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Effect of forced harmonic vibration pile to its adjacent pile in layered elastic 

soil with double-shear model 
Jue Wang a, S. H. Lo b, Ding Zhou a 

a College of Civil Engineering, Nanjing University of Technology, Nanjing, China 

b Department of Civil Engineering, the University of Hong Kong, Hong Kong, China 

Abstract 

A new model named double-shear model based on Pasternak foundation and Timoshenko beam 

theory is developed to determine the dynamic interaction factors for adjacent piles in multilayered 

soil medium. The double-shear model takes into account the shear deformation and the rotational 

inertia of piles as well as the shear deformation of soil. Piles are simulated as Timoshenko beams 

embedded in a layered Pasternak foundation. The differential equation of transverse vibration for a 

pile is solved by the initial parameter method. The pile-to-pile dynamic interaction factors for the 

layered soil medium are obtained by the transfer matrix method. The formulation and the 

implementation have been verified by means of simplified examples. The individual shear effects of 

soil and pile on the interaction factors are evaluated through a parametric study. Compared to 

Winkler model with Euler beam, the new model gives much better results for the dynamic interaction 

of piles embedded in stiff soil with small length-to-diameter ratios. Finally, a detailed study of the 

dynamic interaction between adjacent piles with different lengths embedded in multilayered soil 

medium has also been done. 

 

Keywords: dynamic interaction factor; Pasternak foundation; Timoshenko beam; layered soils. 
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 Introduction 

Piles as deep foundations have been commonly used to support engineering structures in the 

form of closely spaced group. In addition to the loads transmitting from the pile cap, each pile in the 

group would experience additional loads arising from the interference of adjacent piles. For statically 

loaded piles, Poulos [1] introduced the concept of ‘interaction factor’, which is equal to the ratio of 

displacement of an unloaded pile to that of a loaded pile due to soil deformation. In practice, piles of 

different lengths can be used to improve their performance and provide a more economical solution. 

Attention has been paid to the interaction factors for piles of unequal lengths [2-4]. Wong and Poulos 

[2] developed an approximate solution for the settlement interaction factor between two piles of 

different diameters or lengths in homogenous medium by the boundary element method. It was 

extended later by Zhangs [3] to a layered soil medium through the shear displacement method. Liang 

et al. [4] adopted an integral equation method with a fictitious pile model to analyze the piled raft 

foundation supported by piles of unequal lengths. 

The aforementioned static interaction factors are not applicable to the dynamic analysis of piles, 

except perhaps at very low frequencies of oscillation. Kaynia and Kausel [5] extended the 

pile-to-pile interaction factor for identical piles to the dynamic analysis by the boundary integral 

techniques. Nowadays, various methods, such as the experimental method [6], the finite element 

method [7, 8], the boundary element method [9-11] and the analytical method [12-15] have been 

developed for studying the pile-to-pile interaction under dynamic excitation. By the analytical 

method, the pile is simulated as a Bernoulli-Euler beam imbedded in a Winkler foundation. Due to its 

clear physical concept and low computational complexity, this method has received widespread 
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applications. By means of a simplified wave interference analysis, Mylonakis and Gazetas [16, 17] 

determined pile-to-pile interaction factor for axial and lateral vibration on piles in homogeneous or 

two-layer soil based on a Winkler foundation. Using this simplified model, Huang et al. [18] 

evaluated the pile-to-pile interaction factor for the multilayered foundation. The method was further 

refined to show the influence of an additional axial load on the interaction factors between piles by 

Jiang and Song [19]. Hasan and Mehraz [20] analyzed the interaction factors between two adjacent 

piles with an inclination angle.  

However, by the Winkler foundation, the soil pressure at any point is assumed to be 

proportional only to the deflection at that point. Therefore, it cannot represent the real situation of 

continuous deformation of the soil medium. To overcome this limitation, the Pasternak foundation 

[21, 22] has been introduced to include the shear effect of soil. Rosa and Maurizi [23, 24] 

investigated the vibration frequencies of a beam and multistep pile based on the Pasternak foundation. 

Qetin and Simsek [25] studied the free vibration of a graded pile embedded in uniform Pasternak 

foundation and analyzed the variation of the non-dimensional frequency of the pile with respect to 

the two elastic parameters. Their works have been done within the scope of classical Bernoulli-Euler 

theory to investigate the dynamic characteristics of piles for mathematical simplicity. It is well 

known that only the lateral inertia and the elastic forces caused by bending deflections are considered 

in the Euler theory. On the other hand, for those piles with small length-to-diameter ratio or piles 

under high frequency excitations, the Timoshenko beam theory [26-29], which takes into account the 

effects of shear deformation and rotational inertia, may give a better approximation to the general 

behavior of the piles. 
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Following the work of Mylonakis and Gazetas [17], the double-shear model introduced in this 

paper will be applied to analyze the dynamic interaction of adjacent piles in multilayered soil 

medium. A parametric study is focused on the shear effects of soil and pile as well as the effect of 

rotary inertia on the pile-to-pile dynamic interaction factors. 

 

1. Model for analysis 

To better understand the behavior of dynamic interaction factor for adjacent piles with the same 

material property but different lengths, the double-shear model to be developed is shown in Fig. 1. 

The Pasternak foundation is used to represent the reaction of the soil against the pile deformation. 

Along the pile-shaft, it is a system of infinitely close linear springs and dashpots, which are 

connecting through an incompressible shear layer. The current methods for determining the 

parameters of these mechanical components can be classified into experimental method and 

simplified theoretical formulations [13, 22, 30]. The Timoshenko beam theory is used to describe the 

transverse vibration of the pile taking into account the shear deformation and the rotational inertia. 

According to the specific distribution of the soil medium, the source pile and the receiver pile are 

divided into a number of segments within each soil layer such that the soil within each segment has 

more or less uniform mechanical properties. 

2. Formulation  

2.1 Vibration of the source pile 

By using Hamilton principle and the Timoshenko beam theory, the translational and rotational 

equilibrium conditions of the i-th segment of the source pile (Fig. 1b) are given by 



5 
 

2 2
1 1 1 1

p p p p 1 12 2

( , ) ( , ) ( , ) ( , )( , ) ( , )i i i i
i i i i i xi i xi xi

u z t u z t u z t u z tA G A z t k u z t g c
t z z x t

ρ κ θ
 ∂  ∂  ∂ ∂∂  = − − − − +   ∂ ∂ ∂ ∂ ∂      

(1) 

2 2
1 1 1

p p p p p p 12 2

( , ) ( , ) ( , )( , )i i i
i i i i i i i

z t z t u z tI E I G A z t
t z z

θ θρ κ θ∂ ∂ ∂ = − − ∂ ∂ ∂ 
        (2) 

where Api, Ipi and κ=6(1+vp)/(7+6vp) are the area, inertia moment and shear coefficient [26] of the 

i-th segment of pile cross-section, ρpi, Epi, Gpi, u1i and θ1i represent the mass density, Young’s 

modulus, shear modulus, the lateral deflection and the bending rotation of the i-th segment of the pile, 

respectively. The compressive stiffness, the shear stiffness and the damping ratio of the i-th segment 

are given by kxi=1.2Esi, gxi=dGsi and cxi=6a0
-1/4ρsiVsid+2βsikxi/ω. 

For the steady-state response, the state variable transformation can be expressed as follows 

j
1 1( , ) ( ) t
i iu z t U z e ω= ,   j

1 1( , ) ( ) t
i iz t z e ωθ Θ=              (3) 

where j 1= − , ω is the frequency of the excitation. 

Apply the differentiation chain rule on Eqs. (1) and (2), the differential equation of vibration is 

given by 

24 2
p p p p1 1

p p p p4 2
p p p p p p p p p p

2jd d1 + 1
d d

i i xi xi i ixi i xi xi i
i i i i

i i i i i i i i i i

A k cg U g g UE I E I
G A z G A E I E I

I
G A z

ρ ω ω
κ κ

ρ ω
κ

    − −
+ − + + −            

 

( )p p 2
p p 1

p p

2

1 j 0i i
i i xi xi i

i i

A k c U
G A
I

ρ ω ω
κ
ρ ω 

− − − =  
 

            (4) 

Eq. (4) can also be rewritten in the form 

4 2 2 4
1 1

14 2 2 4

d d 0
d d

i i i i
i

i i

U U U
z h z h

δ λ
+ − =                 (5) 

with the following parameters having been introduced in Eq. (5) 

( )
( )

2
p p p p p

p p p

i i i i xi i i xii

i i i i xi

E I WR J g J g
h I J gE
δ − + + 

= 
+ 

, 
( )
( )

4
p p

p p p

i i ii

i i i i xi

R W

I

J

JEh g
λ − 

= 
+ 

       (6) 
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where 

p p pi i iJ G Aκ= , p p p
2

i i iW Iρ ω= , 2
p p jxii i i xiR k cAρ ω ω= − − . 

The general solution of Eq. (5) is 

1 1 1 1 1( ) cosh sinh cos sini i i i
i i i i i

i i i i

U z A z B z C z D z
h h h h
α α β β

= + + +         (7) 

where 
4 2

4

4 2
i i

i i
δ δα λ= + −  and 

2 4
4

2 4
i i

i i
δ δβ λ= + + , 1 1 1 1, , ,i i i iA B C D  are unknown coefficients 

which can be determined by boundary conditions at the head and the tip of the pile. 

The flexural rotation 1 ( )i zΘ  at any section of the pile can be determined from Eqs. (1) and (2). 

The bending moment 1 ( )i zΜ and the shear force 1 ( )iQ z  are related to 1 ( )iU z  and 1 ( )i zΘ  by 

( )
( ) ( ) ( )

3
p p p 21 1

1 p p p3
p p p p p p

d d1
d d

i i i xi i i
i i i i i

i i i i i i

J g U UR J
z

E I
E I

W zJ J J J W
Θ

+
= + +

− −
        (8) 

1
1 p p

d
d

i
i i iE IM

z
Θ

=                    (9) 

1
1 p 1

d
d

i
i i i

UQ J
z
−Θ =  

 
                 (10) 

It is remarked that setting gxi =0 the equation of motion of a Timoshenko pile on the Winkler 

foundation is readily obtained, and the case of the Euler pile on elastic soil is reproduced by setting 

1/Jpi →0 and Wpi →0. 

The local coordinate system for the i-th segment is shown in Fig. 1(b). Based on Eqs. (7-10), the 

deflections and internal forces of the pile can be written in a matrix form with undetermined 

coefficients, as shown below 

[ ]
1 1

1 1

1 1

1 1

( )
( )
( )
( )

i i

i i
i

i i

i i

U z A
z B

Q z C
M z D

Θ
   
   
   =   
   
      

ta                  (11) 
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where the expressions of each elements in matrix [ ]ita  are given in Appendix A. 

From Eq. (11) the four coefficients 1 1 1 1, , ,i i i iA B C D  can be determined using deflections at the 

top and at the bottom 

[ ] [ ]
1 1 1

1 11 1 1
0

1 1 1

1 1 1

(0) ( )
(0) ( )
(0) ( )
(0) ( )

i

i i i i

i i i i
z z hi i

i i i i

i i i i

A U U h
B h
C Q Q h
D M M h

Θ Θ− −
= =

     
     
     = =     
     
          

ta ta            (12) 

[ ] [ ]
1 1

11 1
0

1 1

1 1

( ) (0)
( ) (0)
( ) (0)
( ) (0)

i

i i i

i i i
z h zi i

i i i

i i i

U h U
h

Q h Q
M h M

Θ Θ−
= =

   
   
   ⇒ =   
   
      

ta ta              (13) 

Based on the continuity condition at the interface of the adjacent segments, i.e. 

{ } { }1 1 1 1 1 1 1 1 1 1 1 1(0), (0), (0), (0) ( ), ( ), ( ), ( )i i i i i i i i i i i iU Q M U h h Q h M hΘ Θ+ + + + = , the relationship of the 

deflection and internal force between the head and the tip of the source pile can be given by 

[ ]
1 1

1 1

1 1

1 1

( ) (0)
( ) (0)
( ) (0)
( ) (0)

U L U
L

Q L Q
M L M

   
   Θ Θ   =   
   
      

TA                  (14) 

where the transfer matrix [ ] [ ]1
1

N
i i== ∏TA Ta , [ ] [ ] [ ] 1

0iz h zi i i

−
= ==Ta ta ta , N1 is the number of the 

segment of the source pile. 

The matrix [ ]TA  can be written in terms of four 2×2 sub-matrices [ ] [ ]
[ ] [ ]

11 12

21 22

 
 
 

TA TA
TA TA

, such 

that, Eq. (14) can be expressed as 

[ ] [ ]1 1 1
21 22

1 1 1

( ) (0) (0)
( ) (0) (0)

Q L U Q
M L MΘ
     

= +     
     

TA TA             (15) 

At the tip of the pile, the bending moment and the shear force are assumed to be negligible. By 

applying this boundary condition, the force-displacement relationship at the pile head can be 
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obtained based on Eq. (15), 

[ ]1 1

1 1

(0) (0)
(0) (0)

Q U
M Θ
   

=   
   

ℜ                  (16) 

where the impedance of a single pile [ ] [ ] [ ]1
22 21

−= − TA TAℜ . 

2.2 Vibration of the receiver pile 

According to the model developed by Dobry and Gazetas [14] as shown in Fig. 2, at the 

distance s from the oscillating pile and an angel φ from the direction of loading, the displacement 

field can be expressed as 

j j
s s 1( , ) ( ) ( , ) ( )t t
i i i iu z t U z e s U z eω ωϕ φ= =              (17a) 

s

La

( j)( / 2)( ,0) exp
2

i
i

i

s dds
s V

ω βϕ
 − + −

=  
 

            (17b) 

s

s

( j)( / 2)( , ) exp
2 2

i
i

i

s dds
s V

ω βπϕ
 − + −

=  
 

            (17c) 

2 2( , ) ( ,0)cos ( , )sin
2i i is s s πϕ φ ϕ φ ϕ φ= +             (17d) 

where s
s

s s2(1 )
i

i
i i

EV
v ρ

=
+

 is the shear wave velocity; Esi, vsi, βsi and ρsi are the Young’s modulus, 

the Poisson’s ratio, the radiation damping and the mass density of i-th soil layer, respectively; 

s
La

s

3.4
(1 )

i
i

i

VV
vπ

=
−

 is the Lysmer’s analog wave velocity. ϕi(s,φ) is the attenuation function, φ is the 

angle between the centre-line direction of two piles and the direction of the applied horizontal force, 

s is the center to center distance between two piles. 

Utilizing the Timoshenko beam theory and the Pasternak foundation, with the consideration of 

the dynamic interaction between the soil and the receiver pile, the translation and rotational 

equilibrium conditions of the i-th segment at the receiver pile are given by 
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( )
2 2 2

2 2 2 2
p p p p 2 22 2 2

i i i si i si
i i i i i xi i si xi xi

u u u u u uA G A k u u g c
t z z z z t t

ρ κ θ
  ∂  ∂  ∂ ∂ ∂ ∂∂    = − − − − − − + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂       

(18) 

2 2
2 2 2

p p p p p p 22 2
i i i

i i i i i i i
uI E I G A

t z z
θ θρ κ θ∂ ∂ ∂ = − − ∂ ∂ ∂ 

            (19) 

Eliminating θ2i from Eqs. (18) and (19), we have the following fourth-order differential equation for 

the steady-state response 

( )

2 2 24 2
p p p p p p2 2

p p p p4 2
p p p p p p p p p p p p

2
p p2

p p 2
p p

jd d1 + 1 1
d d

j 1

i i xi xi i i i ixi i xi xi i
i i i i

i i i i i i i i i i i i

i i
i i xi xi i

i i

A k c I Ig U g g UE I E I
G A z G A E I E I G A z G A

I
A k c U

G A

ρ ω ω ρ ω ρ ω
κ κ κ κ

ρ ω
ρ ω ω

κ

      − −
+ − + + − − ×                  

 
− − = − 

 
( ) ( ) 2 2 4

p p p p p p
2 4

p p p p

j d dj
dz dz

i i xi xi i i xi i i xisi si
xi xi si

i i i i

E I k c I g E I gU Uk c U
G A G A
ω ρ ω

ω
κ κ

+ −
+ − +

 

                      (20) 

Following the notations of Eq. (6), Eq. (20) can be rewritten as 

4 2 2 4 2 4
2 2 1 1

2 14 2 2 4 2 4

d d d d( , ) ( , ) ( , )
d d d d

i i i i i i
i ai i bi ci

i i

U U U UU f s U f s f s
z h z h z z

δ λ φ φ φ+ − = + +       (21) 

with the following parameters having been introduced 

( )( )
( )

p p

p p p

j
( , )i i xi xi

ai i
i i i xi

W

E

J k c
f s

J gI

ω
ψ φ

− +
=

+
; 

( )
( )

p p p

p p p

j
( , )i i xi xi i xi

bi i
i i i xi

k c gE I W
f

JE
s

gI
ω

ψ φ
+ −

=
+

; 

p

( , )xi
ci i

i xi

gf s
J g

ψ φ=
+

. 

The general solution of Eq. (21) is given by 

*
2 2 2 2 2( ) cosh sinh cos sini i i i

i i i i i
i i i i

U z A z B z C z D z
h h h h
α α β β

= + + +         (22) 

where 2iA , 2iB , 2iC , 2iD  are unknown coefficients to be determined from the boundary conditions of 

the receiver pile. 
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The particular solution of Eq. (21) is 

**
2 1 1 1 1( ) sinh cosh sin cosi i i i

i ai i i bi i i
i i i i

U z zF A z B z zF C z D z
h h h h
α α β β          

= + + − +          
          

   (23) 

where 

2 4

2 2

2 2

i i
ai bi ci

i i
ai

i i i

i i i

f f f
h h

F

h h h

α α

α α δ

   
+ +   

   =
      
 +     
       

,

2 4

2 2

2 2

i i
ai bi ci

i i
bi

i i i

i i i

f f f
h h

F

h h h

β β

β β δ

   
− +   

   =
      
 −     
       

 

Hence, the solution of Eq. (21) can be expression as 

* **
2 2 2( ) ( ) ( )i i iU z U z U z= +                  (24) 

Similar to the source pile in section 2.1, the deflections and internal forces of the receiver pile 

can be expressed in a matrix form with undetermined coefficients 

[ ] [ ]
2 2 1

2 2 1

2 2 1

2 2 1

( )
( )
( )
( )

i i i

i i i
i i

i i i

i i i

U z A A
z B B

Q z C C
M z D D

Θ
     
     
     = +     
     
          

ta tb               (25) 

where the expression for the elements in matrices [ ]ita  and [ ]itb  are shown in Appendix A and B. 

Substituting Eq. (12) into Eq. (25), the unknown coefficients can be expressed as 

[ ] [ ] [ ]
2 2 1

1 12 2 1
0 0 0

2 2 1

2 2 1

(0) (0)
(0) (0)
(0) (0)
(0) (0)

i i i

i i i
z z zi i i

i i i

i i i

A U U
B
C Q Q
D M M

Θ Θ− −
= = =

      
      

      = −                        

ta tb ta          (26) 

The deflections and internal forces between the top and the bottom of the i-th segment of the 

receiver pile are as follows 
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[ ] [ ]
2 2 1

2 2 1

2 2 1

2 2 1

( ) (0) (0)
( ) (0) (0)
( ) (0) (0)
( ) (0) (0)

i i i i

i i i i
i i

i i i i

i i i i

U h U U
h

Q h Q Q
M h M M

Θ Θ Θ
     
     
     = +     
     
          

Ta Tb             (27) 

where [ ] [ ] [ ] [ ] [ ] [ ] [ ]1 1 1
0 0 0 0i iz h z z z z h zi i i i i i i

− − −
= = = = = == − +Tb ta ta tb ta tb ta . 

Based on the deflection and force continuity condition at the interface of the adjacent segments, 

i.e. { } { }2 1 2 1 2 1 2 1 2 2 2 2(0), (0), (0), (0) ( ), ( ), ( ), ( )i i i i i i i i i i i iU Q M U h h Q h M hΘ Θ+ + + + = , we have the following 

the relationship for the deflections and internal forces between the head and the tip of the source pile 

[ ] [ ]
2 2 1

2 2 1

2 2 1

2 2 1

( ) (0) (0)
( ) (0) (0)
( ) (0) (0)
( ) (0) (0)

U L U U
L

Q L Q Q
M L M M

Θ Θ Θ
     
     
     = +     
     
          

TC TB              (28) 

where the transfer matrix [ ] [ ]2
1

N
j j== ∏TC Ta ,[ ] [ ] [ ] [ ] [ ] [ ]

2

2 1 1 1
1

N

N j j j
j

+ −
=

=∑  TB Ta Ta Tb Ta Ta , N2 is 

the number of the segment of the receiver pile. 

The matrix [TB] and [TC] can be written in four 2×2 sub-matrices in the same way as [ ]TA  in 

section 2.1, and from Eq. (28) we have 

[ ] [ ] [ ] [ ]2 2 2 1 1
21 22 21 22

2 2 2 1 1

( ) (0) (0) (0) (0)
( ) (0) (0) (0) (0)

Q L U Q U Q
M L M MΘ Θ
         

= + + +         
         

TC TC TB TB     (29) 

As the moment and the shear at the head and at the tip of the receiver pile are negligible,  

[ ]2 1

2 1

(0) (0)
( , )

(0) (0)
U U

s φ
   

=   Θ Θ   
a                 (30) 

where [ ] [ ] [ ] [ ][ ]{ }1
21 21 22( , )s φ −= − +a TC TB TB ℜ . 

2.3 Pile-to-pile dynamic interaction factor 

The interaction factor between the adjacent piles is defined as the ratio of the additional 

displacement at the head of the receiver pile, due to the source pile, to the displacement at the head 
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of the source pile. Letting [ ] [ ] 1−=f ℜ , the lateral interaction factor upα  and the rocking interaction  

factor θmα  between adjacent piles are given by 

1,1 1,1 1,2 2,12
up

1 1,1

(0)
(0)

U
U

α
       +       = =

  

a f a f
f

             (31) 

2,2 2,2 2,1 1,22
θm

1 2,2

(0)
(0)

Θα
Θ

       +       = =
  

a f a f
f

             (32) 

3. Numerical examples and discussions 

3.1 Comparison study 

If the shear stiffness of the soil gxi, the pile parameters 1/Jpi and Wpi are assumed to be zero, then 

the model is reduced to Euler beam with the Winkler foundation. To validate the formulation and the 

coding, the reduced results could be compared with those of Gazetas et al. [13, 17]. As illustrated in 

Fig. 3, the lateral interaction factor αup and rocking factor αθm in homogeneous foundation obtained 

by the present study are in agreement with that by Mylonakis and Gazetas [17]. The lateral 

interaction factor is also compared with the results from Dobry and Gazetas [13] as shown in Fig. 3a. 

It can be seen from Fig. 3a that the results obtained by the present study are less than those by Dobry 

and Gazetas as the interaction between the receiver pile and the surrounding soil was neglected. 

However, the difference decreases for increasing value of the piles distance (s/d) ratio. Fig. 4 refers 

to a pair of interacting piles in a two-layered soil foundation which consists of a soft surface layer 

over a homogeneous half-space. The lateral interaction factors are also in good agreement with those 

of Mylonakis and Gazetas. 

 

3.2 Shear effect of soil on interaction factor 

We are interested to find out the difference in modeling the soil using the two kinds of 
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foundations, Pasternak foundation and Winkler foundation. From the observation of the numerical 

results in Fig. 5, it can be seen that lateral and rocking interaction factors obtained from the 

Pasternak foundation are obviously larger than those obtained from the Winkler foundation within 

the whole range of frequencies examined for Ep/Es=100. However, the difference becomes less 

significant for the case of Ep/Es=1000. Generally, the lower is the pile-soil elastic modulus ratio, the 

greater is the difference between the models. 

 

3.3 Shear effect of pile on interaction factor 

As it is well known that the Timoshenko beam theory takes into account shear deformation and 

rotational inertia effects, making it more suitable for describing the dynamical behavior of those piles 

with a low length-to-diameter (L/d) ratio subjected to high-frequency excitations. This example 

shows the influence of L/d on the lateral interaction factor αup and the rocking interaction factor αθm 

for the Timoshenko pile and Euler pile, respectively. Fig. 6 shows a homogenous half-space and Fig. 

7 shows a two-layered soil profile, which consists of a soft surface layer over a stiffer half-space. In 

order to compare with the available results, the shear coefficients of soil gxi in this example are set to 

0. It can be seem from Figs. 6 and 7 that the Euler pile approaches the Timoshenko beam for high 

values of L/d ratio, and lower dynamic interaction αup and αθm calculated from Timoshenko model 

than that from Euler one can be observed for small values of L/d. The numerical results implies that 

the difference between the two pile models is less than 5% when the ratio L/d is larger than 6, as 

shown in Figs. 6a, 6b, 7a and 7b. It should be noticed that due to the rotational inertia effect there is a 

small discrepancy between the results from the Euler and the Timoshenko models in Figs. 6c and 7c, 



14 
 

even for a large length-to-diameter ratio L/d=25. This is due to a higher excitation frequency which 

makes the effect of the rotational inertia more prominent between the Timoshenko pile and the Euler 

pile. Therefore, it is recommended to take shear effect into account for the case of piles with a 

length-to-diameter ratio L/d <6 under high frequency excitation. 

 

3.4 Application to long-short piles 

It can be seen from the previous sections that shear effects of soil and pile may have a 

significant influence on the interaction between piles. As an extension work of Mylonakis and 

Gazetas, the presented double-shear model is applied to analyze the interaction factors of a loaded 

long pile (length Ls) on an unloaded short pile (length Lr) embedded in multiple layered soil mediums 

as shown in Table. 1. Cases 1 and 3 refer to a layered medium covered respectively by a soft layer 

and a stiff surface layer. Case 2 refers to a layered medium with Young’s modulus increasing linearly 

with depth. The influence of the length of shorter pile on the pile-to-pile interaction with the same 

elastic modulus Ep=38GPa and equal diameter d=0.5m, is analyzed, as shown in Figs. 8 and 9. It can 

be observed that the lateral interaction factor αup (as shown in Fig. 8) and the rocking interaction 

factor αθm (as shown in Fig. 9) between the two piles of unequal lengths may have a difference up to 

25% when the length ratio Ls/Lr reaches 1:0.8. Comparing of Figs. 8a, 8b and 8c (or Figs. 9a, 9b and 

9c), it can be seen that the pile-to-pile interaction factors between long and short piles embedded in a 

layered medium covered by a soft surface layer could have a more significant difference. 
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Conclusion 

The double-shear model in terms of transfer matrix has been presented in this paper to analyze 

the dynamic interaction of piles in multilayered soil medium. The limiting solutions are in agreement 

with those computed with Winkler-Euler method by Mylonakis and Gazetas. From the investigation 

of the effects of shear deformation and rotational inertia of adjacent piles as well as that of soil shear 

deformation, the following conclusions can be drawn 

(i) The double-shear model employing the Pasternak foundation in general gives a better 

approximation to the behavior of the soil medium, especially for the case of a low pile-soil Young’s 

modulus ratio (Ep/Es). 

(ii) As shear deformation and rotational inertia are neglected, the difference between the Timoshenko 

pile and the Euler pile becomes significant when the length-to-diameter (L/d) ratio is small. 

(iii) As another advantage over conventional models, the double-shear model is also applicable to the 

determination of the dynamic interaction factor between piles of unequal lengths, which is 

commonly encountered in foundation engineering. 
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Table 1. The distribution of pile-soil modulus (Ep/Es) ratio along the soil thickness 

Soil distribution 
Layer thickness 

(m) 

Case I  
(Soft soil 
covered) 

Case II 
(Es increasing 
with depth) 

Case III 
(Stiff soil 
covered) 

Layer 1 1 10000 3000 500 
Layer 2 1.5 2000 2000 2000 
Layer 3 2 1500 1500 1500 
Layer 4 3 1000 1000 1000 
Layer 5 ∞ 500 500 500 

 
  



19 
 

Appendix I 

[ ] { }1 2 3 4 T

i i i ii
=ta a  a  a  a ; 

where 

{ }1 cosh sinh cos sini i i i
i

i i i i

z z z z
h h h h
α α β β         =         

         
a  

{ }

3

3

2

3

3

sinh

cosh

sin

cos

i i i
i i

i

i i i

i i i

i i i

i

i i i

i i i

i i i

i i
i

i

i

i i

i

z
h h h

z
h h h

z
h h h

z
h h h

α α α

α α α

β β β

β β β

       +    
       
     
  +    
      =  
     
 − +    
     


     
 −  

Φ ϒ

Φ

 
  

ϒ

Φ ϒ

Φ ϒ
   

a

T











{ }

3

p

3

p

3

3

p

3

p

sinh

cosh

sin

cos

i i i
i

i i i

i i i
i

i i i

i

i

i i

i i

i i

i

i i
i

i i i

i i i
i

i i i
i

J z
h h h

J z
h h h

J z
h h h

J z
h h h

α α α

α α α

β β β

β β β

     +    
     
    
 +    
     = 

     
 − −    
      

    
 −    
  

Ψ ϒ

Ψ ϒ

Ψ


Ψ

 

ϒ


ϒ

a

T












 
 
 
 

 

{ }

2 4

p p p

2 4

p p p

4

2 4

p p p

p p

cosh

sinh

cos

i i

i i

i i

i

i i i
i i i

i i i

i i i
i i i

i i i

i

i i i
i i i

i i i

i
i i

i

E I J z
h h h

E I J z
h h h

E I J z
h h h

E I
h

α α α

α α α

β β β

β

     
−      

     

      
 − +     
       =

      
 −     
       

 
 Φ + ϒ
  

Φ ϒ

Φ ϒ

Φ
 
 
 

a

2 4

p sin

T

i i
i

i i
i J z

h h
β β

 
 
 
 
 
 
  
 
 
 
 
 

     
 −     
      

ϒ


 

with 
( )

p p p

p p p p p

i i i i

i i i i i
i

J R E
W W

I
J J J

+
− −

Φ = , p p p p

p p

i i i i i

i i
i

WR E
W

I J
J

+

−
Ψ = , 

( )
( )

p p p

p p p

i i i xi

i i i
i

E I J g

J J W
ϒ

+

−
= . 

 



20 
 

Appendix II 

[ ] { }1 2 3 4 T

i i i ii
=tb b  b  b  b  

{ }1 sinh cosh sin cosi i i i
i ai ai bi bi

i i i i

zF z zF z zF z zF z
h h h h
α α β α         = −        

         
b  

{ }

( ) ( ) ( )

( )

2 2
2 2

p p p p p p p p p p p p
p p p

2
p p p

2
p p p

cosh 3 sinh

3

ai i i i i i
i i i i i i i xi i i i i i i i xi

i i i i ii i i

ai i
i i i i

ii i i

i

F J R E I E I J g z z J R E I E I J g z
h h h h hJ J

F J R

W

W
E I

hJ J

α α α α α

α

                 + + + + + + +          
−                  

 
+ +  

− 
=


b

( ) ( )

( ) ( )

2 2
21

p p p p p p p p p

2
2

p p p p p p
p p p

cosh sinh

cos

i i i i
i i i xi i i i i i i i xi

i i i i

bi i i i
i i i i i i i xi

i i ii i i

E I J g z J R E I E I J g z z
h h h h

F J R E I E I J g z z
W h h hJ J

α α α α

β β β

               + + + + +        
               

    
 − + − +   

−      
( )

( ) ( )

2
2

p p p p p p

2 2
2 2

p p p p p p p p p p p p
p p p

3 sin

3 cos

i i
i i i i i i i xi

i i

bi i i i i
i i i i i i i xi i i i i i i i x

i i i ii i i

J R E I E I J g z
h h

F J R E I E I J g z J R E I E I J g
h h h hJ J W

β β

β β β β

         + + − +      
         

        
 + − + − + − +       

−          
( ) sin i

i
i

z z
h
β

 
 
 
 
 
 
 
 
 
 
 
 
 

         
       

 

{ }

( ) ( )
2 2

p p p p p p p p p p p p p p
p p

p p p
p

3

p
p

cosh 3 sinh

3

ai i i i i i
i i i i i i i i xi i i i i i i i i xi

i i i i i i i

ai i
i i i i i

i

i i i

F R E I J W W
W

W

E I J g z z R E I J E I J g z
J h h h h h

F R E I J
J hW

α α α α α

α

                 + + + + + + +          −                  

 
+ +

=

 −  
b

( ) ( )

( )

2 2

p p p p p p p p p p

2

p p p p p p p
p p

cosh sinh

cos

i i i i
i i i xi i i i i i i i i xi

i i i i

bi i i i
i i i i i i i i xi

i i i i i

E I J g z R E I J E I J g z z
h h h h

F R E I J E I J g z z
J h h h

W

W
W

α α α α

β β β

               + + + + +        
               

    
 − + − +   −      

( )

( )

2

p p p p p p p

2 2

p p p p p p p p p p p p p p
p p

3 sin

3 cos

i i
i i i i i i i i xi

i i

bi i i i i
i i i i i i i i xi i i i i i i i i

i i i i i i

R E I J E I J g z
h h

F R E I

W

W WJ E I J g z R E I J E I J
J h hW h h

β β

β β β β

         + + − +      
         

        
 + − + − + −       −          

( ) sin i
xi

i

g z z
h
β

 
 
 
 
 
 
 
 
 
 
 
 
 

       +  
       

 



21 
 

{ }

( ) ( ) ( )

( )

2 2
p p 2 2

p p p p p p p p p p p p
p p p

p p

p p
4

p

2 2 cosh sinhai i i i i i i i i
i i i i i i i xi i i i i i i i xi

i i i i i ii i i

ai i

i

i

i i i

F E I
J R E I E I J g z J R E I E I J g z z

h h h h h hJ J

F E
J WJ

W

I

α α α α α α                   − + + + + + + +            
−                  

−

=

 

−
b

( ) ( )

( )

2 2
2 2

p p p p p p p p p p p p

p p 2
p p p

p p p

cosh 2 2 sinh

2

i i i i i i
i i i i i i i xi i i i i i i i xi

i i i i i i

bi i i i
i i i i

ii i i

J R E I E I J g z z J R E I E I J g

W

z
h h h h h h

F E I
J R E I

hJ J

α α α α α α

β

                   + + + + + + +            
                   

 
+ − 

−  
( ) ( )

( )

2 2
2

p p p p p p p p p

2
p p 2

p p p p p
p p p

2 cos sini i i i i
i i i xi i i i i i i i xi

i i i i i

bi i i i i i
i i i i i i

i i ii i i

E I J g z J R E I E I J g z z
h h h h h

F E I
J R E I E I J

h h hJ J W

β β β β β

β β β

                 + − + − +          
                 

     
+ −     

−      
( ) ( )

2
2

p p p p p p pcos 2 2 sini i i
i xi i i i i i i i xi

i i i

g z z J R E I E I J g z
h h h
β β β

 
 
 
 
 
 
 
 
 
 
 
 
 

               + + + − +      
               

 



22 
 

d

Ls

1

N

..

..

..

..

.

...
..

..

..

1

N

..

..

..

..

jωt

i th layer

u1i(z,t)  ϕ  (s, θ ) u    (z,t)
Source Pile "A" Receiver Pile "B"

k

c
g

h

h

h

V i

M
Q

s

i
xi

xi

xi

i 2i
u1i(z,t)

e

.
..

jωte

Lr

 

 

hi

i

iM

Q

i+1

i+1M
Q

k

c
g

xi

xi

xi

θi

 

(a) (b) 
Fig 1. Model description:(a) pile-to-pile dynamic interaction in the Pasternak layered foundation;  

(b) deflected differential layered-pile element 
 
 
 
 
 
 
 
 
 
 
 

φ

Source Pile "A"

Receive Pile "B"

dVs

VLa

S

 

 
Fig.2 Relative position of two piles 

 
 

iu
z

∂
∂

2

2
i

i
uA
t

ρ ∂
∂

2

2
i

i iI
t
θρ ∂

∂
x

z



23 
 

0.0 0.2 0.4 0.6 0.8 1.0
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

s/d=10

s/d=5

, ,   Present
, ,   Mylonakis & Gazetas (1999)
, ,   Dobry & Gazetas (1988)

Re
al 
α u

q

The dimensionless frequency a0

s/d=2

 

0.0 0.2 0.4 0.6 0.8 1.0
-0.8

-0.4

0.0

0.4

0.8

s/d=2

s/d=5

, ,   Present
, ,   Mylonakis & Gazetas (1999)
, ,   Dobry & Gazetas (1988)

Im
ag

in
ar

y 
α u

q

The dimensionless frequency a0

s/d=10

 
(a) Lateral interaction factor 

0.0 0.2 0.4 0.6 0.8 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

s/d=10

s/d=5

 Present
 Mylonakis & Gazetas (1999)

Re
al 
α θ

m

The dimensionless frequency a0

s/d=2

 
0.0 0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

s/d=10

s/d=5

 Present
 Mylonakis & Gazetas (1999)

Im
ag

in
ar

y 
α θ

m

The dimensionless frequency a0

s/d=2

 
(b) Rocking interaction factor 

Fig. 3 Dynamic interaction factors between present analysis with other solutions in homogeneous half-space 
(βs=5%, vs=0.4, vp=0.3, L/d=20, s/d=2, Ep/Es=1000, ρp/ρs=1.5, a0=ωd/Vs) 
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Fig. 5 Shear effect of soil for interaction factor with different pile-soil modulus ratio 
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Fig. 6 Shear effect of piles in homogenous half-space 
(βs=5%, vs=0.4, vp=0.3, L/d=20, s/d=2, Ep/Es=1000, ρp/ρs=1.5, a0=ωd/Vs) 
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Fig. 7 Shear effect of piles in half-space overlain by soft layer with Ep/Es1=10000 and h1/d=1 

(βs=5%, vs=0.4, vp=0.3, L/d=20, Ep/Es2=1000, ρp/ρs=1.3, a0=ωd/Vs2) 
 

2-layer soil

MjωteQ
jωte

MjωteQ
jωte



26 
 

0.0 0.2 0.4 0.6 0.8 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 Ls/Lr=1:1
 Ls/Lr=1:0.8
 Ls/Lr=1:0.5
 Ls/Lr=1:0.4
 Ls/Lr=1:0.3

Re
al

 (α
up

)

The dimensionless frequency a0  
0.0 0.2 0.4 0.6 0.8 1.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 Ls/Lr=1:1
 Ls/Lr=1:0.8
 Ls/Lr=1:0.5
 Ls/Lr=1:0.4
 Ls/Lr=1:0.3

Im
ag

in
ar

y 
(α

up
)

The dimensionless frequency a0  

0.0 0.2 0.4 0.6 0.8 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 Ls/Lr=1:1
 Ls/Lr=1:0.8
 Ls/Lr=1:0.5
 Ls/Lr=1:0.4
 Ls/Lr=1:0.3

Re
al 

(α
up

)

The dimensionless frequency a0  
0.0 0.2 0.4 0.6 0.8 1.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 Ls/Lr=1:1
 Ls/Lr=1:0.8
 Ls/Lr=1:0.5
 Ls/Lr=1:0.4
 Ls/Lr=1:0.3

Im
ag

in
ar

y 
(α

up
)

The dimensionless frequency a0  

0.0 0.2 0.4 0.6 0.8 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 Ls/Lr=1:1
 Ls/Lr=1:0.8
 Ls/Lr=1:0.5
 Ls/Lr=1:0.4
 Ls/Lr=1:0.3

Re
al 

(α
up

)

The dimensionless frequency a0  
0.0 0.2 0.4 0.6 0.8 1.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00
 Ls/Lr=1:1
 Ls/Lr=1:0.8
 Ls/Lr=1:0.5
 Ls/Lr=1:0.4
 Ls/Lr=1:0.3

Im
ag

in
ar

y 
(α

up
)

The dimensionless frequency a0  
Fig.8 Variation of lateral interaction factors between piles with dissimilar Ls/Lr under different soil foundation 

(a) Case 1, (b) Case 2, (c) Case 3 
(βs=5%, vs=0.4, vp=0.3, Ls/d=20, s/d=5, ρp/ρs=1.5, a0=ωd/Vs1) 
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Fig.9 Variation of rocking interaction factors between piles with dissimilar Ls/Lr under different soil foundation 

(a) Case 1, (b) Case 2, (c) Case 3 
(βs=5%, vs=0.4, vp=0.3, Ls/d=20, s/d=2, ρp/ρs=1.5, a0=ωd/Vs1) 
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