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Abstract

In some tsunami waves travelling over the ocean, such as the one approaching
the eastern coast of Japan in 2011, the sea surface of the ocean is depressed by a
small meter-scale displacement over a multi-kilometer horizontal length scale, lying
in front of a positive elevation of comparable magnitude and length, which together
constitute a down-up or “breather” wave. Shallow water theory shows that the
latter travels faster than the former and, according to an extended Korteweg-de
Vries model presented here, the waves undergo a transition. Firstly the two parts
coincide at a given position and time producing a maximum elevation, whose am-
plitude depends on the shape of the approaching wave. Typically this amplitude
is larger than the initial displacement magnitude by a factor which can be as large
as two, which may explain anomalous elevations of tsunamis at particular positions
along their trajectories. It is physically significant that for these small amplitude
waves, no wave breaking occurs and there is no excess dissipation. Secondly, fol-
lowing the transition, the elevation wave moves ahead of the depression wave and
the distance between them increases either linearly or logarithmically with time.
The implications for how these “down-up” tsunami waves reach the shoreline are
considered.

1 Introduction

Tsunamis are generated by submarine earthquakes, and sometimes by landslides or vol-
canic eruptions. In general the tsunami wave at the source can be either a wave of
depression, or of elevation, or a combinations of these, see the recent assessments by
Arcasi and Segur (2012) and Dias et al (2014). As the wave propagates shorewards
over the continental slope and shelf, and finally impacting the shoreline, the increasing
effect of nonlinearity will lead to quite different set of behaviours depending on the wave
polarity, see Carrier et al (2003) and Fernando et al (2008) for instance. Although the
depression waves can cause as much or more damage than elevation waves, they have not
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been studied as much as elevation waves. However, their potential importance has been
noted in the theoretical studies by Tadepalli and Synolakis (1994, 1996), in the analysis
of field data by Soloviev and Mazova (1994) and in the experiments of Kobayashi and
Lawrence (2004), Klettner et al (2012), Rossetto et al (2011) and Charvet et al (2013).

Most studies of the connection between the incident wave shape and polarity, and the
consequent shoreline impact, have used the linear and nonlinear shallow water equations,
see Tadepalli and Synolakis (1994, 1996), Carrier et al (2003), Madsen and Schaffer
(2010) and Didenkulova and Pelinovsky (2011) for instance. However, although these
models have proved valuable and insightful, they are non-dispersive and hence do not
capture the effects of wavenumber dispersion as the tsunami waves develop shorter length
scales in their propagation shoreward. In particular when shocks, or N -waves, are pre-
dicted by these models, the discontinuity needs to be resolved either with some turbulent
wave-breaking model, or by the inclusion of some wave dispersion. The latter choice is
the focus of this paper, where our aim is to exhibit some exact solutions of certain model
equations, whose range of dynamical behaviour is potentially interesting in the context of
tsunamis when these involve depression waves, and interactions between depression and
elevation waves.

The combination of weak nonlinearity and weak linear dispersion leads typically to
a Korteweg-de Vries (KdV) equation, or to a Bousinesq system, see Segur (2007) and
related articles in the compilation by Kundu (2007) for the tsunami context. However,
much of the tsunami literature has focussed on the classical solitary wave solution, which
is always a wave of elevation. Hence, in this paper, we use a suite of KdV-type equations
to examine how waves of depression evolve. It is pertinent to note here that the critique
of the validity of KdV theories by Madsen and Schaffer (2010) and Arcasi and Segur
(2012), amongst others, are based on solitary wave dynamics, and we suggest that this
may be a rather restrictive view of the value of KdV theories.

In section 2 we re-examine the KdV equation, equation (1) below, both for a con-
stant depth, and for variable depth, with the main aim of demonstrating the structure
of depression waves. Then in section 3 we present an extended KdV equation model, ex-
pressed in terms of an augmented dependent variable, which contains both quadratic and
cubic nonlinearity, with coefficients of the same positive sign. There is then a family of
two-soliton and breather solutions, which demonstrate striking interactions between a de-
pression wave and an elevation wave. We are especially concerned with the scenario when
the approaching tsunami wave, propagating with a speed c which depends on the depth h,
and also on the wave amplitude, consists of a depression wave of magnitude ∆h� h and
horizontal length scale L0 � h, in front of an elevation wave of comparable magnitude,
constituting an down-up wave, or isosceles N -wave in the terminology of Tadepalli and
Synolakis (1994). This configuration was observed in the Sumatra tsunami of 2004, see
Ioulalen et al (2007) and Grilli et al (2007), and that in Tohoku in 2011 see Mori et
al (2013), and was examined in experiments by Klettner et al (2012) motivated in part
by these observations. Shallow water theory implies that the elevation will travel faster
with a speed difference ∆c ∼

√
g∆h, and then after a time t∗ ∼ L0/∆c the waves un-

dergo a transition. First, the two parts coincide and produce a maximum elevation β∆h,
where based on the afore-mentioned two-soliton and breather solutions, we estimate that
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1 ≤ β ≤ 2 and β = 2 when the depression and elevation waves are of equal amplitude
magnitudes. Second, the elevation wave then moves ahead of the depression wave and the
distance between them increases in proportion to (t− t∗) or log (t− t∗) for the two-soliton
or breather solutions respectively. These estimates may explain anomalous elevations of
some tsunamis at particular positions along their trajectories, noting that for these small
amplitude waves, there is very little dissipation. We conclude with a discussion in section
4.

2 Korteweg-de Vries equation

The Korteweg-de Vries equation on a variable depth is,

ζt + cζx +
cx
2
ζ +

3c

2h
ζζx +

ch2

6
ζxxx = 0 . (1)

Here ζ(x, t) is the free surface elevation above the undisturbed depth h(x), while c(x) =√
h(x) is the linear long wave phase speed, using non-dimensional units based a length

scale h0 and a time scale
√
h0/g. Equation (1) was derived for surface gravity waves

by Johnson (1973a,b), and an analogous general equation for both surface and internal
waves by Grimshaw (1981). The first two terms in (1) are the dominant terms, and by
themselves describe the propagation of a linear long wave with speed c. The derivation
uses the usual KdV balance in which the ∂/∂x ∼ ε� 1, A ∼ ε2, and weak inhomogeneity
is added so that cx/c scales as ε3.

Equation (1) is in the form appropriate for an initial value problem. For application
to tsunami waves, it is useful to cast it into a form describing evolution along the wave
path. Thus, a form asymptotically equivalent to (1) is

ζτ +
hτ
4h
ζ +

3

2h
ζζξ +

h

6
ζξξξ = 0 , (2)

where τ =

∫ x

0

dx
′

c(x′)
, ξ = τ − t. (3)

Here τ is a time-like variable measuring travel time along the wave path, and in variable
depth, h = h(τ). This governing equation (2) can be cast into several equivalent forms.

η = h1/4ζ , so that ητ +
3

2h5/4
ηηξ +

h

6
ηξξξ = 0 . (4)

This form shows that equation (2) has two integrals of motion with the densities pro-
portional to η = h1/4ζ and η2 = h1/2ζ2. These are often referred to as laws for the
conservation of “mass” and “momentum” (more correctly, wave action flux). Another
useful form is

U =
3η

2
, Uσ + 6UUξ + h9/4Uξξξ = 0 , (5)

σ =
1

6

∫ τ

0

dτ
′

h5/4(τ ′)
=

1

6

∫ x

0

dx′

h7/4(x′)
. (6)
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In this formulation we assume that h = 1 when the depth is constant, and then h < 1
when the wave moves up a slope.

On a constant depth the KdV equation (5) has the well-known soliton (solitary wave)
solution

U = A sech2(K(ξ − V σ)) , V = 2A = 4K2 . (7)

Here we are concerned with the “initial” value problem when U = U0(ξ) at σ = 0.
Note that this is in fact a specification of a wave at an initial location, and the equation
then describes the spatial evolution. It is well known that if U0(ξ) ≥ 0 (elevation), then
several solitons are generated, but if instead U0(ξ) ≤ 0,(depression) then no solitons are
generated, and instead the solution disperses with the front being described by a nonlinear
Airy-type function. This has the shape of an initial depression, followed by a series of
elevation waves riding on a negative pedestal, see El (2007), Segur (2007) and Arcasi
and Segur (2012) for instance.

Consider, for example, the case when U0(ξ) = ±G(ξ), respectively an initial wave of
elevation, or depression, where G(ξ) ≥ 0 is a localised pulse, for instance a Gaussian.
Then in the elevation case, N rank-ordered solitons are produced, with N amplitudes,
together with some trailing dispersing radiation. When N is large, the soliton amplitudes
are distributed according to the law

A ∼ ξ

2σ
, 0 <

ξ

4σ
< GM = 2 maxG(x) . (8)

In particular the leading emerging solitary wave has an amplitude of 2GM , see El (2007).

In the depression case the long-time evolution can be modelled as a rarefaction wave
(an exact solution of (5)) given by

U = 0 , ξ > 0 ,

U =
ξ

6σ
, −L(σ) <

ξ

6σ
< 0 ,

U = 0 ,
ξ

6σ
< −L(σ) ,

where 3σL2 = M =

∫ ∞
−∞
|G(ξ)| dξ .

(9)

Here L(σ) is determined by conservation of mass. This solution is an N -wave, and at
ξ = 6σL, there is jump L from the negative level −L to 0. This is resolved by an
undular bore whose leading wave is a solitary wave of amplitude 2L, relative to the
pedestal of −L, see Grimshaw (2001) and El (2007) for instance. Thus the amplitude
of this leading solitary wave is 2(M/3σ)1/2. This can be larger than the leading solitary
wave from an elevation initial condition, when σ < M/3G2

M . Note that here M,GM

are independent parameters, and this estimate suggests that the leading elevation wave
on a depression wave emanating from a depression initial condition will be greater than
the leading elevation wave from an elevation initial condition when M is large, but GM is
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small. The laboratory experiments of Hammack and Segur (1978) exhibit this behaviour,
see figures 2 and 3 in the review by Arcasi and Segur (2012).

When there is a slope, there are no analogous asymptotic solutions available. However
it is known that a single solitary wave will deform adiabaticaly as h−1, see El et al (2012)
and the references therein. However, the numerical study by El et al (2012) indicates
that a KdV undular bore of elevation propagating up a slope develops a quite complicated
structure, but the leading solitary wave does deform as h−1. When the initial wave is one
of depression, then the rarefaction wave of depression (9) again holds even when h in
equation (5) varies. Hence we would again expect an undular bore to develop at the
trailing edge, with the leading solitary wave in the undular bore deforming adiabatically.
Indeed, this behaviour was found in the experiments by Klettner et al (2012) describing
of an initial depression up a slope, see their figure 5 especially.

3 Extended Korteweg-de Vries equation

3.1 Derivation

The extended Korteweg-de Vries equation (eKdV) for water waves on a constant depth
is an extension of (1) when a cubic nonlinear term is included,

ζt + cζx +
3c

2h
ζζx + βζ2ζx +

ch2

6
ζxxx = 0 . (10)

The coefficient β can be found from the literature,see Marchant and Smyth (1990) for
instance, or more directly by noting that in the absence of dispersion, the Riemann
invariant solution from nonlinear shallow water theory is,

Rt+V Rx = 0 , R = U+2C , V = U+C , C =
√
h+ ζ , L = U−2C = −2

√
h . (11)

Here R,L are the right-going and left-going Riemann invariants, and the left-going wave
has been set to the constant background. Hence,

ζt + V ζx = 0 , , V = 3
√
h+ ζ − 2

√
h = c+

3c

2h
ζ − 3c

8h2
ζ2 + · · · . (12)

Hence we infer that β = −3c/8h2, which is the opposite sign to that needed for the eKdV
equation to have breather solutions.

However, noting that the coefficient β is not unique, here we adopt a different approach.
First we note that (11) can be expressed in terms of V ,

Vt + V Vx = 0 . (13)

Indeed, this is exact, and shows that in terms of the variable V , β = 0. More generally
the Riemann invariant equation (12) can be written as

Zt + V Zx = 0 Z = Z(ζ) , V = V (Z) , (14)
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where Z(ζ) can be chosen arbitrarily. Here we choose Z so that

V (Z) = c+
3c

2h
Z +

3cβ

2h2
Z2 . (15)

Here β > 0 can be chosen arbitrarily. Then combining this with the expression for V (ζ)
in (12) defines the function Z(ζ),

(1 +
ζ

h
)1/2 − 1 =

Z

2h
+
βZ2

2h2
, so that Z(ζ) = ζ − ζ2

2h
+ · · · . (16)

Thus in the limit when ζ � h, we infer that (16) is a near-identity transformation as then
Z ≈ ζ. In this limit an eKdV equation with a positive cubic coefficient is a viable model,
albeit in terms of the augmented variable Z,

Zt + cζx +
3c

2h
ZZx +

3cβ

2h2
Z2Zx +

ch2

6
Zxxx = 0 . (17)

Although the dispersive term has been approximated by this small-amplitude limit, we
can keep the fully nonlinear relationship between Z and ζ in (16).

3.2 Solitons and breathers

First we put (17) into canonical form,

Z =
h

β
v , x− ct =

h

61/2
X , t =

h

c61/2
T , (18)

vT + 6vvX + 6v2vX + vXXX = 0 . (19)

The soliton and breather solutions can be found in the following form, Slunyaev (2001)
and Chow et al (2005),

v = 2{tan−1(
g

f
)}X =

2

f 2 + g2
(fgX − gfX) , (20)

where f, g are expressed in terms of exponential functions, sometimes including algebraic
terms.

The 1-soliton solution is given by

g = 1 + sa exp (γY ) , f = 1 + sb exp (γY ) ,

Y = X − γ2T , a, b =
1± γ√
1 + γ2

, s = ±1 ,

v =
γ2

1 + s
√

1 + γ2 cosh (γY )
.

(21)

Here s = ±1 corresponds to an elevation wave of amplitude A =
√
γ2 + 1 − 1 and a

depression wave of amplitude A = −
√
γ2 + 1− 1 respectively. As γ varies over the range
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0 < γ <∞ the elevation wave amplitude lies in the range 0 < A <∞, while the depression
wave amplitude lies in the range −2 > A > −∞. For the same speed, the depression wave
has the larger amplitude magnitude, but for the same amplitude magnitude, the elevation
wave is faster. In general, the elevation wave with index 1 is faster than the depression
wave with index 2 when γ1 > γ2, but will have the smaller amplitude magnitude when√

1 + γ21 − 1 <
√

1 + γ22 + 1, which is always the case when γ21 < 8, and remains the case
unless γ21 is sufficiently large, and sufficiently greater than γ22 .

Now consider a 2-soliton solution with far-field parameters γ1, γ2, given by, adapted
from (11) in Chow et al (2005),

g = 1 + s1a1 exp (φ) + s2a2 exp (ψ) + s1s2a12 exp (φ+ ψ) ,

f = 1 + s1b1 exp (φ) + s2b2 exp (ψ) + s1s2b12 exp (φ+ ψ) ,

φ = γ1X − γ31T , ψ = γ2X − γ32T , an, bn =
1± γn√
1 + γ2n

, n = 1, 2 ,

a12, b12 =
(γ1 − γ2)2

(γ1 + γ2)2
[1± (γ1 + γ2)− γ1γ2]√

1 + γ21
√

1 + γ22
.

(22)

Without loss of generality, take γ2 > γ1. In the far field as T → ±∞ the soliton limits
are found by either fixing the phase φ and letting ψ → ∓∞ for the index 1, or fixing the
phase ψ and letting φ→ ±∞ for the index 2. The outcome is, for index 1,

g ∼ 1 + s1a1 exp (φ) , f ∼ 1 + s1b1 exp (φ) , T →∞ ,

g ∼ a2 + s1a12 exp (φ) , f ∼ b2 + s1b12 exp (φ) , T → −∞ ,
(23)

and for index 2,

g ∼ a1 + s2a12 exp (ψ) , f ∼ b1 + s2b12 exp (ψ) , T →∞ ,

g ∼ 1 + s2a2 exp (ψ) , f ∼ 1 + s2b2 exp (ψ) , T → −∞ .
(24)

Note that common factors in f, g can be removed. Each of these are easily recognised as
the corresponding 1-soliton solutions, but with a phase shift from T → −∞ to T → ∞,
given by

exp (−∆φ), exp (∆ψ) =
(γ2 + γ1)

2

(γ2 − γ1)2
. (25)

This agrees with the expression (11) in Slunyaev (2001). Note that ∆φ < 0,∆ψ > 0, so
the faster wave is shifted forwards and the slower wave is shfted backwards.

Our interest here is in the case when the depression wave precedes the elevation wave
as T → −∞, so that the depression and elevation wave have indices 1, 2 respectively, that
is s1 = −1, s2 = 1. Then the elevation wave will catch up with the depression wave, and
there will be an interaction at the approximate location X = 0, T = 0. Taking account
of the phase shifts (25) this can be refined to X = Xint, T = Tint where

(γ22 − γ21)Xint = −γ
2
1∆φ

2γ1
− γ21∆ψ

2γ2
, (γ22 − γ21)Tint = −∆φ

2γ1
− ∆ψ

2γ2
. (26)
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Slunyaev (2001) (see equation (10)) provides an estimate that at the interaction centre the
amplitude is A2 −A1, where A1 < 0, A2 > 0 are the far-field amplitudes. The interaction
is like that of a breather, and at the centre there is enhanced elevation, lying between
2 min[A1, A2] and 2 max[A1, A2]. This is twice the far-field value when |A1| = A2. A set
of typical results are shown in figures 1 and 2 for the cases when γ1 = 0.7, γ2 = 3.0 and
γ1 = 1.3, γ2 = 3.4 respectively. These represent two solitons of nearly equal amplitudes,
A1 = −2.22, A2 = 2.16 and A1 = −2.64, A2 = 2.54 respectively, so that the depression
wave is slightly larger in magnitude, but considerably slower in speed. Then in figures
3 and 4 we plot the cases when γ1 = 0.7, γ2 = 0.72 and γ1 = 1.3, γ2 = 1.5 so that
now the speeds are quite close, but the elevation wave is faster, while the amplitudes
are quite different with a much larger depression wave, A1 = −2.22, A2 = 0.23 and
A1 = −2.64, A2 = 0.8 respectively. These cases are similar to figures 3 and 4 of Slunyaev
(2001), but there the speeds were much faster.

The breather solution can be found by formally putting γ1,2 = m ± in, m,n > 0 in
(22), see (14) in Slunyaev (2001), or (13) in Chow et al (2005). The outcome is, obtained
by setting here by setting s1 = s2 = 1 and adjusting the phases appropriately,

g = 1− n2

m2

1 + 2m− (m2 + n2)

1− 2m+ (m2 + n2)
exp (2mθ) + 2(ξ cos (nΘ)− η sin (nΘ)) exp (mθ) ,

f = 1− n2

m2

1− 2m− (m2 + n2)

1− 2m+ (m2 + n2)
exp (2mθ) + 2 cos (nΘ) exp (mθ) ,

θ = X − (m2 − 3n2)T , Θ = X − (3m2 − n2)T ,

ξ =
1− (m2 + n2)

1− 2m+m2 + n2
, η =

2n

1− 2m+m2 + n2
.

(27)

The breather has two phases, θ and Θ. It is localised in the phase θ and propagates
with a speed C = m2 − 3n2, and oscillates in the phase Θ with a frequency nΩ ,Ω =
3m2 − n2. In the reference frame moving with speed C, set Y = X − CT and then
Θ = n(Y − 2(m2 + n2))T . Hence in this frame it has a period

P = π/n(m2 + n2) . (28)

In the limit n� m there are many crests inside the envelope and it resembles an envelope
wave packet. In the opposite limit when n� m, it resembles a two soliton interaction, see
Figure 5 of Slunyaev (2001) or Figure 4 of Chow et al (2005). This is the case of interest
here, and describes the interaction of two solitons of opposite polarity and almost equal
speeds. Hence the depression soliton has the larger amplitude. The greatest distance
apart is

L =
2

m
log

2m

n
. (29)

The double pole solution can be found by again choosing special phases and taking
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the limit n→ 0 in (27), see Chow et al (2005),

g = 1− 1 + 2m−m2

m2(1−m)2
exp (2mθ) +

2[(1−m2)Θ + 2] exp (mθ)

(1−m)2
,

f = 1− 1− 2m−m2

m2(1−m)2
exp (2mθ) + 2Θ exp (mθ) ,

θ = X −m2T , Θ = X − 3m2T = θ − 2m2T .

(30)

A typical result is shown in Figure 4 of Chow et al (2005). In the far field as T → −∞ this
is an elevation wave chasing a larger amplitude depression wave. They coincide around
T = 0, and then as T →∞ the elevation wave goes ahead. In detail, for fixed phase θ, as
T → ±∞, the solution collapses to two single waves, each approximately a single wave,
propagating with speed V ∼ m2, and hence with expected amplitudes ∼ ±

√
1 +m2 − 1,

see (21). Each wave phase can be described asymptotically for large |T | by,

mθ ∼ ±sign{T} log (Km2|T |) , so that V ∼ m2 ± 1

m|T |
, (31)

where the alternate signs refer to the faster/slower wave respectively. K is a positive
constant to be determined and depends both on which wave is being considered, and on
which limit, that is either T ±∞. The speeds become equal in the long time limit, and
the two waves separate as log |T |. From (30), we can write v = 2N/D, D = f 2 + g2 > 0,
and

N = fgX − gfX = Θ[α3 exp (3mθ) + α1 exp (mθ)]+

[β3 exp (3mθ) + β2 exp (2mθ) + β1 exp (mθ)] ,

α3 = −4(1 +m2)

(1−m)3
, α1 =

4m2

(1−m)
.

(32)

Note that α3 < 0, α1 > 0 when 0 < m < 1, and α3 > 0, α1 < 0 when m > 1. These
expressions can be evaluated on the trajectories (31), where we note that then Θ ∼ −m2T
with a logarithmic error. As T → −∞, exp (mθ) ∼ (Km2|T |)∓1, and as T → ∞,
exp (mθ) ∼ (Km2|T |)±1, for the faster and slower waves respectively. It then follows
that, for the faster wave,

N ∼ α1

K
, D ∼ (1 +

2

K
)2 + (1 +

2a1
K

)2 , α1 =
1 +m

1−m
, T → −∞ ,

N ∼ −m8K3α3T
4, D ∼ m8K2T 4{(f1K + 2)2 + (g1K + 2α1)

2} , T →∞ .
(33)

Here f1, g1 are the coefficients of the term exp (2mθ) in the expressions (30) for f, g
respectively. In both limits, the amplitude is a constant as required, and is positive for
0 < m < 1 and negative for m > 1. For the slower wave,

N ∼ m8K3α3T
4, D ∼ m8K2T 4{(f1K − 2)2 + (g1K − 2α1)

2} , T →∞ .

N ∼ −α1

K
, D ∼ (1− 2

K
)2 + (1− 2a1

K
)2 , α1 =

1 +m

1−m
, T → −∞ ,

(34)
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Again, in both limits, the amplitude is a constant as required, and is now negative for
0 < m < 1 and positive for m > 1. Note that only the leading order term in N is needed
here in all cases, and the term in [· · · ] is not needed. Also we see that |2N/D| depends
on K and in all cases is zero as K → 0,∞ and has a maximum value when

K =
2(1 +m2)1/2

|1−m|
, Cases f−, s+ ; K =

2m2|1−m|
(1 +m2)1/2

, Cases f+, s− . (35)

Here the notation f±, s± denote the faster or slower wave as T → ±∞ respectively.
Then evaluation of the corresponding amplitudes 2N/D at these values of K are indeed
±
√

1 +m2−1 according as the wave is one of elevation or depression, as expected. Using
these expressions we can deduce from (31) that the faster and slower wave have phase
shifts from T →∞ to T →∞ of ±∆θ where

∆θ = log { 1 +m2

m2(1−m)2
} . (36)

Finally, we can deduce from the phase expressions (31) that if the two waves are located
a distance 2X0 apart at a time ±T0 as T → ±∞, then

X0 ≈ log (2m2T0) . (37)

Plots of (30) for m = 0.7, 1.3 are shown in figures 5 and 6 respectively. Note that
figure 5 is similar to figure 4 of Chow et al (2005), and also to the 2-soliton solution
shown in figures 3 and 4 above, although note that as discussed above, the time scale
of approach and separation are quite different for this breather case. The amplitudes at
t = ±50 are in good agreement with the theoretical predictions as t → ±∞ indicating
that the asymptotic state has been reached. In figure 5 where 0 < m < 1 the faster wave
is one of elevation and the slower wave is one of depression. At the time of interaction,
which is close to T = 0 and can be estimated from the phase shifts (36) we see that
these waves combine into a large elevation whose height is approximately given by the
absolute sum of the amplitudes at infinity, that is given here by 2

√
1 +m2. This scenario

is reversed in figure 6 where m > 1 as now the faster wave is one of depression and the
slower wave is one of elevation, with the consequence that at the time of interaction the
waves combine into a large depression whose amplitude is approximately −2

√
1 +m2.

4 Discussion and applications

In this paper we have used the traditional KdV model (section 2) and a new eKdV
model (section 3) to examine the dynamics of a down-up wave, that is a depression wave
followed by an elevation wave. This approach differs from the extensive literature on
N -waves found using the usual non-dispersive nonlinear shallow water equations, in that
these models importantly include the effects of weak linear wave dispersion. We note
that Arcasi and Segur (2012) recently called attention to the necessity to invoke wave
dispersion when describing tsunami waves of depression. The KdV model, whether for a
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constant depth, or on a slope, indicates that a initial depression develops into a depression
wave followed by a series of elevation waves riding on this negative pedestal, see Arcasi and
Segur (2012) for instance. and the leading wave may have an amplitude magnitude twice
that of the leading depression. We have already noted that this scenario is qualitatively
similar to that seen in the wave tank experiments of Klettner et al (2012) where an
initial wave of depression travelled up a slope. When the expressions in equation (9)
and the following text are translated to the original dimensional variables through the
transformations in equations (3) - (6), we find that the predicted height of the leading
solitary wave is 2Ld, Ld = 2(4Mdh/3xd)

1/2, riding relative to a pedestal of −Ld where Md

is the initial total displaced volume, and xd is the distance travelled. From figure 5(a) of
Klettner et al (2012) we estimate that Md = 0.03m2 and then when xd = 20.68m we
find that Ld = 0.04m, in quite good agreement with the observed value of about 0.05m.
Note that here we have not taken account of the wave amplification over the slope,and
this would account for the underestimate. Indeed at the location xd the depth in the wave
tank has decreased from 0.8m to 0.7m and assuming the adiabatic expression of h−1 for
a solitary wave, this would increase our estimate of Ld to Ld = 0.046m.

However, in these KdV models this combination of a depression and elevation waves is
an unsteady wave train, and so the complete structure eventually fully disperses. Hence
in a search for models supporting more persistent structures, we have invoked a higher-
order model, the eKdV equation (17). Although this eKdV model supports interacting
depression and elevation waves through families of two-soliton and breather solutions, we
must note two issues concerning the application of this model to water waves. First, we
note that the balance of terms in (17) is such that the nonlinear terms have a larger
magnitude than the linear dispersive term. If a small-amplitude hypothesis is invoked to
remedy this, then the outcome is that the cubic nonlinear term is suppressed vis-a-vis
the quadratic nonlinear term. This then eliminates the depression soliton, the two-soliton
solution, when comprising both elevation and depression waves, and the breather solution
of interest here, as all these require a balance between the quadratic and cubic nonlinear
terms. Second, although one might accept that (17) can be used in the ad hoc sense
that the role of the linear dispersive term is to provide a weak dispersive regularisation
of the fully nonlinear equation (14) which is valid within the fully nonlinear shallow
water framework, the application to water waves requires use of the relationship Z(ζ)
expressed in (16) and then again Z ≈ ζ only when ζ � h. Nevertheless, we maintain
that these solutions in particular have qualitative features which resemble laboratory and
field observations of some tsunami waves, and suggest that this eKdV model may have
some value when properly interpreted. In particular we focus on the interaction scenarios
displayed in the middle panel of figures 1 to 5 as here the solutions are predominately
positive and then we can invoke the relationship Z(ζ) in (16) in the limit when Z ≈ ζ to
obtain a physical interpretation.

The expressions presented in section 3.2 provide a complete explicit description of
the interaction of a depression and elevation wave, and from these we can extract the
essential information on the timescale for the interaction, and the wave amplitude at the
centre of the interaction. There are two main kinds of two-soliton interaction; one in
which the depression and elevation components have similar amplitudes, shown in figures
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1, 2 and the other in which the two components have similar speeds, shown in figures 3,
4. The double-pole breather solution, shown in figures 5, 6, is essentially a limit of the
two-soliton interaction when the speeds are identical. From the analytical expressions
we can estimate a dimensional transition time, taking account of the scaling (18) and
for simplicity assuming also that we can replace Z with ζ. Thus suppose that initially
an elevation wave of amplitude ∆h2 is located at x = −L0 behind a depression wave of
amplitude −∆h1 located at x = +L0. The speed of each wave can be estimated from (12)
as c(1±∆h1,2/2h). From the two-soliton model, hese two approach each other linearly in
time, and interact at a time and place given by

t∗ ≈ 4hL0

cζint
, x∗ ≈ 4hL0

ζint
, where ζint = ∆h2 + ∆h1 . (38)

Here we also assumed that ∆h1,2 � h, and ζint is the estimated elevation at the in-
teraction site. On the other hand, from the double-pole breather model, the approach
is logarithmic in time and the corresponding expressions for t∗, x∗ can be deduced from
(37). However, then the interaction time and place are increased exponentially due to
the slower logarithmic approach, and we find that these alternative expressions are not as
applicable as (38). For instance, based on the available data recorded near Phuket Island
for the Sumatra 2004 tsunami, see Ioulalen et al (2007) and Grilli et al (2007), we choose
∆h2 = 3,∆h1 = 3m, h = 25m, L0 = 8 km, and then t∗ = 142min, x∗ = 133 km and
ζint = 6m. These estimates indicate that the peak interaction is close to the shoreline,
although the bottom slope has not been taken into account, which would slow the wave
interaction down and so reduce x∗. A similar scenario can be deduced from tide gauge
data north of Sendai for the Tohoku 2011 tsunami, see Fujii et al (2011), Shimozono et
al (2012) and Klettner et al (2012). Here we choose ∆h2 = 4m,∆h1 = 4m, h = 50m,
L0 = 16 km as representative values, and then t∗ = 301min, x∗ = 200 km and ζint = 8m.
In this case these estimates indicate that the tsunami would reach the shore before the
peak interaction occurs.

In conclusion, we suggest that the scenarios we have described here, both for the KdV
and the eKdV models, are useful for understanding and possibly predicting the behaviour
of down-up tsunami waves. In particular, as the plots we have shown demonstrate, there
is a potential that the nonlinear interaction between the depression and elevation com-
ponents can produce a striking elevation at the location of the interaction. It is to be
emphasised that this outcome is more devastating than that caused by an incident eleva-
tion wave alone of the same initial height.

Acknowledgement: Hester H.N. Chan of the University of Hong Kong, and Kenyon K.
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Figure 1: Plot of (22) for γ1 = 0.7, γ2 = 3.0. at t = −10, 0.06, 10 from top to bottom.
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Figure 2: Plot of (22) for γ1 = 1.3, γ2 = 3.4 at t = −10, 0.04, 10 from top to bottom.
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Figure 3: Plot of (22) for γ1 = 0.7, γ2 = 0.72. at t = −50, 5.95, 50 from top to bottom.

17



Figure 4: Plot of (22) for γ1 = 1.3, γ2 = 1.5. at t = −50, 0.5, 50 from top to bottom.
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Figure 5: Plot of (30) for m = 0.7. at t = −50, 1.3, 50 from top to bottom.
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Figure 6: Plot of (30) for m = 1.3 at t = −50,−1.15, 50 from top to bottom.
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