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Abstract Reverse-transcription quantitative PCR (RT-qPCR) is a powerful technique for quantification of gene expres-
sion. Extraction of RNA directly from human and large animal intervertebral disc (IVD) tissue is technically challenging 
due to its tough nature, low cell-to-matrix ratio and high proteoglycan content. IVD is consisted of nucleus pulposus 
(NP) and annulus fibrosis (AF). We compared the yield and quality of RNA extracted from cultured cells using TRIzol 
and combined TRIzol-column method (TRIspin) with and without bovine NP tissue added for high proteoglycan content 
simulation. Higher yields were obtained using the TRIzol method compared to the TRIspin method and the quality of RNA 
extracted using both methods was comparable. Cryosectioning was by far the most effective homogenization method for 
the tough bovine NP tissue. The typical modification to TRIzol extraction by the use of high salt solution in a previously 
reported study for tissue with high proteoglycan was insufficient for bovine NP tissue, where undesirable precipitates 
were formed during the RNA precipitation step. This necessitates other modifications to the protocol. In our study, the 
combination of additional phase separation and high salt precipitation was shown to be effective to avoid the formation 
of the undesirable precipitates. The modified TRIzol method was compared with the TRIspin method and shown to 
give higher RNA yield which resulted in smaller Ct values in RT-qPCR. In addition, we showed that the cryosectioning 
method was applicable to bovine muscle, mouse IVD and rat NP tissues. This method of RNA preparation also allows 
simultaneous preparation of tissue for histological study and quantitative gene expression analysis.
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INTRODUCTION

Reverse transcription-quantitative polymerase chain reaction (RT-qP-
CR) is a powerful method to assess the gene expression at the tran-
script level. In many applications, especially for tissues, it requires the 
extraction of RNA prior to reverse transcription. Extraction of RNA 
directly from intervertebral disc (IVD) tissue or cartilage has been dif-
ficult due to its low cell density and high proteoglycan content [1,2]. An 
IVD is consisted of a nucleus pulposus (NP) core surrounded by a thick 
outer ring of fibrous annulus fibrosus (AF) and is sandwiched between 
cartilage endplates [3]. Cells in bovine NP tissue and AF tissue only 
occupy around 0.19% and 0.82% volume of the tissues respectively 
while there is 33.9% dry weight of proteoglycan in bovine NP and 
9.7% in AF from adult animals of 18–36 month old [4]. There were 
studies assessing the relative mRNA levels of IVD tissues using cells 
isolated from these tissues by collagenase treatment [5-8]. Typically, 
the enzymatic cell isolation method requires the dicing of tissues into 
small pieces and enzymatic digestion for at least two hours. This may 
result in changes in relative mRNA levels, especially for those with 
short half-lives. Sharova et al. have shown that mRNA for all genes 
in mice has a median half-life of 7.1 h  and the half-life for mRNA for 
some genes (<100 genes) may be less than 1 h  [9]. This suggests the 

possible necessity of quenching RNA degradation before RNA extraction 
for some short lived genes in some studies. A comparison of different 
tissue processing methods for RNA extraction from tissues was given 
in Figure 1 and Table 1.

We tested different methods to homogenize the bovine NP tissue 
using an electric pestle and mortar system but it was difficult to break 
the tough tissue when it was in frozen state. Cryosection was also 
tested since bovine NP tissue sections have been successfully prepared 
for histology. In laser capture microdissection (LCM), cryosectioning 
has been reported in preparing sections on glass or membrane slides 
[10-15]. With LCM, a specific region of interest can be selected for 
RNA extraction. This can be a viable option for extracting RNA from 
bovine or human NP tissue which has high proteoglycan content and 
low cellularity as LCM can exclude the high proteoglycan region of the 
tissue in RNA extraction. However, LCM is expensive and not readily 
accessible for every laboratory. The staining procedures required for 
cell visualization may also induce RNA degradation. Therefore, we 
explored other methods to extract RNA from NP tissue. There are only 
a few studies which extract RNA directly from NP tissue (summarized 
in Table 2) and none of the reported studies used cryosections as a 
means to break the tissue for RNA release. On the other hand, RNA 
was successfully extracted from kidney cryosections using a RNeasy 
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isolation kit [16]. Compared to kidney tissue, bovine and human NP 
tissues have high proteoglycan content with low cellularity. Hence a 

higher extraction efficiency in terms of RNA yield is desirable.

Figure 1. Schematics showing different tissue processing methods for RNA extraction from tissues.

Table 1. Comparison of the advantages and disadvantages of different tissue processing methods for RNA extraction.

Homogenization/ pulverization Enzymatic method Cryosection

√ • No cell isolation procedure • Can concentrate the cells and remove 
the extracellular matrix, facilitating RNA 
extraction

• Can also obtain cells for culturing

• Can prepare cryosections for histologi-
cal study at the same time

• Minimal time of cells at room tempera-
ture or elevated temperature

• No cell isolation procedure

× • Heat may be generated, resulting in 
RNA degradation

• May be difficult to break the tough IVD 
tissues

• Requires a homogenizer/ pulverizer

• Relative mRNA levels may change 
during the cell isolation

• Extra time is required to isolate cells 
before RNA extraction

• Requires a cryostat

Table 2 Studies that investigated the gene expression in IVD tissues through direct RNA extraction from the tissues.

Tissue Tissue processing Homogenizer used Extraction Tissue amount per 
sample

Reference

Human NP tissue Homogenized in TRIzol 
on ice

Omni TH Homogenizer TRIzol extraction 
followed by
RNeasy mini clean up

100–300 mg Wang et al. [17]

Human NP and AF 
tissue

Frozen at -80°C and 
pulverized on dry ice

Stainless steel mortar Aurum Total Mini Kit Not mentioned Capossela et al. [18]

Rat NP tissue Pulverized under liquid 
nitrogen

Not specified RNeasy mini kit Not mentioned Yurube et al. [19]

Rabbit NP and AF 
tissue

Pulverized after freezing 
in liquid nitrogen

Not specified Not specified Not mentioned Mwale et al. [20]

Rat NP and AF Flash-frozen in liquid 
nitrogen, pulverized and 
homogenized in TRIzol

Not specified RNeasy mini kit 
(TRIspin)

Discs from four rats Tang et al. [21]
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Table 3. Comparison of the advantages and disadvantages of different RNA extraction methods.

GITC based method
(eg. TRIzol, TRI-reagent)

TRIspin (Combined GITC-column based 
method)
(eg., TRIzol + RNeasy)

Column based method
(eg. RNeasy)

√ • Possible higher yield for a small num-
ber of cells

• Easy and quick • Easy and quick

× • Longer time
• Demands more techniques

• The RNA yield may be low for a smaller 
number of cells

• Higher cost

• The RNA yield may be low for a smaller 
number of cells

• May not be effective for some tissues

Figure 2. Schematics of RNA extraction procedures for GITC based 
method (orange arrows, e.g., TRIzol), combined GITC-column based 
(TRIspin) method (purple arrows, e.g., TRIzol + RNeasy) and column 
based method (green arrows, e.g., RNneasy kit).

Table 3 compares three commonly used methods for RNA extraction. 
They are the guanidinium thiocyanate (GITC) based method (e.g., 
TRIzol, TRI Reagent, TRIsure, STAT-60), the column based method 
(e.g., RNeasy, Aurum Total Mini Kit) and the TRIspin method which is 
a combination of the GITC based method and the column based method.
The procedures for these 3 methods are summarized in the schematics 
in Figure 2. Some studies have suggested the yield of RNA obtained 
using the GITC-based method can be higher than the column based 

method for some samples [22-25].
For extracting RNA from bovine NP tissue directly using TRIzol, 

undesirable precipitates were observed even with the use of high salt 
solution as recommended in the manufacturer’s instruction and a reported 
study for samples with high proteoglycan content [26]. Therefore further 
modifications of the protocol were explored. The lack of reported study 
using TRIzol extraction with NP cryosections prompted us to modify 
the typical TRIzol extraction procedure for bovine NP cryosections with 
an attempt to obtain a higher RNA yield than column based methods. 
The summary of experiments in this report and the associated rationale 
of experimental design are given in Figure 3. An overview of the sug-
gested experimental procedure for extraction of RNA from tissues rich 
in extracellular matrix with low or high cellularity is given in Figure 
S1, Section A of the supplementary information.

MATERIALS AND METHODS

Tissue harvest
Bovine NP, AF and muscle tissues were harvested from bovine tails 

of young adult animals (18 - 36 month old). Rat NP tissue was harvested 
from tails of Lewis rats. Mouse IVDs were harvested from tails of NOD/
SCID mice. The tissues were snap frozen in liquid nitrogen to quench 
RNA degradation as early as possible. Before further processing, the 
harvested tissue was kept at -80°C, which most enzymatic activities 
are very slow.

Tissue sectioning and cell lysis in TRIzol or RLT buffer
The tissues were put in a cryostat set at around -20°C before cryo-

sectioning into 10–30 µm sections. The details of the procedures were 
given in the supplementary information. The tissue sections were kept 
frozen in the cryostat or liquid nitrogen during transfer before the 
addition of TRIzol to avoid RNA degradation. The cryosections were 
lysed with 0.5 ml of TRIzol or 0.35 ml of RLT buffer supplied in the 
RNeasy kit with β-mercaptoethanol added to 1%. The lysates were 
stored at -80°C before RNA extraction. The tissue was removed by 
centrifugation before RNA extraction.

Extraction of RNA from bovine NP tissue using TRIspin
For the combined TRIzol-column based (TRIspin) method, an extra 

0.5 ml of TRIzol was added to lysate in TRIzol as described in Wang et 
al [27]. In brief, the aqueous phase after phase separation of the TRIzol 
protocol was mixed with 0.5 volume of 100% ethanol. The mixture 
was then applied to the RNeasy spin columns followed by purification 
according to the manufacturer’s instruction.
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Extraction of RNA from bovine NP tissue using RNeasy 
kit

For the RNeasy method, an extra 0.35 ml of RLT buffer was added 

to the sample and the extraction was performed according to the man-
ufacturer’s protocol.

Figure 3. Summary of experiments in this study. A. Set 1: Comparison of currently used methods. We first compared the extraction of RNA from NP 
tissue sections using RNeasy and using TRIspin and from isolated cells using TRIzol since TRIzol could not be used with bovine NP tissue directly. B. 
Set 2: Comparison of TRIzol and TRIspin using cultured cells. In order to test whether TRIzol could give a higher yield for a small number of cells, we 
tested the extractions with TRIspin and TRIzol using a small number of cells with and without the addition of NP tissue extract. Our result showed that 
the TRIzol method gave a higher RNA yield. C. Set 3: RNA extraction from tissues. We investigated different approaches to extract RNA from NP tissue 
directly using TRIzol. With the modified protocol, RNA could be extracted from bovine NP tissue. We tested the modified procedures for bovine NP, AF 
and muscle tissues. RNA extraction was also performed with mouse IVD and rat NP cryosections. D. Set 4: Comparison of TRIzol and TRIspin for bovine 
NP tissues. The RNA extracted using the modified TRIzol method was compared with that using the TRIspin method by UV absorbance and RT-qPCR. 
[“TRIzol (m)” denotes the modified TRIzol extraction with an extra phase separation and use of high salt solution, and “TRIzol” denotes the typical TRIzol 
extraction with the use of high salt solution].

Extraction of RNA from bovine NP isolated cells using 
TRIzol

Bovine NP and AF tissues were cut into small pieces of 1–2 mm. 
The weights of the tissue were estimated based on the weights of tubes 
with and without the tissue. Approximately 500 mm3 of tissue was used 
per sample. The tissue pieces were digested with 0.5% pronase (Roche) 
in serum free DMEM (Gibco) for 1 h, washed twice with DMEM and 
subsequently digested with 0.5% collagenase (Worthington, Type 2) in 
DMEM with 10% fetal bovine serum (FBS) for 4 h  for NP and 30 h  
for AF. The cells were then passed through tailor made cell strainers of 
approximately 23 µm sieve size and washed with DMEM. The cells were 
lysed with 0.5 ml of TRIzol and stored at -80°C before RNA extraction.

Comparison of RNA extracted using TRIzol versus 
TRIspin with cultured cells

We compared the TRIzol extraction and the TRIspin extraction with 
cultured cells. The details of the methods are given in Section B of the 
supplementary information and Figure S2 gave a simplified flow of 
the procedures in the TRIzol method and the combined TRIzol-column 
(TRIspin) method. Glycogen was used as a co-precipitant in the RNA 
precipitation step. In order to simulate the extraction of RNA from 

cells with high proteoglycan content, we also prepared cells in TRIzol 
with high proteoglycan content by adding IVD tissue to cell lysate in 
TRIzol. Some components such as proteoglycan dissolved from the IVD 
tissue into the TRIzol and increased the proteoglycan content in it. The 
extraction of RNA using TRIzol was performed according to the man-
ufacturer’s instruction and with a high salt solution when proteoglycan 
was involved according to the manufacturer’s recommendation. For the 
TRIspin method, a published protocol was used [27].

Extraction of RNA from bovine IVD tissue
When RNA was extracted according to the manufacturer’s instruction 

without any modification, a large white precipitate of proteoglycan was 
resulted. Based on manufacturer’s instruction and a published study 
[26], high salt solution was added during the RNA precipitation step 
but this modification is not sufficient for bovine NP tissue which has 
a very high proteoglycan content. After different trials, the following 
modifications were made: (i) additional centrifugation of the initial 
homogenate to remove the residual tissue; (ii) extra phase separation 
step when necessary; (iii) use of high salt solution (0.8 M sodium citrate 
and 1.2 M sodium chloride) in the RNA precipitation step and (iv) an 
extra RNA wash using 75% ethanol to remove salts more completely. 
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The details are given in the Section C of the supplementary information. 
Some technical notes about the use of high salt solution and the handling 
of small RNA pellets or precious samples are described in Section D 
of the supplementary information, Some cautionary notes are included 
in the supplementary information where Figure S3 shows a schematic 
of a bubble that may be formed when high salt solution is used and 
Figure S4 shows a schematic of how the microcentrifuge tubes may 
be oriented during the centrifugation. Some troubleshooting notes are 
given in Table S1 under Section E. Figure S5 shows the UV spectra 
of RNA before and after re-extraction with TRIzol and before and after 
ethanol precipitation of RNA.

Extraction of RNA from mouse and rat tissue
In addition to bovine NP and AF tissues, RNA from cryosectioned 

mouse IVD and rat NP tissues were also extracted using a slightly dif-
ferent method. The details are given in Section F of the supplementary 
information where Figure S6 shows a schematic of the procedures 
of embedding small tissue samples in DEPC treated water prior to 
cryosectioning.

Quantification of RNA yield and quality
RNA concentration and quality were estimated by Nanodrop 1000 or 

2000c (Thermo Scientific). The integrity of RNA was assessed using an 
Agilent 2200 Bioanalyzer. There were overestimations of concentrations 
for RNA from bovine NP tissue, bovine AF tissue and rat NP tissue 
due to their low concentrations and a minute amount of phenol present. 
Thus the concentrations were corrected using a reported computational 
method developed in our group [28].

RT-qPCR
Total RNA was reverse transcribed into cDNA using PrimeScript 

RT Master Mix (Takara, cat. # HRR036A) using a themocycler. The 
cDNA was diluted five times by adding autoclaved water. qPCR was 
performed with a total reaction volume of 10 µl, containing 1 µl of 
single stranded cDNA, 5 µl of SYBR Green PCR Master Mix (Applied 
Biosystems, part # 4309155) and 500 nM each of forward primer and 
reverse primer (sequences given in Table 4), in 96 well reaction plates 
using a standard PCR protocol for SYBR green reactions (Applied 
Biosystems, StepOnePlus) with melt curve analysis. Autoclaved water 
was used as a negative control and RNA before reverse transcription 
was used to estimate the level of genomic DNA contamination. DNaseI 
treatment by Amplification Grade DNaseI (Invitrogen, cat. # 18068-
015) was also included when necessary. The relative gene expression 
was calculated based on comparative Ct method.

Table 4. Sequences of bovine, rat and mouse primers used in this study. Sequences of bovine genes were from [6], mouse Gapdh and Sox9 were 
from [29], and other rat and mouse primers were by design. Sequences were written in 5’ to 3’ for both forward and reverse primers.

Primer Sequence (forward) Sequence (reverse)

Bovine GAPDH TGCCGCCTGGAGAAACC CGCCTGCTTCACCACCTT

Bovine ACAN GGGAGGAGACGACTGCAATC CCCATTCCGTCTTGTTTTCTG

Bovine COL2A1 CGGGCTGAGGGCAACA CGTGCAGCCATCCTTCAGA

Bovine CDH2 GCCATCAAGCCAGTTGGAA TGCAGATCGAACCGGGTACT

Bovine KRT18 TTGAGCTGCTCCATCTGCAT AAGGCCAGCTTGGAGAACAG

Bovine KRT19 CGGTGCCACCATTGAGAACT CAAACTTGGTGCGGAAGTCA

Mouse Gapdh GCACAGTCAAGGCCGAGAAT GCCTTCTCCATGGTGGTGAA

Mouse Sox9 TGGCAGACCAGTACCCGCATCT TCTTTCTTGTGCTGCACGCGC

Mouse Mia1 GACCGATCAATGGGATTTCT CATAGAGCCGGAAGGGTAAC

Mouse Runx1 GGAGCGGTAGAGGCAAGA ATGGTAGGTGGCAACTTGTG

Mouse Acan GCAATTACCAGCTGCCCTTC TCTTCTGCCCGAGGGTTCTA

Mouse Col2a1 AGAAGGCCTTGCTCATCCAG GACGGTCTTGCCCCACTTAC

Mouse Cdh2 GACGAGAGGCCTATCCATGC GGGTCGTTGTCAGCAGCTTT

Mouse Krt19 AGGGCCTTGAGATTGAGCTG GCTCAGCTGGGCTTCAAAAC

Rat Gapdh GTGAAGCTCATTTCCTGGTATG AACTGAGGGCCTCTCTCTTG

Rat Sox9 AGGAAGTCGGTGAAGAATGG TGGCGTTAGGAGAGATGTGA

Rat Acan GGGCGTGAGAACTGTCTACC ACTGACACACCTCGGAAGC

Rat Col2a1 GATGGCTGCACGAAACAC GCCCTATGTCCACACCAAAT

Rat Cdh2 TTAATGAGGGCCTTAAAGCTG GCTGGAGGAGTTGAGAGAGC

Rat Krt19 TCTCAGCTCAGCATGAAAGC ACTGCTGATCACACCTTGGA

RESULTS

Processing of bovine IVD tissues
We found that the bovine NP tissue cannot behomogenized by an 

electric ceramic pestle and mortar system. Thus cryosectioning was 
used to cut the bovine NP or AF tissues into sections so that RNA can 
be released in TRIzol when TRIzol is added later.
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Comparison of RNA extracted using TRIspin and using 
RNeasy from bovine IVD tissues and using TRIzol from 
bovine isolated cells (Experiment set 1 in Figure 3)

Among the three methods, the extraction of RNA from isolated 
cells using TRIzol gave the highest yield and lowest Ct values in qPCR 
amplification (Table 5) with peaks at 260 nm in the UV spectra (Figure 
4A and 4B). RNA from the TRIspin method gave a peak at 270 nm 
(Figure 4C and 4D) which is a typical peak of phenol contamination. 
There was no peak of RNA (260 nm) observed for the RNeasy method 
(Figure 4E and 4F), probably due to the low RNA concentrations. The 
measured RNA concentrations of the TRIspin method were higher than 
those of the RNeasy method but this was due to the overestimation of 

RNA concentrations caused by residual phenol present. Thus the con-
centrations were corrected using a mathematical formula developed in 
our group [28]. The corrected concentrations were indeed much lower 
than the measured concentrations. Instead of comparing the yield of 
RNA from NP tissues using the TRIspin method and that using the 
RNeasy method, the Ct values of the amplification in qPCR were com-
pared. Both methods yield comparable Ct values (Table 5). Among the 
three methods, the use of TRIzol with isolated cells gave the highest 
cell yield but the mRNA levels may change during the enzymatic cell 
isolation where the cells were treated in an environment different from 
that in vivo. Therefore we further investigated the optimization of RNA 
extraction from NP tissue directly using TRIzol.

Table 5. RNA extracted from bovine NP cells using TRIzol and NP tissues using TRIspin or RNeasy and the corresponding Ct values of GAPDH 
amplification. Concentration, yields and quality of RNA extracted from bovine NP tissue or cells estimated by Nanodrop (mean ± SD; n = 3). aAbout 500 
mm3 of NP tissue was used for cell isolation and about 50–100 mm3 of tissue was used to prepare one 1.5 ml tube of cryosectioned tissue. bThe concen-
trations were corrected with a mathematical formula [28]. The RNA was resuspended in 12.5 µl of DEPC treated water for TRIzol extracted RNA and the 
column was eluted with 12.5 µl of DEPC treated water twice (total of 25 µl) for the TRIspin method and the RNeasy method. cThe Ct values were adjusted 
based on 100 mg of tissues and 4 µl of RNA used in DNaseI treatment. dThe concentration correction using the mathematical formula reported in [28] was 
not applicable for RNA extracted using the RNeasy kit as the RNA was not contaminated with phenol.

Tissue weight 
(mg)a

A260/A280 A260/A230 Measured 
conc. (ng/µl)

Corrected 
conc. (ng/µl)b

Yield 
(ng RNA/ mg tissue)

Adjusted Ctc

NP cells 624.7 ± 80.3 2.01 ± 0.03 1.51 ± 0.05 294.3 ± 36.1 298.7 ± 36.7 6.1 ± 1.4 20.5 ± 2.4

NP TRIspin 78.4 ± 4.3 1.60 ± 0.16 0.46 ± 0.16 12.7 ± 8.1 1.5 ± 0.3 0.5 ± 0.1 26.8 ± 0.7

NP RNeasy 64.7 ± 6.5 -3.57 ± 3.56 0.06 ± 0.06 0.9 ± 0.1 d d 26.3 ± 0.6

AF cells 497.9 ± 26.2 1.97 ± 0.05 2.15 ± 0.09 308.3 ± 43.1 305.2 ± 44.9 7.7 ± 1.3 23.0 ± 2.1

AF TRIspin 83.2 ± 16.5 1.55 ± 0.09 0.65 ± 0.20 20.8 ± 19.6 4.0 ± 4.5 1.3 ± 1.6 26.1 ± 1.7

AF RNeasy 64.3 ± 3.8 2.81 ± 0.40 0.17 ± 0.21 4.2 ± 1.1 d  d 26.1 ± 1.1

Figure 4. UV spectra of RNA extracted from bovine NP and AF cells using TRIzol and from tissues using TRIspin or RNeasy. A-F. UV spectra 
of RNA extracted using TRIzol from (A) isolated NP cells, (B) isolated AF cells; extracted using TRIspin from (C) NP tissue cryosections, (D) AF tissue 
cryosections; extracted using RNeasy kit from (E) NP tissue cryosections and (F) AF tissue cryosections.



J Biol Methods  | 2015 | Vol. 2(2) | e20 7
POL Scientific

Comparison of RNA extracted using TRIzol and using 
TRIspin with cultured cells (Experiment set 2 in Figure 
3)

As shown in Figure 5A, all the samples showed peak absorbance at 
260 nm in Nanodrop measurements and the peaks for TRIzol extracted 
RNA were sharper due to the higher concentrations of RNA compared 
to the ones from the TRIspin method. The 28S and 18S bands were 
observed in the electropherograms of the samples (Fig. 5B). Bands of 
small molecular weights were observed for RNA extracted from cells 

with the TRIzol methods (CT, CTG) but not for the TRIspin method 
(CC). This may be due to the low binding affinity of low molecular 
weight RNA to the column silica membrane which can get discarded 
during the isolation process. Stronger bands were observed for RNA 
extracted from cells with proteoglycan using the TRIzol method (HPT) 
than that using combined method (HPC). The smear present in the 
HPT sample may represent mRNA of different molecular weights or 
partially degraded RNA.

Figure 5. UV spectra and electropherograms of RNA extracted using TRIzol or combined TRIzol-column (TRIspin) method. A. UV spectra of 
RNA extracted from bovine cultured cells, and from lysed cultured cells mixed with IVD tissue using TRIzol or TRIspin methods. B. Electropherograms 
of RNA extracted with different methods (CT, from cells using TRIzol without the use of glycogen; CTG, from cells using TRIzol with the use of glycogen; 
CC, from cells using the combined TRIspin method; HPT, from cells and high proteoglycan content using TRIzol; HPC, from cells and high proteoglycan 
content using the combined TRIspin method).

Table 6 shows the Nanodrop measurements and Bioanalyzer results 
of RNA extracted with the TRIzol method or the TRIspin method. For 
the cells without extra proteoglycan added, the concentration of RNA 
extracted using the TRIzol method (101.6 or 125.9 ng/µl) was four times 
more than that of using the TRIspin method (23.3 ng/µl). The use of 
glycogen increased the yield of RNA obtained but is not statistically 
significant. In our study, RNA pellets could be observed, indicating the 
precipitation of RNA, even when glycogen was not added. When the cell 
number was even lower, glycogen was required as a co-precipitant to 
visualize the RNA pellet. For the cells with higher proteoglycan content, 
the extraction of RNA using TRIzol procedures were also four times 
more (171.7 ng/µl) than the TRIspin method (38.8 ng/µl). There were 
no significant differences in the A260/A280 values of RNA obtained. 
Consistent with the data from Nanodrop, RNA samples extracted with 
the TRIzol method estimated with Bioanalyzer were of higher con-
centrations compared with the TRIspin method. RNA extracted using 
different methods yielded RNA of RNA integrity number (RIN) > 5, 

indicating their suitability for RT-qPCR.
We tested the RT-qPCR with the RNA extracted with different methods 

and all samples have amplification efficiency within 90–110% in qPCR 
calibration curves (Table 6), which is a criterion for reliable qPCR. 
These indicate the RNA extracted with these methods was compatible 
with the qPCR system used.

Modification of RNA extraction methods for bovine IVD 
tissues

In standard extraction of RNA using TRIzol, the supernatant after 
the first phase separation is clear (Fig. 6A). However, when RNA was 
extracted from bovine NP tissue, the supernatant was milky and this led 
to undesirable precipitates in the subsequent RNA precipitation step. 
Using high salt solution in RNA precipitation step was suggested to 
avoid the precipitation of contaminating proteoglycans [26]. We tested 
this approach with the bovine NP tissue but contaminating precipitates 
were still observed, probably due to the high proteoglycan content of the 
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tissue (approximately 60% of dry weight) [3,30] and a low cell content 
(0.19%) [4] which made using a small volume of tissue insufficient. 
We further explored different modifications to overcome this problem 
and found that using a second phase separation could yield a clear su-

pernatant (Fig. 6B) which would not give the undesirable precipitates. 
The modifications made were summarized in Figure 6C. Using the 
cryosection method, sections could also be obtained for histology study 
simultaneously (Fig. 6D).

Table 6. Concentration, yield and quality of RNA extracted from cultured cells using TRIzol or combined TRIzol-column (TRIspin) method. Upper part: 
Concentrations, yield and quality of RNA measured using Nanodrop (mean ± SD; 3 samples per group; single measurement per sample for cells and double 
measurements per sample for cells with tissue); Lower part: Concentrations and quality of RNA assessed using Bioanalyzer and the corresponding qPCR 
efficiency in RT-qPCR (mean ± SD; 3 samples per group for Bioanalyzer; amplification efficiency was estimated from 4 standard curves from 2 samples 
per group) aFor cells with and without tissues, the yield was based on the cells which were approximately equivalent to 2 wells of bovine cells in a 96 well 
plate (estimated number of cells of around 105). The RNA was resuspended in 12 µl of DEPC treated water for TRIzol extracted RNA and the column was 
eluted with 12 µl of DEPC treated water twice (total of 24 µl) for the TRIspin method.

Samples Concentration (ng/µl) Yield (µg)a A260/A280 A260/A230

By Instrument Nanodrop Nanodrop Nanodrop Nanodrop

Cells

 TRIzol, w/o glycogen 101.6 ± 24.6 1.22 ± 0.29 1.84 ± 0.05 2.10 ± 0.04

 TRIzol, w glycogen 125.9 ± 6.2 1.51 ± 0.07 1.80 ± 0.01 1.96 ± 0.12

 TRIspin 23.3 ± 4.1 0.56 ± 0.10 1.87 ± 0.05 0.88 ± 0.39

Cells mixed with tissue (high proteoglycan)

 TRIzol 171.7 ± 5.9 2.06 ± 0.07 1.99 ± 0.02 1.28 ± 0.23

 TRIspin 38.8.± 6.1 0.93 ± 0.15 1.92 ± 0.02 0.84 ± 0.46

Samples Concentration (ng/µl) RIN 28s/18s qPCR efficiency

By Instrument Bioanalyzer Bioanalyzer Bioanalyzer StepOnePlus

Cells

 TRIzol, w/o glycogen 91.0 ± 33.1 9.67 ± 0.25 1.87 ± 0.15 99% ± 3%

 TRIzol, w glycogen 105.0 ± 23.8 9.90 ± 0.10 1.97 ± 0.12 97% ± 11%

 TRIspin 15.7 ± 2.3 8.33 ± 0.45 2.43 ± 0.93 107% ± 10%

Cells mixed with tissue (high proteoglycan)

 TRIzol 192.0 ± 10.8 6.93 ± 0.81 1.60 ± 0.44 95% ± 6%

 TRIspin 51.0 ± 7.9 9.07 ± 0.15 1.83 ± 0.12 101% ± 5%

RNA extracted from bovine NP, AF and muscle tissues 
(Experiment set 3 in Figure 3)

We tested the modified TRIzol protocol with bovine NP, AF and 
muscle tissues. Muscle was included as a non-IVD control as it has a high 
cell density with low proteoglycan content, to which typical extraction 
should be applicable. As shown in Table 7, the concentrations and yields 
of RNA from NP and AF were lower than that of muscle, probably 
due to the higher density of cells in muscle. The RNA isolated directly 
from NP tissue and AF tissue had lower A260/280 ratios compared to 
muscle, which was probably due to the contamination by phenol. This 
was suggested by the UV absorption spectra that there was a shift of 
peak towards 270 nm for the RNA isolated from NP or AF tissue (Fig. 
7A). The RNA from bovine muscle using the same extraction method 
yielded a sharp peak at 260 nm (Fig. 7A). The presence of phenol from 
TRIzol in the samples can cause over-estimations of RNA concentrations 
due to the absorbance contributed by phenol at 260 nm. Therefore, we 
corrected the concentrations using a reported computational method 
developed in our group [28].

Extraction of RNA from mouse IVD and rat NP tissues 
(Experiment set 3 in Figure 3)

In order to extend the method to other species, we also tested the 
extraction of RNA from mouse and rat IVDs. The details of the proce-
dures are given in Section F of the supplementary information. Unlike 
bovine NP tissue and AF tissue, the tissues obtained from mouse and 
rat IVDs were rather small. It was difficult to mount the mouse or rat 
tissue directly for cryosection. Thus a method to embed the disc in 
DEPC-treated water was used. In brief, small aluminum containers 
were made to hold DEPC-treated water. Then the containers were 
dipped into liquid nitrogen to partially freeze the water, leaving the 
central top part of the water unfrozen. The pre-frozen mouse or rat disc 
tissues were then put in the top part of the unfrozen water and fixed 
quickly by freezing the remaining unfrozen water using liquid nitrogen. 
Afterwards, the procedures of cryosection and RNA extraction were 
similar to those of bovine tissues.

The measurements of the RNA extracted from mouse IVD and rat NP 
by Nanodrop are shown in Table 7. Concentrations of RNA extracted 
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from a mouse IVD was higher than that from NP from half a rat tail. 
NP was isolated from the rat disc but not mouse discs since the mouse 
discs were much smaller in sizes which made separating NP from the 
disc more difficult. There was a slight shift of the peak in UV spectrum 

from 260 nm to 270 nm for the rat NP (Fig. 7B). The 28S and 18S bands 
were visible (Fig. 7C) and the RINs were 6.9 and 7.5 for mouse IVD 
and rat NP respectively. Amplifications were detected for different genes 
for the extracted RNA as shown in Figure S7 (Section G).

Figure 6. RNA extraction from bovine IVD tissues using TRIzol. A. Representative photo of a sample after the first phase separation in the TRIzol 
extraction protocol. In standard extraction, the supernatant should be clear. B. Representative photo of a sample with high proteoglycan content after 
the first phase separation in the TRIzol extraction protocol. The supernatant was milky and when the supernatant was re-extracted using TRIzol, the 
supernatant after the second phase separation became clear. C. Schematic showing the procedure of RNA extraction from IVD tissue. D. Micrographs 
of sections of bovine IVD tissues with nuclei stained purple with hematoxylin (scale bar  =  50 µm).

Table 7. RNA extracted from bovine, mouse and rat tissues using TRIzol. Concentration, yields and quality of RNA extracted from bovine NP, AF and 
muscle tissues, mouse IVD tissue and rat NP tissue estimated by Nanodrop. aConcentrations of bovine NP, bovine AF and rat NP were corrected with a 
mathematical formula [28]. bThe yield was based on one 1.5 ml tube of cryosectioned bovine tissue prepared from 100–250 mm3 of tissues, one mouse 
disc or rat NP tissue from half a rat tail. (mean ± SD; n = 3 for bovine tissues, n = 7 for mouse IVDs, and n  =  2 for rat NP).

Samples Concentration (ng/µl)a Yield (µg)b A260/A280 A260/A230

By Instrument Nanodrop Nanodrop Nanodrop Nanodrop

Bovine NP 30.2 ± 1.5 0.33 ± 0.02 1.76 ± 0.04 0.74 ± 0.10

Bovine AF 42.8 ± 5.5 0.47 ± 0.06 1.81 ± 0.05 0.50 ± 0.28

Bovine muscle 372.1 ± 33.0 4.09 ± 0.36 2.07 ± 0.01 1.55 ± 0.19

mouse IVD 325.5 ± 110.4 3.25 ± 1.10 1.88 ± 0.03 1.48 ± 0.34

rat NP 107.6 ± 15.7 1.35 ± 0.20 1.78 ± 0.01 0.97 ± 0.01
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Figure 7. RNA extracted from bovine, mouse and rat tissues. A. UVspectra of RNA extracted from bovine NP, AF and muscle tissues. B. UVspectra 
of RNA extracted from mouse IVD and rat NP tissues. C. Electropherograms of RNA extracted from mouse IVD (mIVD) and rat NP tissues (rNP).

Comparison of RNA extracted using TRIzol and using 
TRIspin from bovine NP tissue (Experiment set 4 in 
Figure 3)

The yields and quality of RNA extracted from bovine NP cryosec-
tions using TRIzol were compared with those using TRIspin. For the 
TRIspin method, milky superntant was occasionally observed after the 
phase separation. Therefore we further investigated whether further 
centrifugation of the supernatant after phase separation before ethanol 
addition could improve the RNA yields or quality (Fig. S8, Section H). 
After the centrifugation, a small pink layer (about 5 µl) with a white 
layer on top was observed at the bottom of the tubes. Table 8 shows the 
quality and yields of RNA obtained from the three methods. The yields 
of RNA obtained using the modified TRIzol method was higher than 

those using the TRIspin method (Table 8) and the corresponding Ct 
values were smaller (Table 9) for the three housekeeping genes (GAP-
DH, 18S rRNA, YWHAZ) and two extracellular matrix genes (ACAN, 
COL2A1). Figure 8 shows the corresponding melt curves of the qPCR 
amplification. Both TRIzol and TRIspin methods gave single major 
peaks for GAPDH, 18S rRNA and COL2A1. No peak was observed for 
YWHAZ and a less defined peak for ACAN for RNA extracted using 
the TRIspin method. This was probably due to the low concentrations 
of RNA extracted. There was no significant difference between the 
TRIspin samples prepared with or without the extra centrifugation but 
one out of the three samples without an extra centrifugation showed 
a UV absorbance curve without any peak in the 220–350 nm range 
(Fig. S9, Section I), which may be due to proteoglycan contamination.

Table 8. RNA extracted from bovine NP tissues using modified TRIzol or TRIspin. Concentration, yields and quality of RNA extracted from bovine NP 
tissue estimated by Nanodrop (mean ± SD; n = 3). aOne 1.5 ml tube of cryosectioned bovine tissue prepared from about 50 mm3 of tissue (about 30–50 
cryosections of 14 µm thick and about 1 cm2 large) was used per sample. bThe concentrations were corrected with a mathematical formula [28]. The RNA 
was resuspended in 12.5 µl of DEPC treated water for TRIzol extracted RNA and the column was eluted with 12.5 µl of DEPC treated water twice (total of 
25 µl) for the TRIspin method. c"TRIspin 1" refers to TRIspin extraction without an extra centrifugation of supernatant after TRIzol phase separation before 
ethanol addition and "TRIspin 2" refers to that with the extra centrifugation (refer to Fig. S8). dFor the corrected concentration and yield calculation, the 
values from the sample with a high level of contamination were excluded.

Tissue weight 
(mg)a

A260/A280 A260/A230 Measured conc. 
(ng/µl)

Corrected conc. 
(ng/µl)b

Yield 
(ng RNA/ mg tissue)

TRIzol 68.8 ± 15.3 1.67 ± 0.11 0.41 ± 0.36 25.6 ± 13.6 16.8 ± 12.9 2.80 ± 1.66

TRIspin 1c, d 72.8 ± 5.5 1.55 ± 0.08 0.50 ± 0.08 13.8 ± 13.9 0.9 ± 0.6 0.30 ± 0.22

TRIspin 2c 80.5 ± 24.2 1.46 ± 0.32 0.46 ± 0.08 6.5 ± 2.3 1.2 ± 1.4 0.52 ± 0.71

DISCUSSION

Homogenization methods for IVD tissues
Homogenization is a general term to describe the dispersion of minute 

fragments of tissue evenly throughout a mixture by mechanical action 
such as macerations or crushing or by chemicals such as detergents or 

organic solvents. There are a wide variety of homogenizers available 
to achieve such a purpose. In our study, bovine NP tissue could not be 
homogenized by an electric ceramic pestle and mortar system. How-
ever, there were some studies which reported the use of homogenizer 
for extraction of RNA from NP tissues (Table 2) [17-21]. Only two 
out of the five studies have mentioned the types homogenizers used. 
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Wang et al. used an Omni TH homogenizer [17] which used vibration 
to break the tissues. The use of Omni tissue homogenizer may be a 
viable option for bovine NP tissue but this requires the purchase of 
a specialized equipment. Simple pestle and mortar systems may be a 
less expensive option. Capossela et al. used a stainless steel mortar to 
pulverize human NP and AF tissue on dry ice [18] but the size and type 
of mortar was not mentioned precisely. In our attempts to homogenize 

the bovine NP tissue by a pestle and mortar system, it was difficult to 
pulverize the tissue as the bovine NP tissue from an adult animal was 
hard yet not brittle when frozen. In contrast, the bovine NP tissue could 
be cut without much difficulty when preparing cryosections for histology. 
The cryostat was available in our institute as a shared equipment. Thus 
we tested cryosectioning to cut the tissues into thin sections so that the 
cells can be exposed to TRIzol and RNA can be released from them.

Table 9. Adjusted Ct values of RT-qPCR for the RNA extracted from bovine NP tissues using modified TRIzol or TRIspin after DNase1 treatment. 
aTRIspin samples had lower RNA concentrations than the TRIzol samples and thus a larger volume of RNA solution was used for TRIspin (4 µl of RNA for 
TRIspin and 0.5 µl for TRIzol were used for DNaseI treatment). The Ct values were adjusted based on 4 µl of RNA used for DNaseI treatment for equal 
volume basis of starting materials (raw Ct values and values with adjustment to the same RNA amount are given in Table S2 and Table S3 respectively). 
b"TRIspin 1" and "TRIspin 2" refers to TRIspin extraction without and with an extra centrifugation of supernatant after TRIzol phase separation before ethanol 
addition (refer to Fig. S8). cOnly 1 out of the 3 samples has detectable amplification. (GAPDH, 18S rRNA, YWHAZ are housekeeping genes and ACAN 
and COL2A1 are extracellular matrix genes highly expressed in NP cells and chondrocytes) (mean ± SD; n = 3).

GAPDH 18S rRNA YWHAZ ACAN COL2A1

TRIzola 23.3 ± 2.2 14.6 ± 1.7 27.5 ± 2.5 20.3 ± 0.2 18.3 ± 0.6

TRIspin 1a, b 32.5 ± 0.6 25.4 ± 0.6 33.5c 31.0 ± 0.7 28.2 ± 0.5

TRIspin 2a, b 32.2 ± 1.3 24.6 ± 0.9 Undetectable 30.7 ± 1.2 28.1 ± 1.6

Figure 8. Melt curves of GAPDH, 18S rRNA, YWHAZ, ACAN and COL2A1 PCR products fromRNA extracted with the TRIzol method and the 
TRIspin method. GAPDH, 18S rRNA, YWHAZ are housekeeping genes and ACAN and COL2A1 are matrix genes highly expressed in NP cells and 
chondrocytes
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Yields of RNA from rat NP tissue
In our study, RNA precipitation method using propanol and a high 

salt solution was used. The studies reported by other groups used column 
based kits for RNA extraction [17-21]. Tang et al. extracted RNA from rat 
NP and AF for cDNA microarray analysis and RT-qPCR. After harvesting 
the tissue, they immediately flash-freezed the tissues in liquid nitrogen, 
then pulverized and homogenized in TRIzol reagent, followed by total 
RNA extraction using a RNeasy mini kit. For each sample in microarray, 
tissue was pooled from all discs across four rats to collect sufficient 
RNA for one sample [21]. The amount and quality of RNA used was not 
mentioned in their study. For Affymetrix GeneChip Expression analysis 
service provided by the Centre for Genomic Sciences of the University 
of Hong Kong, 2.5 µg total RNA of RIN > 8 is recommended. In our 
study, 1.35 µg of total RNA was obtained from NP tissue from half a 
rat tail. In other words, RNA from one tail (> 2.5 µg) was sufficient for 
microarray analysis. The RIN was 7.5 which was lower than 8, indicating 
that the procedures may need to be improved for better RNA quality. 
However, in an article about quality control of RNA for microarray, 
RIN of 7.0 was used as a cut-off value for deciding whether the RNA 
is suitable for microarray analysis [31]. The authors selected this value 
because Thompson et al. showed that there was a substantial increase in 
the rate of false positives on the microarray when the starting RNA had 
a RIN value of <7.0 [32]. This may suggest the RNA obtained in our 
study which has RIN value of 7.5 may also be suitable for microarray 
analysis. Only one rat is sufficient to obtain RNA from rat NP tissue 
for microarray analysis using our modified protocol compared to four 
rats required in the study by Tang et al. Fewer animals may be needed 
to be sacrificed for each microarray analysis.

CONCLUSIONS

In summary, higher yields were obtained from a small number of 
cells using the TRIzol method compared to the combined TRIzol-column 
(TRIspin) method. We have developed a method to isolate RNA from 
bovine IVD tissues directly by integrating cryosectioning, additional 
phase separation and high salt precipitation into conventional GITC-
based RNA extraction method. The cryosectioning approach of sample 
preparation was also applicable to other tissues such as bovine muscle, 
mouse IVD and rat NP tissues. This study suggests an alternative means 
of homogenization using a cryostat which is more easily available as 
a shared equipment. The possible higher yield of TRIzol extraction 
may reduce the number of animals sacrificed for obtaining sufficient 
amount of RNA.
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