
Title An algorithm for higher order Hopf normal forms

Author(s) Leung, AYT; Ge, T

Citation Shock and Vibration, 1995, v. 2 n. 4, p. 307-319

Issued Date 1995

URL http://hdl.handle.net/10722/211399

Rights Creative Commons: Attribution 3.0 Hong Kong License



A. Y. T. Leung 
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University of Hong Kong 
Hong Kong 

An Algorithm for Higher 
Order Hopf Normal Forms 

Normal form theory is important for studying the qualitative behavior of nonlinear 
oscillators. In some cases, higher order normal forms are required to understand the 
dynamic behavior near an equilibrium or a periodic orbit. However, the computation 
of high-order normal forms is usually quite complicated. This article provides an 
explicit formula for the normalization of nonlinear differential equations. The higher 
order normal form is given explicitly. Illustrative examples include a cubic system, a 
quadratic system and a Duffing-Van der Pol system. We use exact arithmetic andfind 
that the undamped Duffing equation can be represented by an exact polynomial 
differential amplitude equation in a finite number of terms. © 1995 John Wily & Sons, 
Inc. 

INTRODUCTION 

The invariant manifold of a nonlinear oscillator 
near an equilibrium or a periodic orbit is deter­
mined by the structure of its vector field. Two 
often-used mathematical tools to simplify the 
original system are center manifold and normal 
forms. The normal form theory is a technique of 
transforming the original nonlinear differential 
equation to a simpler standard form by appropri­
ate changes of coordinates, so that the essential 
features of the manifold become more evident. 
Basic references on normal forms and their appli­
cations may be found in Poincare (1889), 
Birkhoff (1927), Arnold (1983), Chow and Hole 
(1982), Guckenheimer and Holmes (1983), Iooss 
and Joseph (1980), Sethna and Sell (1978), Van 
der Beek (1989), Vakakis and Rand (1992), and 
Leung and Zhang (1994). In this article a compu­
tational approach based on the classical normal 
form theory of Poincare and Birkhoff is intro­
duced. The relationship of the coefficients be-
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tween the original equations and the normal form 
equations is explicitly constructed. The tech­
nique presented in our approach follows the idea 
of Takens (1973). A linear operator and its adja­
cent operator are defined with an inner product 
on the space of homogeneous polynomials. The 
resultant normal form keeps only the resonant 
terms, which cannot be eliminated by a nonlinear 
polynomial changes of variables, in the kernel of 
the adjacent linear operator. The normal form 
simplifies the original systems so that the dy­
namic stability and bifurcation can be studied in a 
standard manner and the classification of mani­
fold in the neighborhood of an equilibrium or a 
periodic orbit can be achieved with relatively lit­
tle efforts. This article is a further development 
of previous work (Leung and Zhang, 1994). The 
higher order normal forms of several typical non­
linear oscillators: cubic system, quadratic sys­
tem, and Duffing-Van der Pol system are pro­
vided and the steady-state solutions of the 
method are compared with existing results. 
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TRANSFORMATION TO NORMAL FORM 

Consider the nonlinear ordinary differential 
equations 

wherefis an n-vector function of u, differentia­
ble up to order r. Suppose Eq. (1) has a fixed 
point at u = Uo. We first perform a few linear 
transformations to simplify eq. (1). By the vari­
able change v = u - uo, we eliminate the constant 
terms and shift the fixed point to the origin under 
which Eq. (1) becomes 

v = f(v + uo) == H(v), (2) 

where H(v) is at least linear in v. We next split 
the linear part of the ordinary differential equa­
tion and write (2) as follows 

v = D"H(O)v + H(v), (3) 

where H(v) == H(v) - D"H(O)v and, H(v) = 
O(lv F) is at least quadratic in v and D" denotes 
differentiation with respect to v. We further 
transform D"H(O) into Jordan canonical form by 
the canonical matrix T, i.e., v = Tx, and obtain 

i = lID"H(O)Tx + T-IH(Tx). (4) 

which can be written alternatively as 

i = Jx + F(x). (5) 

where J is the Jordan Canonical form of D"H(O) 
and F(x) is the nonlinear part of the equation. In 
Poincare's normal form theory, the nonlinear 
function F(x) is expanded by a series of homoge­
neous polynomials, 

i = Jx + F 2(x) + F3(X) + ... + F,(x) (6) 
+ O(lxl,+I) 

where Fk E Hko which is the set of homogeneous 
polynomials or order k. To transform Eq. (6) into 
its normal form, Poincare introduces a nearly 
identity nonlinear coordinate transformation of 
the form 

(7) 

where hk(y) is kth order in y, hk(y) E Hb 2 :S 

k:s r. 

Substituting Eq. (7) into Eq. (6) gives 

i = (/ + Dyhk(Y))Y = J(y + hk(y)) (8) 
+ ... + Fk(y + hk(y)) + O(lylk+I), 

where / denotes the n x n identity matrix and the 
term (/ + Dyhk(y)) is invertible for sufficient 
small Y so that 

Substituting Eq. (9) into Eq. (8) and applying 
similar nearly identity nonlinear transformations 
up to the kth order, we obtain 

Y = Jy + F 2(y) + ... + Fk-I(y) + Fk(y) 
+ (Jhk(y) - Dyhk(y)Jy) + O(lylk+l) 

= Jy + F 2(y) + ... + Fk-I(y) + Fk(y) 
+ adJhk(y) + O(lylk+l) 

(10) 

where the overbar is used to represent the origi­
nal polynomial matrices and adJhk(y) denotes an 
adjacent operator equivalent to the function of 
the Lie Bracket, 

To simplify the terms of order k as much as pos­
sible, we choose a specific form for hk(y) such 
that 

(12) 

If Fk(y) is the range of L J(Hk)' then all terms of 
order k can be eliminated completely from Eq. 
(10). Otherwise we must find a complementary 
space Gk to LJ(Hk) and let Hk = LAHk) E9 Gk so 
that only terms of order k which are in Gk remain 
in the resultant expression. It is interesting to 
note that simplifying terms at order k would not 
affect the coefficients of any lower terms. How­
ever, terms of order higher than k will be 
changed. Therefore, it is only necessary to keep 
track of the way that the higher order terms are 
modified by the successive coordinate transfor­
mations. This will be discussed in the next sec­
tion. 

NORMAL FORMS OF OSCILLATING 
SYSTEMS 

We now specialize the normal form formulation 
in two-dimensions for the Hopf bifurcation be-



low. Consider a system with a small perturbed 
parameter IL and an equilibrium point with eigen­
values ±iwo, wo > O. 

i = f(x, IL), x E R2, IL E Rl (13) 

where we suppose, after shifting of origin and 
canonical transformation, 

Furthermore, the Taylor expansion of Eq. (13) 
gives 

where 

A ==' Dxf(O, 0) + D2x,J(0, O)IL 

= [f31L -(aIL + wo)], (15) 
(aIL + wo) f31L 

F = [F21(Y)] = [a2o a11 a02]{ Yl }. (16) 
2(Y) F () b b b Y1Y2 nY 201102 

y~ 

We would like to find a coordinate transforma­
tion (7) so that the nonlinear terms of order k + 1 
in the new system of function Y vanish rather 
than of order k in the original system of function 
x. Inserting Y = (Yt. Y2Y E R2 and hk(y) = (hk1(y), 
hk2(y)V E Hk into (13), we have the Lie bracket, 

(17) 

Second-Order Normal Form 

If the smallest order of nonlinear terms appearing 
in (13) is two, we try to find a transformation h2 
of the form 

x = Y + hz(y). (18) 

Algorithm for Higher Order Hopf Normal Forms 309 

where 

Perform the Lie bracket operation to each basis 
element on H 2, 

thus, 

LJ (Y01) = [:0 -;0][Y01] - [2~1 ~][:o 

-;0][~:J = Wo [2~r2J and 

L (Y1Y2) = w (y~ - Yl) (y~) _ 
J 0 0 LJ - Wo 

Y1Y2' 0 

( -Y1Y2) ( 0) ( -Yi) 
2 ,LJ 2 = Wo , 

Y2 Y 1 2Y1Y2 

-wo ( y~ ) 
2Y1Y2 . 

The matrix representation of L J (H2) can then be 
written as 

LJ(H2) = span 

{[:i Y1Y2 y~ 0 0 :~] . Ai} = H2 . Ai 0 0 yi Y1Y2 
(20) 

where 

0 -1 0 -1 0 0 

2 0 -2 0 -1 0 

0 1 0 0 0 -1 
AJ = Wo 

1 0 0 0 -1 0 

0 1 0 2 0 -2 
0 0 1 0 1 0 
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Because the det[Aj] = 8wo> 0, which does not 
vanish for Wo > 0, we obtain the following null 
complementary space for the homogeneous 
equations Aj g = {O}, 

Therefore, we can eliminate the quadratic term 
completely from Eq. (10) by means of the sec­
ond-order coordinate transformation (19) and get 
the second-order normal form 

{
Y' = ({3IL y, - (aIL + WO)Y2 + O(ly,P, IY213). 

Y2 = (aIL + wo)Y, + (3IL Y2 + O(ly, 13, IY213) 
(22) 

The coefficients in Eq. (19) are required for fur­
ther development and are found by Eqs. (10)­
(12). Substituting Eq. (19) into (10) and truncat­
ing to the Mth degree yields 

M 

Y = ~ (-l)N[Dyh2(y)]N 
N=O 

{AY + Ah2(y) + ~ ~o Dr;' ~!(y) [h2(y )]m } 

M 

= Ay + ~ F~l) (y) (23) 
n=2 

where 

[F",{(y)] [~ aU) Y h~] 
F(1)(y) = = . 

n F,,2.J.(y) ~ bU)Yh~ , (24) 

n = 2, .. " M, i = 2 - j. 

in which, the number in the superscript parenthe­
ses refers to the index of coordinate transforma­
tion. From Eq. (22) we know that the comple­
mentary space of second-order normal form, G2 , 

is null so that we have the following equation 

F~l)(y) = F2(y) + Jh2(y) - Dyh2(Y) . J . Y = O. 
(25) 

Then, we find coefficients Cij, dij in Eq. (19) by 
solving the linear algebraic equation, Eq. (25), 

C20 b20 + a" + 2bo2 

c", -2a20 - b" + 2a02 
-1 

2b20 - a" + b02 (26) CO2 
3wO 

d20 -a20 + b" - 2a02 

d" -2b20 + a" + 2bo2 

d02 -2a20 - b" - a02 

Third-Order Normal Form 

We further perform the nearly identity transfor­
mation (7) to third order to obtain the more accu­
rate nonlinear description of Eq. (14) in the 
neighborhood of the original singular point. 

(27) 

where y represents the new coordinate and x is 
its old one. 

The third-order monomial base is given by 

H3 = span {(~), (Y~2), (Y~~), (~), (~i)' 

(yfY2)' (y~y~), (~~)}. (29) 

Similar to Eq. (20), the matrix representation of 
LAH3) is given by 

LJ (H3 = H3 . A} (30) 

where 

AJ = Wo 

0 -1 0 0 -1 0 0 0 

3 0 -2 0 0 -1 0 0 

0 2 0 -3 0 0 -1 0 

0 0 1 0 0 0 0 -1 

1 0 0 0 0 -1 0 0 

0 1 0 0 3 0 -2 0 

0 0 1 0 0 2 0 -3 

0 0 0 1 0 0 1 0 



We observe that the homogenous equations 
A 3Jg = {O}, g E R8 have two zero eigenvectors for 
the matrix A} corresponding to its two zero ei­
genvalues, 

eT = {(1, 0, 1,0,0, 1,0, IV 
(0, -1,0, -1, 1,0, 1, OV}. 

(31) 

Thus, A3 has a complementary space spanned by 
the monomial basis (29), 

(32) 

Finally, through a proper coordinate transforma­
tion, we determine the third-order normal form 
of the original system, 

{
YI = {3IL YI - (aIL + WO)Y2 + aIYI(Y1 + y~) 

- b IY2(YT + y~) + 0(1 yd 5 , IY21 5) 

Y2 = (aIL WO)YI + f3ILY2 + aIY2(YT + y~) 
+ b IYI(Y1 + y~) + 0(lyd5 , IY215) 

(33) 

where ai and bi are to be determined. 
We now want to develop a systematic proce­

dure to evaluate the coefficients of normal forms 
and the normal transformations of third order. 
We see from Eq. (11) 

M 

i = L (-1)N[Dh3(Y )]N 
N=O 

M 

= Ay + F~I)(y) + L F~2)(y) (34) 

where 

(35) 
n = 3, .. " M, i = 2 - j. 

We know from Eq. (24) that the third-order nor­
mal form is equal to its complement space so that 

F~2)(y) = F~I)(y) + J. h3(Y) - Dh3(Y) . J . Y 
= G3(y). (36) 
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The resultant linear equation is 

A3· g = 'Y} (37) 

where 

g = {C30, C2)' C\2, C03, d30 , d2), dlb d03Y 
'Y} = {am - a), aW + b), alY - a), abY + b), b~~ 

- b), bW - a), blY - b), abY - alY 

or 

in which 

0 -1 ° 0 C30 

3 ° -2 0 C21 
B= c= 

0 2 0 -3 CI2 

0 0 1 0 C03 

d30 a~~ - al 

d= 
d21 aW + bl 

a= 
dl2 a\Y - al 

d03 abY + bl 

b~~ - bl 

6= 
bW - al 

bIY - bl 

b&Y - al 

Dividing Eq. (38) into two parts, we obtain 

{
WO(B2 + I) . c = B . ii. - 6 

wO(B2 + I) . a = B . 6 + ii.' 

(38) 

(39) 

Note that there are two more unknowns existing 
in Eq. (39) than the number of equations. How­
ever, the coefficients of the normal form a), b l 

can be evaluated independently by performing an 
orthogonal linear transformation on one of the 
equations in Eq. (39), 

0 -1 0 1 

-3 0 1 0 
T= (40) 

0 3 0 1 
1 0 1 0 

where T is the canonical matrix consisting of the 
eigenvectors of B2 + I. The second equation in 
(39) becomes 
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0 -1 0 1. -2 0 2 0 0 -1 0 ""4 4 

-1 0 1. 0 0 -6 0 6 -3 0 1 0 
LHS = T-I (B2 + l) T . a = Wo 

""4 4 

.d 
0 1. 0 3 6 0 -6 0 0 3 0 1 4 4 

! 0 1 0 0 2 0 -2 1 0 1 0 4 

0 2 0 -2 

2 0 -2 0 
= Wo .d 

0 0 0 0 

0 0 0 0 

(41) 

0 -1 0 1. - 2al + am + bW ""4 4 

-1 0 1 0 aW + 2b l + 2bW - 3bm ""4 4 
RHS = 11 (B . b + a) = 

0 t 0 ;I -2al + alY + 3b&Y - 2bW 4 

i 0 1. 0 a&Y + 2b l - bW 4 

abY - aW - 3b\Y + 3b~U 
aW - a~U + 3b&Y - 3bW 

3a&Y + aW + Sb l - b\Y - 3bm 
-Sal + alY + 3am + 3b&Y + bW 

By comparing the terms in the last two rows of 
Eq. (41), we obtain 

{
al = ~ (aW + 3abY + b~V + 3b&Y) . 

(42) 
bl = ~1 (aW + 3a&Y - bW - 3b~U) 

Substituting Eq. (42) into (39) and solving Eq. 
(39), the third-order homogeneous polynomial 
(2S) is then determined by 

o 
1 -3a\Y - b&Y + 3a~U + bW 

SWo - 3abY + b\Y + 3aW + b~U 

o 
alY - bbY + a~U - bW 

1 3abY + 5b~U + aW - bIY 
4wo alY + 5bbY + 3a~U + bW 

abY + b~U + aW + bIY 

Higher Order Normal Form 

(43) 

The higher order normal form in a rectangular 
coordinate system is derived accordingly and can 
be written as follows, 

L 

Y = A Y + 2: W2i+I(Y) + O(jyj2L+3), (44) 
i=l 

where 

A - [(a:: wo) -(a~: wo)], Y = [:J 
W2i+ l (y) = (YT + y~)i [:: ~~i][::J 

and L is a given degree of the normal form equa­
tion. The validity of such simplification is guar­
anteed by the implicit function theorem, as for 
each /-t near /-to, there will be an equilibrium p(/-t) 
near p(/-to) that varies smoothly with /-t. The nor­
mal form of Eq. (44) in polar coordinates can 
then be written as the form 

YI = r cos (), Y2 = r sin () 

L 

;- = r(f3/-t + 2: air21) + hot. 

L 

{} = Wo + a/-t + 2: bir2i + hot 
i=l 

(45) 



A general formula for each ai, bi is not pres­
ently available but we can derive their expres­
sions up to any desired higher order using the 
algorithm mentioned above recursively, such 
that, 
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{
a3 = 1~8 (35a~d + 5a~~ + 3a~~ + 5am + 5b~) + 3b¥~ + 5b~{ + 35b~J), 

b3 = ;;~ (5a~) + 3a~~ + 5a~~ + 35a~i - 35b~~ - 5bf{] - 3b~~ - 5b~~); 

{
a4 = _1_ (63a~~ + 7aW + 3a~~ + 3a~~ + 7a\~ + 7b~~) + 3b~7] + 3b~-g + 7b~7 + 63bb'J), 256 

b4 = ;~ (7a~V + 3a~7] + 3a~-g + 7a&V + 63ab'J - 63b~~ - 7bW - 3b~~ - 3b~~ - 7bm); 

and for the eleventh order, 

a5 = 10~4 (231aJld + 21a?] + 7afJl + 5a~~ 

+ 7aW, + 21ai1l + 21bfI) + 7b~J + 5b~{ 

+ 7bf/ + 21b~J + 231bJ1)), 

b5 = 1~;4 (21afI) + 7a~J + 5a~{ + 7arti 

+ 21a~J + 231aJY- 231bJlrl - 21b?] 

- 7bfJl - 5b~ - 7bCfJ - 21M1l); 

here the subscripts A, B refer to the indices 10 
and 11, respectively. 

The complexity of higher order normal forms 
rapidly becomes apparent as pointed out by 
Leung and Zhang (1994). Thus, the algorithm is 
required to be implemented with the symbolic 
manipulation in Mathematica (Wolfram, 1991). 
In the case of m > 5, however, it may also cause 
overflow in the computers equipped with con­
ventional memory if we apply the nearly identity 
normal transformations directly in Eqs. (23) and 
(34). A general explicit formula representing the 
homogeneous polynomial terms is therefore very 
useful to reduce the size of the problem. 

If the nearly identical change of coordinate of 
order k 

(46) 

is applied then the new homogeneous polynomi­
als of order n can be obtained by 

n = k, F:(y) = Fn(Y) + J. hk(y) 
- Dhk(y) . J . y; 

(48) 

n > k, F:(y) = Fn(Y) + [DFn-k+1(y) . hk(y) 
- Dhk(y) . F n-k+l(Y)]n"'2k-l 

where F:(y) denotes the resulting homogeneous 
polynomials, km = min[kh k2], and 

kl = floor [~ = ~]. k2 = floor [IJ 
The operator floor['] gives the greatest integer 
less than or eual to the varible in the bracket. The 
result confirms that only odd-order terms would 
appear in the normal form equation, correspond­
ing to the Poincare resonance (Guckenheimer 
and Holmes, 1983). 

OSCILLATORS WITH ODD 
NONLINEARITY 

Here we consider the nonlinear differential equa­
tions with flu) to be an odd function of u. To 
illustrate this, two examples are presented. The 
first one is the well-known Duffing oscillator, 
which arises from various physical and engineer­
ing problems. The solution of this oscillator has 
been thoroughly studied so that the accuracy of 
the results can be compared with existing meth­
ods. In the second example, we work with an 
oscillator having a term of the fifth power. 
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Duffing Oscillator 

Consider the Duffing oscillator 

x + w5x = -8X3 (50) 

with the initial conditions 

x(O) = a, i(O) = 0, (51) 

where the parameter 8 > 0, Wo is the linear fre­
quency. In classical perturbation methods, it is 
usually assumed that 8 is small. In the present 
case, however, 8 need not be small. With the 
transformation x = XI. i = -WOX2, we rewrite Eq. 
(50) as 

-WO][XI] + [80 
]. 

o X2 - xi 
Wo 

(52) 

Comparing Eq. (52) with the standard third-order 
normal form {i} = {x} + F3(X) , we have b30 = 

(8Iwo) and all the other coefficients are zero. If 
we substitute these coefficients into Eq. (42), we 
obtain al = 0, b l = (38/8wo). 

The third-order nonlinear transformation of 
coordinate {x} = [J]{y} + h3(y) can be deter­
mined by Eq. (43) and the coefficients of h3(y) 
are C30 = C03 = C21 = d30 = dl2 = 0, 

8 
CI2 = -8 2' 

Wo 

58 
d21 = -8 2' 

Wo 

8 
d03 = -4 2· 

Wo 

Here we use y to denote the new coordinates and 
x the old ones. While under the fourth order non­
linear transformation, all the coefficients of the 
homogeneous polynomial are identically zero, 

C40 = C31 = C22 = C\3 = C04 = d40 = d31 

= d22 = d\3 = d04 = O. 

According to the method mentioned in the last 
section, such computation can be repeated up the 
the desired orders. Finally, we found that all the 
coefficients of the even-order coordinate homo­
geneous polynomials h2n(Y) are equal to zero and 
all the even-order terms are already in their sim­
plest forms. Thus, only the odd-order homoge­
neous polynomials need to be handled in our 
computation. 

The coefficients of normal form a2 and b2 can 
be obtained by taking the change of variable 

-2182 
{y} = {z} + hs(z); a2 = 0, b2 = 256w6. 

Then, the fifth-order nonlinear coordinate 
change hs(z) is given by 

CSO = Cos = C23 = C41 = dso = d l4 = d32 = 0, 

2182 
C32 = 256w6' 

-6782 
d23 = 256w6' 

Similarly, after taking the seventh-order polyno­
mial change of variables, 

{z} = {w} + h7(w), 

we get 

and h7(W) is given by 

= dl6 = 0 

-18383 
CS2 = 4096w8' 

-13383 
CI6 = 4096w8' 

36383 21783 
d61 = 4096w8' d43 = 4096w8' 

63383 
d2S = 4096w8' 

583 

d07 = 256w8· 

Performing the variable changes further to the 
ninth order, {w} = {u} + h9(u), yields 

-1124184 
b4 = 262144w6 

and h9(U) is given by 

708984 
Cn = 262144wg' 

-1603584 
dSI = 262144wg' 

1921584 
CS4 = 262144wg' C36 

1900384 790184 
= 262144wg' CIS = 262144wg' 

-4682184 
d63 = 262144wg' d4S 

-5796984 -3857584 -2984 
262144wg' d27 = 262144wg' d09 = 2048wg 
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If further transformations beyond the ninth order 
were performed, it is interesting to note that all 
the following higher order coefficients of normal 
forms ai, hi (i = 5,6, 7 ... ) as well as the coordi­
nate transformation hk(y) (k = 10, 11, 12, . . .) 
vanish. Therefore, the normal form of our cubic 
nonlinear differential system has an ultimate de­
gree of nine. The dynamic system can be repre­
sented by an exact polynomial differential ampli­
tude equation in a finite number of terms. 

The asymptotic solution of this normal-form 
equation is 

lUI = r coso 

r = 0 (53) 

. _ 3er2 _ 21e20 237e3l' _ 11241e4,-8 
o - Wo + 8wo 256w6 + 4096wb 262144w6 

The steady-state periodic solution of Eq. (53) is 

{

UI = acosO, U2 = asinO 

_ ( 3ea2 _ 21e2a4 237e3a6 _ 11241e4a8) • 

o - Wo + 8wo 256w6 + 4096wb 262144w6 t 
(54) 

To get the steady-state periodic solution in the 
original coordinate, we could trace back all the 
transformations, for example, 

{x} = {y} + h3(y) 

= {z} + h5(z) + h3(z + h5(z» 

= {w} + h7(W) + h5(W + h7(W» + h3({W} 

+ h7(W) + h5(U + h7(W») 

= {u} + h9(U) + h7({U} + h9(U» + h5({U} 

+ h9(U) + h7({U} + h9(U») 

+ h3({U} + h9(U) + h7({U} + h9(U» + h5({U} 

+ h9(U) + h7({U} + h9(U»». 
(55) 

The steady-state periodic solution of the Duffing 
equation is 

x= 

( ea3 23e2a5 167e3a7 3431e3a9) 
a - 32w6 + 1024w3 - 16384wg + 524288w3 coso 

( ea3 3e2a5 30ge3a7 7033e4a9 ) 
+ 32w6 - 128wg + 32768wg - 1048576w3 cos 30 

( e2a5 31e3a7 191e4a9 ) 
+ 1024w3 + 32768wg + 524288w6 cos 5(J. 

+ (65~~a:W6) cos 9(J 

_ ( 3ea2 21e2a4 237e3a6 

(J - Wo + 8wo - 256w6 + 4096wb 

11241e4a8) 

262144w6 t. 

(56) 

We compare the solution by the Lindstedt-Poin­
care (L-P) method with the same initial condi­
tions below, 

( ea3 23e2a5 547e3a7 
x = a - 32w6 + 1024w6 - 32768wg 

+ 6713e3a9) cos(J 
524288w6 

( ea3 3e2a5 297e3a7 
+ 32w6 - 128w6 + 16384wg 

_ 15121e4a9) cos 3(J 
1048576w6 

( e2a5 3e3a7 883e4a9 ) 

+ 1024w6 - 2048wg + 524288w3 cos 5(J 

( e3a7 ge4a9 ) 
+ 32768w8 - 131072w6 cos 7(J 

+ C04~~a;6W6) cos 9(J 

_ ( 3ea2 _ 21e2a4 81e3a6 _ 654ge4a8 

(J - Wo + 8wo 256w6 + 2048wb 262144w6 

+ O(lallO»)t 

(57) 

It is clear to see that the coefficients of the first 
three orders of e in Eq. (57) are exactly the same 
as those given in Eq. (55). Nevertheless, Eq. (55) 
is different from Eq. (57) in the higher order 
terms. The result derived by normal form theory 
gives a finite, asymptotic power series, but using 
the L-P method the solution was represented by 
an infinite one. 

Oscillator with Fifth-Power Nonlinearity 

Consider an oscillator with a fifth-power nonlin­
earity as the second example, 

i + w6X = -ex5 (58) 
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with initial conditions (51). Using the normal 
form method described previously, one obtains 
the following results: 

Ql = 0, 

and the fifth-order nonlinear coordinate change is 
given by 

C50 = C05 = C23 = C41 = d50 = dl4 = d32 = 0, 

-3e 
C32 = 16wij' 

31e 
d23 = 48w~' 

-7e 
CI4 = 48w5' 

e 
d05 = -6 2· 

Wo 

Then, taking seventh-order transformation of co­
ordinates, we obtain a2 = 0, b2 = 0, with h7(W) = 

{o}. After that, we directly take the ninth-order 
change of variable which yields a3 = 0, b3 = 
(-215e2/3072wfi), and 

C90 = C09 = CSI = C63 = C45 = Cn = d90 = dn 

295e2 

Cn = 3072w6' 

= d54 = d36 = dis = 0, 

32h2 

C36 = 1024w6' 

937e­
CIS = 9216w6' 

-445e2 - 5825e2 -6173e2 

dSI = 3072w6' d63 = 9216w6' d63 = 9216w6 ' 

-2027e2 

d63 = 9216w6 ' 

The steady-state periodic solution of the oscilla­
tor with fifth power non-linearity is 

( 
e2a9 ) 

+ 98304w6 cos 90. 

The terms of asymptotic normal form series ex­
pansion of Eq. (59) is also finite with all higher 
order normal forms equal to zero. 

OSCILLATORS WITH EVEN 
NONLINEARITY 

The normal form method can also be easily ex­
tended to analyze an oscillator with even nonlin­
earity. A quadratic nonlinearity equation is con­
sidered in the following calculation. 

Quadratic Nonlinear Oscillator 

Consider a system having quadratic nonlinearity, 

(60) 

with initial conditions (51). According to the nor­
mal form method, one needs to do a second-or­
der homogeneous polynomial transformation of 
coordinates to simplify the second-order terms in 
the original equations. The coefficients of this 
change can be evaluated by Eq. (26), the results 
are, 

-e 
C20 = -3 2' 

Wo 

2e 
d ll = -3 2' 

Wo 

CII = 0, 

d02 = 0. 

-2e 
C02 = -3 2' 

Wo 
d20 = 0, 

The subsequent third-order variable change gives 

al = 0, 

and 

The fourth-order homogeneous polynomial of 
transformation cannot be overlooked in this case 
and finally its coefficients are found to be 

C31 = CI3 = d40 = d22 = 0, 

e3 8e3 

C40 = --9 6' C22 = --9 6' C04 = 
Wo Wo 



Then normal-form coefficients a2, b2 and the 
fifth-order homogeneous polynomial of coordi­
nate transformation can be evaluated as 

a2 = 0, 

with 

-455e4 
b2 = 1728w6 

C50 = C05 = C23 = C41 = d50 = d l4 = d32 = 0, 

23e4 
C32 = 1728wg' 

-49ge4 
d23 = 5184wg' 

217e4 
CI4 = 5184wg' 

263e4 
d05 = 648wg 

-365e4 
d41 = 1728w~ 

The sixth-order homogeneous polynomial of the 
transformation is determined by its coefficients, 

C51 = C33 = CI5 = d60 = d42 = d24 = d06 = 0, 

25e5 23e5 5e5 
C60 = - 324wAo' C42 = - 54wbo ' C24 = 243wAo 

182e5 
C06 = 243wbo' 

The coefficients of the normal form a3, b3 are 

-28675e6 
b3 = 124416wbl ' 

The seventh-order coordinate transformation is 
determined by 

C70 = C07 = C61 = C43 = C25 = d70 = d52 

C52 = 

d61 = 

= d34 = d l6 = 0, 

4967e6 19105e6 

124416wA2' C34 = 93312wA2' 

CI6 = 

37285e6 
d43 = 

-77285e6 

124416wb2 ' 93312wb2 ' 

d25 = 
114743e6 
124416wb2' d07 = 

51263e6 

373248wb2' 

11201e6 
23328wA2 . 

Substituting the transformation into the original 
equation, we have the steady-state periodic solu­
tion of the oscillator with quadratic nonlinearity 
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__ ea2 _ 13e3a4 31ge5a6 (_ e2a3 
x - 2w2 24w3 + 1728wAo + a 48w~ 

143e4a5 35005e6a7) 
+ 20736w~ - 20736wb2 cosO 

( ea2 25e3a4 1247ge5a6) 
+ 6w6 + 54wg - 31104wAo cos 20 + 

( e2a3 5e4a5 979ge6a7 ) 
48w~ - 576wg + 331776wA2 cos 30 

( 7e3a4 2353e5a6) 
+ - 216w3 + 15552wAo cos 40 

( 37 e4a5 5633e6a 7 ) 

+ 20736wg - 995328wb2 cos 50 

( 41e5a6 ) ( 641e6a7 ) 
- 3456wbO cos 60 - 1492992wb2 cos 70 

_ ( _ 5e2a2 _ 455e4a4 _ 28675e6a6 
o - Wo 12w3 1278w7 124416wll 

000 

+ O(la I8))t (61) 

DUFFING-VAN DER POL OSCILLATOR 

In the problem of flow-induced oscillations, the 
governing differential equation can be described 
by a well-known Duffing-van der Pol equation 
(Blevins, 1977) 

i - 2e AX + x + e X3 + e X2 X = 0 (62) 

with initial conditions (50). Here we assume that 
A is a control variable of the system and e is a 
bookkeeping device for small perturbations. 
Equation (59) can further be approximately ex­
pressed by a Jordan canonical matrix form, 

[YI] [eA -1][YI] [YIY~ + Y~] = -e , (63) 
Y2 1 eA Y2 0 

in which, the first-order near identity transforma­
tion is given by 

where we choose XI = X, X2 = -x. Note that the 
higher order terms in e are neglected during the 
computation. We take transformations up to or­
der five. The resultant normal form of Eq. (63) in 
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polar coordinates is expressed as follows, 

YI = r cosO, Y2 = r sinO 

f = er( A - ~ r2) 

3e 
() = 1 + - r2 

8 

(65) 

The coefficients of the intermeidate coordinate 
transformations are 

3e 
C30 = C03 = 0, C21 = CI2 = 8' 

-e -3e -e 
d30 = d03 = 4' d21 = -8-' dl2 = 8' 

respectively. The asymptotic solution ofEq. (65) 
could also be obtained if we have traced back all 
the nearly identity coordinate transformations 

x = ea(-A + ~ a2) cos 0 + ..£. a3cos 30 
32 32 

( ge 3) . e 3. + -a + - a sm 0 + - a sm 30 
32 32 

(66) 

Y, Y. 

--+-+~'-I'--- Y, 

Sink Center 

A. <0 

y 
• 

Sink 

r 

where the constant a denotes the amplitude de­
fined by the initial condition. Further discussion 
of the normal-form amplitude equation of (65) 
reveals the Hopf bifurcation of the Duffing-van 
der Pol equation on a parametric plane r - A. As 
shown in Figure 1, there is a spiral sink at (0, 0) 
for A < ° and a source at (0, 0) surrounded by a 
limit cycle for A > o. The limit cycle evolves 
continuously from the center at (0,0) for A = o. 
The Hopf bifurcation is of importance in situa­
tions where a flow-induced oscillator is subjected 
to flutters or self-exciting movements. At such 
circumstances, the orbits of the steady-state peri­
odic solutions stay on the surface of the para­
boloid rotated by A = (l/8) r2. 

CONCLUSION 

We have presented an arithmetic algorithm to 
compute the higher order normal forms. By ap­
plying the explicit formula proposed in this work, 
we can achieve, in a standard manner, the de­
sired higher order normal forms for nonlinear dif­
ferential polynomial equations. We found that 
the steady-state solution of the undamped Duff­
ing equation can be represented by a finite cosine 

Y. 

Limit Cycle 

Source 

FIGURE 1 



series with varying phase in finite polynomial 
terms. To show the versatility of the algorithm, 
we illustrated an example in which the order of 
nonlinearity is not restricted to odd numbers. 
The application to limit cycle bifurcation is also 
demonstrated by the Duffing-van der Pol oscilla­
tor. 

The second author wishes to thank Dr. Q.C. Zhang for 
his helpful discussion on the topic of normal form. The 
research was supported by the Research Grant Coun­
cil of Hong Kong. 
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