo -1 0 1
. 2 0 2 offo -6 0 61 -3 0 1 0] _
LHS=T'B2+ DT -d = w, .d
0 + 0 3|]l6 0 -6 0 0 3 0 1
(4 0 2 00 2 o 2]t o0 10
[0 2 0 —2
2 0 -2 0 _
= Wy .d
00 0 0
(00 0 O
41)
0 _Tl 0 % —201 + ag]()) + bgll)
7 0 1 ol &+ 26, + 25 - 36§
RHS=T'!(B:-b+a)= ] 1 1
0 211‘ 0 % —2a1+a(12)+3bf)3)—2b§1)
] 010 ay + 2by — bf)

ay — a8 — 3619 + 3b%

aff — o + 360 — 3640
3aly + ) + 8b, — bYY — 3b%)
—8a; + ai + 34 + 36 + b)Y

By comparing the terms in the last two rows of
Eq. (41), we obtain

= 5 (@ + 30y + b + 35

a
. . 42)
b, = 8 (a8 + 3aff — b3 — 3b%9)

Substituting Eq. (42) into (39) and solving Eq.
(39), the third-order homogeneous polynomial
(28) is then determined by

C3o 0

ca1 1 | =34} — b + 3af§ + bYY

co | Boo| —3a) + b + 30 + bY |

Co3 0

s oo ] P
dy 1 | 3al) + 565 + o) — b§Y

dio | o0 | o) + s + 305 + b9 |

| dos | al) + b5) + afY + (Y

Higher Order Normal Form

The higher order normal form in a rectangular
coordinate system is derived accordingly and can
be written as follows,

L
y=Ay+ > Wyun(y) + O(y[E+3), (44)
i=1

where

B

[ —(ap + wo):l
A= Y
(ap + wo)

Bu
N
a; Y2

and L is a given degree of the normal form equa-
tion. The validity of such simplification is guar-
anteed by the implicit function theorem, as for
each u near wy, there will be an equilibrium p(u)
near p(uo) that varies smoothly with w. The nor-
mal form of Eq. (44) in polar coordinates can
then be written as the form

ai
b;
Wair1 € Gy

Warl(y) = (5 + y3) [

yi=rcosf, y,=rsiné
L
F=rBu + Z a;r¥) + hot. (45)
i=1
) L
9=w0+ay+2bir2i+hot
i=1



A general formula for each a;, b; is not pres-
ently available but we can derive their expres-
sions up to any desired higher order using the
algorithm mentioned above recursively, such
that,

)
@ = 128

5) 5)
\b3 8 (5ag + 3a$) + 545 + 354§
)
= 256
Lb“ 256

and for the eleventh order,

-

as = o34 (231a8y + 21a5) + 7a9 + 548

102
+ 7a0 + 21ald + 2165 + THQ + 56
+ 7b<2) + 2155 + 231583,

bs = 21af) + 7a§) + 542 + 748

1024
+ 214y + 231a§d)— 231b5) — 21b%)
L =7 - 6 — 768 — 2168);

here the subscripts A, B refer to the indices 10
and 11, respectively.

The complexity of higher order normal forms
rapidly becomes apparent as pointed out by
Leung and Zhang (1994). Thus, the algorithm is
required to be implemented with the symbolic
manipulation in Mathematica (Wolfram, 1991).
In the case of m > §, however, it may also cause
overflow in the computers equipped with con-
ventional memory if we apply the nearly identity
normal transformations directly in Eqgs. (23) and
(34). A general explicit formula representing the
homogeneous polynomial terms is therefore very
useful to reduce the size of the problem.

If the nearly identical change of coordinate of
order k

x=y+ h(y) (46)

is applied then the new homogeneous polynomi-
als of order n can be obtained by

n<k, Fi(y) = Fu(y); (47)

L 70 + 308 + 3aQ + 749 + 630 — 6365 — 6D — 36
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(354%) + 5a§) + 3a§) + Saf) + SbS) + 3b%) + SbY + 35b§)),
— 35659 — 5b8) — 3b§) — 5HY);

(63a5) + 7a5) + 3a5) + 3452 + 7al} + 7b§) + 360 + 36 + 7B + 63b%),

365 — Tb®)

n==k, FXy) =F,(y)+J- )

— Dh(y) - J - y; “8)
n>k, Fiy)=Fy\(y) + [DF,1+(y) - l(y)
- th()’) . Fn—k+l(y)]n22k—l
DY Fn+m(] 0(y) m .
* ,,,2:2 [ m! (3] ] +m(1-ky=k’ “9)

where F}¥(y) denotes the resulting homogeneous
polynomials, k,, = min[k;, k,], and

n—k n
k, = floor [;——] k, = floor [ k]

The operator floor[-] gives the greatest integer
less than or eual to the varible in the bracket. The
result confirms that only odd-order terms would
appear in the normal form equation, correspond-
ing to the Poincaré resonance (Guckenheimer
and Holmes, 1983).

OSCILLATORS WITH ODD
NONLINEARITY

Here we consider the nonlinear differential equa-
tions with flu) to be an odd function of u. To
illustrate this, two examples are presented. The
first one is the well-known Duffing oscillator,
which arises from various physical and engineer-
ing problems. The solution of this oscillator has
been thoroughly studied so that the accuracy of
the results can be compared with existing meth-
ods. In the second example, we work with an
oscillator having a term of the fifth power.
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Duffing Oscillator

Consider the Duffing oscillator
i+ wix = —ex3 (50)
with the initial conditions
x(0) = a, x(0) =0, 1)

where the parameter ¢ > 0, w, is the linear fre-
quency. In classical perturbation methods, it is
usually assumed that ¢ is small. In the present
case, however, £ need not be small. With the
transformation x = x;, X = —wyx,, we rewrite Eq.
(50) as

MR N
| = +1 e . (52)
X2 (O 0 X2 - X?

(2]
Comparing Eq. (52) with the standard third-order
normal form {x} = {x} + F3(x), we have by, =
(e/wg) and all the other coefficients are zero. If
we substitute these coefficients into Eq. (42), we
obtain a = 0, b] = (38/8(1)0).

The third-order nonlinear transformation of
coordinate {x} = [JI{y} + hs(y) can be deter-
mined by Eq. (43) and the coefficients of A;(y)
are c3 = c3 = €3 = dzp = dpp =0,

€ Se €
Cc = — d = — d = .
12 8(0(2) > 21 80)% ’ 03 40)(2)

Here we use y to denote the new coordinates and
x the old ones. While under the fourth order non-
linear transformation, all the coefficients of the
homogeneous polynomial are identically zero,

Cq = C31 = Cpp = C13 = Co4 = dag = dy,

=d22=d13=d04=0.

According to the method mentioned in the last
section, such computation can be repeated up the
the desired orders. Finally, we found that all the
coefficients of the even-order coordinate homo-
geneous polynomials A,,(y) are equal to zero and
all the even-order terms are already in their sim-
plest forms. Thus, only the odd-order homoge-
neous polynomials need to be handled in our
computation.

The coefficients of normal form a, and b, can
be obtained by taking the change of variable

—21g?

{9} ={z} + hs(z); a, =0, b, = 75603

Then, the fifth-order nonlinear coordinate
change /5(z) is given by

Csp = Cos = €3 = Cqy = dsp = dig = d3 = 0,

_ 21g? _ 25¢? _ —39¢?
27 256wd” M T 256w T 25608
doe = —67¢2 _ —g?

B 7256w U T 32w

Similarly, after taking the seventh-order polyno-
mial change of variables,

{z} = {w} + hy(w),
we get

237¢3

az =0, b3=m,

and h;(w) is given by

Cp = Co7 = Co1 = Ca3 = Co5 = dpo = dsy = da

= d|6 =0
_ —18383 _ —91g3 13383
€27 409608’ T 1024w§’ ' T 4096w§’
4 - 363 21783 63383
817 409608 P 4096w P 409608’
S5e3
dor = 256w§"

Performing the variable changes further to the
ninth order, {w} = {u} + ho(u), yields

11241
a4 =0, b= 5 44w
and hg(u) is given by

Cgp = Co9 = Cg1 = Ce3 = Ca5 = €37 = doy = dp

=dsy =dy=dg=0,

_ 7089 _ 10215t
2T 2021440 T 26214405
_ 19003¢* _7901¢*

26214408 '® T 26214408

4o = T16035et 46821t

81726214408 “® T 262144087 °°
_ —57969¢* _ 3857560 —296*
26214408 "7 T 26214408 7 T 2048w}
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If further transformations beyond the ninth order
were performed, it is interesting to note that all
the following higher order coefficients of normal
forms a;, b; (i =5,6,7. . .)as well as the coordi-
nate transformation i (y) (k = 10, 11, 12, . . .)
vanish. Therefore, the normal form of our cubic
nonlinear differential system has an ultimate de-
gree of nine. The dynamic system can be repre-
sented by an exact polynomial differential ampli-
tude equation in a finite number of terms.

The asymptotic solution of this normal-form
equation is

Uy = r cosé

r=0 (53)
. 3er2 2124 23770 11241648
6= (0N +

8wy 256w] T 4096w 262144}
The steady-state periodic solution of Eq. (53) is

u; = acosd, u, = asind

< 3ea®> 21&%* + 237&%a® 1124184a8)t.
DT 8wy 256w3 4096w  262144w)]
(54)

0

I

To get the steady-state periodic solution in the
original coordinate, we could trace back all the
transformations, for example,
{x} ={} + K(»)
={z} + hs(2) + hs(z + hs(2))
= {w} + hy(w) + hs(w + hy(w)) + hs({w}
+ hy(w) + hs(u + hy(w)))
= {u} + ho(u) + hs({u} + ho(u)) + hs({u}
+ ho(u) + hy({u} + ho(u)))
+ hy({u} + ho(u) + hs({u} + ho(u)) + hs({u}
+ ho(u) + hy{u} + ho()))).
(55)

The steady-state periodic solution of the Duffing
equation is

(y =
(a _ &d® 4 23e%a>  167&%7 + 3431£30°
3207 | 10240]  16384wf | 5242880

3 (sa3 _ 38%° 4 309¢*a”  7033&%a’
32w} 128&)3 32768w 1048576}

( £2a’ 4 3137 N 191&4a®

L 1024(08 32768(08 5242880)8

) cosé

) cos 36

) cos 56.

[ ( 3%’ 227¢%a°

163840 © 1048576mg) cos 76

stad )
* (65536w3 cos 96

3ea’® 21&%a* 2378348
= + -
0 (“"’ 8wo 256w | 409
~ 1124184a8>t
2621440]) "
\ (56)

We compare the solution by the Lindstedt—Poin-

caré (L-P) method with the same initial condi-

tions below,

(x _ (a _ &d N 23’0 547

Rwi  1024wf 32768w§

M) cosg
524288 w

(sa3 _ 38 N 297347

2w} 128w  16384wh

4
15121¢ a9> cos 36

10485760
a’ 3e3d’ 883&%a® )
| - (1024wg 204845 * 524288a) O %0
&a’ 9&a® )
+ (32768w8 13107208/ €° 7

g4a? )
* (1048576wg cos 96

9= < N 3ea’>  21&%q N 81e%a®  6549¢'a®
0T 8wy 256w3 | 2048w3  262144w]

+ 0(|a|‘°)>t

(57)

It is clear to see that the coefficients of the first
three orders of ¢ in Eq. (57) are exactly the same
as those given in Eq. (55). Nevertheless, Eq. (55)
is different from Eq. (57) in the higher order
terms. The result derived by normal form theory
gives a finite, asymptotic power series, but using
the L-P method the solution was represented by
an infinite one.

Oscillator with Fifth-Power Nonlinearity

Consider an oscillator with a fifth-power nonlin-
earity as the second example,

¥+ ofx = —ex’ (58)
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with initial conditions (51). Using the normal
form method described previously, one obtains
the following results:

Se

LZ]:O, bl:m

and the fifth-order nonlinear coordinate change is
given by

Cso0 = Cos = €3 = C41 = dso = dis = dyp = 0,

ery = 38 e L §

32 1603’ C14 48w}’ 4’*16w(2)’
31e €

=187 W b

Then, taking seventh-order transformation of co-
ordinates, we obtain a, = 0, b, = 0, with A;(w) =
{0}. After that, we directly take the ninth-order
change of variable which yields a; =0, b; =
(—215£2/3072w3), and

Cop = Cg9 = €81 = Ce3 = C45 = Cy7 = dgg = dn
= dsy = dsg = dig = 0,

_ 295¢2 291582 _ 32782
2= 307208 T 9216w’ 6 1024wd’
_ 937e-
8 = 921608’
o Caass? _ oS85 6173
7307208 7% 9216w % 9216w’
der = —2027¢2 _ —¢g?
7 216w 0 ® T T2wf

The steady-state periodic solution of the oscilla-
tor with fifth power non-linearity is

( _< 3 sa5+
=\l 24w}

3791&24°
14745602,
(58(15 _ 5%d®
12807 192af

) cosf

) cos 36

A

5 95&2a°
+ (388ng) cos 50 + (294912w3> cos76 (59

£%a° )
+ (_98304w3 cos 96.

o — ( N Seat 2158208)
7 T\ T 16wy~ 3072003

The terms of asymptotic normal form series ex-
pansion of Eq. (59) is also finite with all higher
order normal forms equal to zero.

OSCILLATORS WITH EVEN
NONLINEARITY

The normal form method can also be easily ex-
tended to analyze an oscillator with even nonlin-
earity. A quadratic nonlinearity equation is con-
sidered in the following calculation.

Quadratic Nonlinear Oscillator

Consider a system having quadratic nonlinearity,
i+ wfx = —ex? (60)

with initial conditions (51). According to the nor-
mal form method, one needs to do a second-or-
der homogeneous polynomial transformation of
coordinates to simplify the second-order terms in
the original equations. The coefficients of this
change can be evaluated by Eq. (26), the results
are,

—& —2¢
20 3wl 11 »  Co2 302’ 20 )
2¢e
d = —_—— d =
1 3wl 02

The subsequent third-order variable change gives

_582

a1=0, bl:TZ_w?)

and

€ = Cp3 = €31 = dz = dip =0,
2 2 2

& & &
C12 = —_—— d = e—— d = ——,
120§ T 4w P 20

The fourth-order homogeneous polynomial of
transformation cannot be overlooked in this case

and finally its coefficients are found to be

ey =ci3 =dy=dp=0,

o = _ 8 28

40 90§’ » 98’ Coa = 2708
4¢3 16¢3

d3 = 95’ diz = 27a8°



Then normal-form coefficients a,, b, and the
fifth-order homogeneous polynomial of coordi-
nate transformation can be evaluated as

_ —455¢*
"~ 1728}

a =0, b

with

Cs0= Cos = €3 = C4y = dso = dyy = dz = 0,

23 2176 3656
€27 172808 M 5184w) T 1728w
dor = —499¢4 _ 263¢*

B 7518408 T 6480}

The sixth-order homogeneous polynomial of the
transformation is determined by its coefficients,

cs1= C33= 15 = dgo = dap = dory = dos = 0,

25¢° 238 58
07 T340 T T340l T 2430
_ 182¢°
€06 = 2430
der = 25¢° _ 88 _ 328
T 81l P 2430} P 243w

The coefficients of the normal form as, b; are

—28675¢°

4 =0, b= pteay”

The seventh-order coordinate transformation is
determined by

C10 = Co7 = Cg1 = Ca3 = C25 = dp = ds,

=dy = dig = 0,
_ 49675 _ 19105¢°
27 441602’ T 9331200
5126388
16 = 7373248012
4o 3728568  —77285¢
6l 12441608° “* ~ 933120}’
114743¢ 112015
dys =

12441602° “7 ~ T 23328012

Substituting the transformation into the original
equation, we have the steady-state periodic solu-
tion of the oscillator with quadratic nonlinearity
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= ga®  13e%a*  319¢°a° ( _ &
20 240§ ' 1728l  \? T 28wl
143s%a® 3500586a7> .
2073608 207360}
ea® 2583t 124798506>
(6wg * Stes T 311040P) 0820t
(82a3 _ Seta’ 979986617> 30
48wd  5760%  331776w))
7&3a* 23538506>
1+ ( 21608 T 1555200/ 08 40
(37s4a5 _ 5633s%’ )c ”
2073608 9953282/ “°
418506> ( 641¢%q” )
<3456w})° c0s 60 ~ \ 1492992512/ 8 70
o = ( _ Se’a*  4558%a*  28675&%°
T e T 1278w | 1244160}
| + 0(|a|8))t (61)

DUFFING-VAN DER POL OSCILLATOR

In the problem of flow-induced oscillations, the
governing differential equation can be described
by a well-known Duffing—van der Pol equation
(Blevins, 1977)

F—2edx+x+exi+exti=0 (62

with initial conditions (50). Here we assume that
\ is a control variable of the system and ¢ is a
bookkeeping device for small perturbations.
Equation (59) can further be approximately ex-
pressed by a Jordan canonical matrix form,

R R R X
¥2 1 en y2 0

in which, the first-order near identity transforma-
tion is given by

X1 —eh —1||»n
= , (64)

X2 1 0 y2
where we choose x; = x, x, = —x. Note that the
higher order terms in e are neglected during the

computation. We take transformations up to or-
der five. The resultant normal form of Eq. (63) in
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polar coordinates is expressed as follows,

y; = rcosf, y, = rsinf

F= 3r<)\ — érz) (65)
_ 3 ,

6=1+ 3

The coefficients of the intermeidate coordinate
transformations are

_ _ _ 3¢
c=c3=0, ecn=cpp= "8—,

dy = _—38, dp = -

d30=d03= 8 8’

£
4 b

respectively. The asymptotic solution of Eq. (65)
could also be obtained if we have traced back all
the nearly identity coordinate transformations

x = sa(—x + z a2) cos 0 + — adcos 30

where the constant a denotes the amplitude de-
fined by the initial condition. Further discussion
of the normal-form amplitude equation of (65)
reveals the Hopf bifurcation of the Duffing—van
der Pol equation on a parametric plane r — A. As
shown in Figure 1, there is a spiral sink at (0, 0)
for A < 0 and a source at (0, 0) surrounded by a
limit cycle for A > 0. The limit cycle evolves
continuously from the center at (0, 0) for A = 0.
The Hopf bifurcation is of importance in situa-
tions where a flow-induced oscillator is subjected
to flutters or self-exciting movements. At such
circumstances, the orbits of the steady-state peri-
odic solutions stay on the surface of the para-
boloid rotated by A = (1/8) r2.

CONCLUSION

We have presented an arithmetic algorithm to
compute the higher order normal forms. By ap-
plying the explicit formula proposed in this work,
we can achieve, in a standard manner, the de-
sired higher order normal forms for nonlinear dif-
ferential polynomial equations. We found that
the steady-state solution of the undamped Duff-
ing equation can be represented by a finite cosine

Y, Y

32 32
66)
9¢ > ) € ) (
_ 7€ 3 £ 3
+<a+32a s1n0+32asm30
Y, Y
Y1
Sink Center
<0
A A=0
Y

Source
Limit Cycle

A>0

Limit Cycle

Source

A

FIGURE 1



series with varying phase in finite polynomial
terms. To show the versatility of the algorithm,
we illustrated an example in which the order of
nonlinearity is not restricted to odd numbers.
The application to limit cycle bifurcation is also
demonstrated by the Duffing—van der Pol oscilla-
tor.

The second author wishes to thank Dr. Q.C. Zhang for
his helpful discussion on the topic of normal form. The
research was supported by the Research Grant Coun-
cil of Hong Kong.
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