UK Biobank Built Environment Project - UKB Wales

MORPHOMETRIC ANALYSIS OF THE BUILT ENVIRONMENT IN UK BIOBANK: DATA ANALYSES AND SPECIFICATION MANUAL

Chinmoy Sarkar, John Gallacher, Chris WebsterCardiff University
January 2014

1. INTRODUCTION

In the recent years, one of the primary emergent paradigms in the study of contextual health variations has been the influence of accessibility to health-promoting community resources upon an individual's health¹. Accessibility in an urban activity space may be defined as the relative ease with which goods, services, activities and, generally destinations' or 'opportunities' can be reached from a given origin, essentially the dwelling location of an individual². Several studies have highlighted the associations between health and access to health-promoting community resources, including: green spaces and recreational facilities³⁻⁷; retail⁸⁻¹²; transit stops¹³⁻¹⁵; supermarkets¹⁶⁻¹⁸; sports facilities^{19,20}; community services^{21,22}; and health care facilities^{23,24}. Health effects of land use mix have also been highlighted^{10,25-27}. Others have considered the health effects of street level physical accessibility in an urban space^{29,30}. Inhibitory health effects of specific land use destinations have also been studies, including fast food outlets³¹⁻³³ the density of alcohol outlets^{34,35}.

Nonetheless in most built environment - health studies, robustness and reliability of the strength and significance of associations are limited by small sample size and cross sectional design. Lack of prospective health and built environment datasets imply that the impacts of sustained exposures to the built environment cannot be predicted with a significant degree of certainty. Unravelling causality may further be impeded by selective migration, lack of statistical power, limited ability to adjust for confounding variables as well as the confusion between mediating versus confounding effects^{1,36,37}. Large-scale prospective gene-environment studies provide the most practical solution to such methodological constraints. They have the ability to produce more reliable assessment of the health-impacts of sustained environmental exposures, both in terms of significant increments in explanatory power as well as causal inference^{38,39}. The UK Biobank is such a flagship epidemiology program collecting prospective data on individual health, lifestyle and behavioural for half a million participants, aged 40-69 years and residing in any of the 21 major cities of UK⁴⁰⁻⁴². The aim of the UK Biobank Built Environment project is objective assessment of the built environment (OABE) around the immediate neighbourhood of 500,000 participants of the UK Biobank cohort. This will result in the modelling, compilation and linkage of corresponding longitudinal spatial database of built environment with the UK Biobank health datasets. The large-scale automation of such detailed and precise measures of individual-level built environment morphological metrics (morphometrics) will have the potential to unravel the black box of causality, the pathways through which built environment in conjunction with the social and natural environment act as one of fundamental determinants of individual behaviour, physical and mental health. OABE of UK Biobank can thus

produce a comprehensive evidence-base on the impact of BE on lifestyle, behaviour and thereby health and hence, guide preventive intervention strategies as well as policy formulation.

2. BUILT ENVIRONMENT DATA SOURCE

2.1 UK Ordnance Survey dataset:

The Topography Layer and the Integrated Transport Network (ITN) Layer from the UK Ordnance Survey MasterMap (OSM) data as well as the UK Ordnance Survey Address Base Premium data constituted the base for the development of a series morphometrics. The OSM Topography Layer contains information on detailed surface features of the landscape categorized under nine themes (buildings, roads, tracks and paths, rail, water, terrain and height, heritage and antiques, structures and administrative boundaries). The Address Base Premium data provides the most detailed view of an address and its life cycle. It comprises of local authority, Ordnance Survey and Royal Mail addresses, current (approved) addresses, and alternatives for current addresses (reflecting differences in versions of addresses in current use), provisional addresses (proposed planning developments) and historic information for each address, where available, plus OWPAs and cross references to the OS MasterMap layer's TOIDs. The licence for the UK-wide Address Base Premium data procured from UK Ordnance survey comprised approximately 36 million valid address point features with an uncompressed file size of 29 GB. The component layers of the Address Base Premium data were joined together through the unique field – Unique Property Reference Number (UPRN). Thereafter, the geo-referenced grid coordinates; land use classifications and full address for each valid address points surveyed were extracted^{43,44}. The same land use classification scheme as employed by the Ordnance Survey AddressBase Premium has been used in the present UK Biobank Built Environment project⁴⁵. The polygon-based OSM Topography Layer and Address Base Premium were connected together through a spatial GIS queries. The OSM ITN Layer provides a topologically structured representation of the road network with respect to geometry of road links, road type (expressed in terms of motorway, A road, alleyway, etc.), junctions, grade separation, road names and numbers and information about the nature of road the link represents (for example single carriageway, dual carriageway or slip road). Geometric information consists of the length of the link as well as references to the node features at the ends of it. The OSM ITN Layer was subjected to network analysis techniques to evaluate the topological accessibility indices of the street network.

2.2 National Public Transport Access Nodes dataset:

Data on bus stops were obtained from the National Public Transport Access Nodes (NaPTAN) dataset⁴⁶. NaPTAN forms a core component of the GB national transport information infrastructure

and is used by a number of other UK standards and information systems. Every GB station, coach terminus, airport, ferry terminal, bus stop, etc., is allocated at least one identifier code.

2.3 Digital Terrain Model data:

5-metre resolution digital terrain model licensed by Blue Sky was procured from LandMap Services of MIMAS at The University of Manchester (www.landmap.ac.uk/index.php/Datasets/Bluesky-DTM/). The individual 100X100 KM² image chunks were mosaicked together and the coverage of study areas of interest were extracted. This formed the basis for the analysis of terrain slope.

2.4 Ariel photographs:

O.5-metre resolution Colour Infrared Image (CIR) licensed by Blue Sky was procured from LandMap Services of MIMAS at The University of Manchester (www.landmap.ac.uk/index.php/Datasets/Colour-Infrared/) . The imaged were captured using one of two instruments Vexel UltraCams, and ADS40 from Leica Geosystems GIS & Mapping, LLC. The individual 1X1 KM² image chunks were mosaicked together and the coverage of study areas of interest were extracted. CIR captures the solar reflectance in three wavelength bands, namely red, green and near infrared bands of the electromagnetic spectrum. CIR was employed to calculate the index of greenery.

2.5 Area-level deprivation data:

Data on Welsh Index of Multiple Deprivation (WIMD) scores of 2008 and 2011 releases measured at the level of lower super output areas were downloaded from the STATWALES website (https://statswales.wales.gov.uk/Catalogue/Community-Safety-and-Social Inclusion/Welsh-Index-of-Multiple-Deprivation).

2.6 Building class data:

Cities Revealed building class dataset (version 6 for September 2012) comprising of information on residential dwelling types including the age of the dwelling and structural type was obtained in the form of 100X100 KM² from LandMap Services of MIMAS at The University of Manchester http://www.landmap.ac.uk/index.php/Datasets/Building_Class/Download-Building-Class-100km-x-100km.

3. GEOCODING INDIVIDUAL RESPONDENTS DWELLING ADDRESS

The UK Biobank Wales comprised of three assessment centres based in Cardiff, Swansea and Wrexham comprising of 20,816 active participants. The residential address of the participants were geocoded and X, Y coordinates were extracted by matching the Biobank address data with the UK Ordnance Survey address datasets. All spatial analyses in the study employed the British National Grid (i.e. OSBS1936) projection system. 96.81% of all Welsh Biobank addresses of participants from the three assessment centres could be geocoded by employing this process (N=20,152).

Deliverable file 1:

File Name (size)	Description
Wales_UKB.csv (1.75 MB)	UK Biobank addresses file with geocoded and X, Y
	coordinates in British National Grid appended to it.

Table 1: Description of variables used

Column No.	Variable	Description
1	Encoded anonymised participant ID	Unique ID
2	Date of attending assessment centre	
3	UK Biobank assessment centre	UKB assessment centre
4	Address line 1	
5	Address line 2	
6	Address line 3	Address fields provided by UK Biobank
7	Address line 4	,
8	Address line 5	
9	Postcode	
		Geocoded and X coordinate in British National
10	X_coordinate	Grid
		Geocoded and Y coordinate in British National
11	Y_coordinate	Grid

4. BUILT ENVIRONMENT MORPHOMETRICS CONSTRUCTION

The built environment was measured within a pre-defined street network catchment buffers around an UK Biobank participant's dwelling unit. The focus has been solely on objective measurements of built environment rather than on the individual's perceptual information.

4.1 Land Use Morphometrics

4.1.1 Land use density

Given the epidemiological evidence of a significant relationship between density of health promoting/inhibiting land uses and multiple health outcomes, density was measured within 0.5, 1.0, 1.5, 2.0 kilometre street network catchments of UK Biobank respondent's dwelling as well as within the lower super output areas in which they resided. ArcGIS 10.2 Network Analyst was used to create street network catchment areas were created around the geocoded residences of UK Biobank participants. The UK Office of National Statistics has defined Lower Super Output Areas (LSOAs) as relatively stable, compact geographical units with reasonable degrees of homogeneity in shape and social composition and an average population of 1600 persons for Wales. This was also considered as one of the five definitions of neighbourhood. The LSOA boundaries for the present analysis were downloaded from the Office of National Statistics website. The 20,152 UK Biobank participants were distributed across 760 LSOAs of Wales. Density of more than 200 categories of land uses were calculated through a series of GIS queries from the from the AddressBase Premium dataset as the number of features of a specific land use category within a pre-defined neighbourhood and expressed as number of features per square kilometre of neighbourhood.

Deliverable files 2a-2e:

File Name (size)	Description
Wales_UKB_LU_Density_LSOAs.csv (13.6 MB)	Density of land uses within LSOA in which the UK Biobank participant resides
Wales_UKB_LU_Density_Netbuf500m.csv (11.9 MB)	Density of land uses within 500 metres street catchment area from the UK Biobank participant's residence
Wales_UKB_LU_Density_Netbuf1000m.csv (15.2 MB)	Density of land uses within 1000 metres street catchment area from the UK Biobank participant's residence
Wales_UKB_LU_Density_Netbuf1500m.csv (18.2 MB)	Density of land uses within 1500 metres street catchment area from the UK Biobank participant's residence
Wales_UKB_LU_Density_Netbuf2000m.csv (20.8 MB)	Density of land uses within 2000 metres street catchment area from the UK Biobank participant's residence

Header file name:

Wales_UKB_LU_Density_Header.csv (2.67 KB)

Table 2: Description of variables used for calculation of land use density

Column		Component AddressBase Premium land use description ⁴⁵											
No.	Variable	Land use code	Class Desc.	Primary Code	Secondary Code	Tertiary Code	Quaternary Code	Primary Desc.	Secondary Desc.	Tertiary Desc.	Quaternary Desc.		
1	Encoded anonymised participant ID	-	-	-	-	-	-	-	-	-	-		
2	Buffer/LSOA area (sq Km)	-	-	-	-	-	-	-	-	-	-		
3	Den_CA01	CA01	Farm / Non- Residential Associated Building	С	A	1		Commercial	Agricultural	Farm / Non-Residential Associated Building			
		CA02	Fishery	С	Α	2		Commercial	Agricultural	Fishery			
		CA02FF	Fish Farming	С	Α	2	FF	Commercial	Agricultural	Fishery	Fish Farming		
	Den_CA02	CA02FH	Fish Hatchery	С	Α	2	FH	Commercial	Agricultural	Fishery	Fish Hatchery		
4		CA02FP	Fish Processing Oyster / Mussel	С	А	2	FP	Commercial	Agricultural	Fishery	Fish Processing Oyster / Mussel		
		CA02OY	Bed	С	Α	2	OY	Commercial	Agricultural	Fishery	Bed		
		CA03	Horticulture	С	Α	3		Commercial	Agricultural	Horticulture			
	Den_CA03	CA03SH	Smallholding	С	А	3	SH	Commercial	Agricultural	Horticulture	Smallholding		
5		CA03VY	Vineyard	С	Α	3	VY	Commercial	Agricultural	Horticulture	Vineyard		
		CA03WB	Watercress Bed	С	Α	3	WB	Commercial	Agricultural	Horticulture	Watercress Bed		
6	Den_CA04	CA04	Slaughter House / Abattoir	С	А	4		Commercial	Agricultural	Slaughter House / Abattoir			
7	Den_CB	СВ	Ancillary Building	С	В			Commercial	Ancillary Building				
8	Den_CC	СС	Community Services	С	С			Commercial	Community Services				
9	Den_ CC02	CC02	Law Court	С	С	2		Commercial	Community Services	Law Court			
		CC03	Prison	С	С	3		Commercial	Community Services	Prison			
		CCUSHD	HM Detention	С	С	3	HD	Commercial	Community Consisses	Dricon	HM Detention		
	Den_ CC03	CC03HD	Centre HM Prison					Commercial	Community Services	Prison	Centre HM Prison		
		CC03PR	Service	С	С	3	PR	Commercial	Community Services	Prison	Service		

10			Secure								
10			Residential								Secure
			Accommodatio								Residential
		CC03SC	n	С	С	3	SC	Commercial	Community Services	Prison	Accommodation
			Public / Village								
			Hall / Other							Public / Village Hall /	
4.4		6604	Community					6	6	Other Community	
11	Den_ CC04	CC04	Facility Youth	С	С	4		Commercial	Community Services	Facility Public / Village Hall /	Youth
			Recreational /							Other Community	Recreational /
		CC04YR	Social Club	С	С	4	YR	Commercial	Community Services	Facility	Social Club
			Public								
12	Den_ CC05	CC05	Convenience	С	С	5		Commercial	Community Services	Public Convenience	
			Cemetery /							Cemetery /	
			Crematorium /							Crematorium /	
		ccoc	Graveyard. In	_	С			Camananaial	Camana ita Camaiaaa	Graveyard. In Current	
		CC06	Current Use.	С	C	6	+	Commercial	Community Services	Use. Cemetery /	
										Crematorium /	
										Graveyard. In Current	
		CC06CB	Columbarium	С	С	6	СВ	Commercial	Community Services	Use.	Columbarium
										Cemetery /	
										Crematorium /	
		ccoccp	Charal Of Basi		c		CD.	6	G	Graveyard. In Current	Charact Of Basis
13		CC06CR	Chapel Of Rest	С	C	6	CR	Commercial	Community Services	Use. Cemetery /	Chapel Of Rest
10	Den_ CC06									Crematorium /	
										Graveyard. In Current	
		CC06CN	Crematorium	С	С	6	CN	Commercial	Community Services	Use.	Crematorium
										Cemetery /	
										Crematorium /	
		CC06CY	Comotoni	С	С	6	CY	Commercial	Community Consises	Graveyard. In Current Use.	Comotoni
		CCOBC1	Cemetery	C	C	0	CY	Commercial	Community Services	Cemetery /	Cemetery
										Crematorium /	
			Military							Graveyard. In Current	Military
		CC06MC	Cemetery	С	С	6	MC	Commercial	Community Services	Use.	Cemetery
										Cemetery /	
										Crematorium /	
		CC06MY	Mortuary	С	С	6	MY	Commercial	Community Services	Graveyard. In Current Use.	Mortuany
		CCUDIVIY	Church Hall /	C	C	U	IVIT	Commercial	Community Services	Use.	Mortuary
			Religious								
			Meeting Place /							Church Hall / Religious	
14	Den_ CC07	CC07	Hall	С	С	7		Commercial	Community Services	Meeting Place / Hall	

			Ca	1		1	1		1	1	1
			Community Service Centre /							Community Service	
15	Den CC08	CC08	Office	С	С	8		Commercial	Community Services	Centre / Office	
13	Dell_ CC08	CCOS	Public	-		8		Commercial	Community Services	Centre / Office	
			Household								
			Waste								
			Recycling							Public Household Waste	
16	Den_ CC09	CC09	Centre (HWRC)	С	С	9		Commercial	Community Services	Recycling Centre (HWRC)	
17	Den_ CC10	CC10	Recycling Site	С	С	10		Commercial	Community Services	Recycling Site	
18	Den_ CC11	CC11	CCTV	С	c	11		Commercial	Community Services	CCTV	
-10		0011	33.1					Commercial	Community Controls	00.1	
19	Den_CC12	CC12	Job Centre	С	С	12		Commercial	Community Services	Job Centre	
20	Den_ CE	CE	Education	С	E			Commercial	Education		
21	Den_ CE01	CE01	College	С	E	1		Commercial	Education	College	
			Further								Further
22	Den_ CE01FE	CE01FE	Education	С	E	1	FE	Commercial	Education	College	Education
			Higher								
23	Den_ CE01HE	CE01HE	Education	С	E	1	HE	Commercial	Education	College	Higher Education
			Children's Nursery /							Children's Nursery /	
24	Den_ CE02	CE02	Crèche	С	E	2		Commercial	Education	Crèche	
			Preparatory /								
			First / Primary /							Preparatory / First /	
			Infant / Junior /							Primary / Infant / Junior	
25	Den_ CE03	CE03	Middle School	С	E	3		Commercial	Education	/ Middle School	
										Preparatory / First /	
26	Don CEO3ES	CEOSEC	First Cohool	_	E	2	rc .	Commorain	Education	Primary / Infant / Junior	First Cabool
26	Den_ CE03FS	CE03FS	First School	С	E	3	FS	Commercial	Education	/ Middle School Preparatory / First /	First School
										Primary / Infant / Junior	
27	Den CE03IS	CE03IS	Infant School	С	E	3	IS	Commercial	Education	/ Middle School	Infant School
				<u> </u>	 	_	1	35		Preparatory / First /	
										Primary / Infant / Junior	
28	Den_ CE03JS	CE03JS	Junior School	С	E	3	JS	Commercial	Education	/ Middle School	Junior School
		_	Non State								Non State
			Primary /							Preparatory / First /	Primary /
			Preparatory							Primary / Infant / Junior	Preparatory
29	Den_ CE03NP	CE03NP	School	С	E	3	NP	Commercial	Education	/ Middle School	School
										Preparatory / First /	
20	Dom CE03DC	CEOSDC	Drimary Cobe - 1	_	-	1	DC .	Commercial	Education	Primary / Infant / Junior	Driman, Cabas!
30	Den_ CE03PS	CE03PS	Primary School	С	E	3	PS	Commercial	Education	/ Middle School	Primary School

			Secondary /								
31	Den CE04	CE04	High School	С	E	4		Commercial	Education	Secondary / High School	
31	Dell_CLO4	CLU4	Secondary	C	-	7		Commercial	Ludcation	Secondary / High School	
32	Den_ CE04SS	CE04SS	School	С	E	4	SS	Commercial	Education	Secondary / High School	Secondary School
										7, 6	, , , , , , , , , , , , , , , , , , , ,
33	Den_ CE05	CE05	University	С	E	5		Commercial	Education	University	
			Special Needs							Special Needs	
34	Den_ CE06	CE06	Establishment.	С	E	6		Commercial	Education	Establishment.	
			Other								
			Educational							Other Educational	
35	Den_ CE07	CE07	Establishment	С	E	7		Commercial	Education	Establishment	
			Hotel / Motel /						Hotel / Motel /		
26	Dam CII	CII	Boarding /					Camananaial	Boarding / Guest		
36	Den_ CH	CH	Guest House Boarding /	С	Н			Commercial	House		
			Guest House /								
			Bed And						Hotel / Motel /	Boarding / Guest House	
			Breakfast /						Boarding / Guest	/ Bed And Breakfast /	
37	Den_ CH01	CH01	Youth Hostel	С	Н	1		Commercial	House	Youth Hostel	
	_								Hotel / Motel /	Boarding / Guest House	
									Boarding / Guest	/ Bed And Breakfast /	
		CH01YH	Youth Hostel	С	Н	1	YH	Commercial	House	Youth Hostel	Youth Hostel
			Holiday								
			Let/Accomodati						Hatal / Nastal /	Holiday	
			on/Short-Term Let Other Than						Hotel / Motel / Boarding / Guest	Let/Accomodation/Short -Term Let Other Than	
38	Den_ CH02	CH02	CH01	С	Н	2		Commercial	House	CH01	
30	Den_ enoz	CHOZ	CHOI		- 11	-		Commercial	Hotel / Motel /	CHOI	
									Boarding / Guest		
39	Den CH03	CH03	Hotel/Motel	С	н	3		Commercial	House	Hotel/Motel	
	_								Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
		6104	Factory/Manufa						distribution and	/a	
		CI01	cturing	С	I	1		Commercial	extraction sites	Factory/Manufacturing	
40									Industrial Applicable to manufacturing,		
40	Den_ Cl01								engineering,		
									maintenance,		
									storage / wholesale		
									distribution and		
		CI01AW	Aircraft Works	С	1	1	AW	Commercial	extraction sites	Factory/Manufacturing	Aircraft Works
		CI01BB	Boat Building	С	1	1	BB	Commercial	Industrial Applicable	Factory/Manufacturing	Boat Building

								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
								extraction sites		
								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								•		
	CIOARR	D.d. al. Marilla					C	distribution and	5	D.d. I. Maradia
	CI01BR	Brick Works	С	1	1	BR	Commercial	extraction sites	Factory/Manufacturing	Brick Works
								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
	CI01BW	Brewery	С	1	1	BW	Commercial	extraction sites	Factory/Manufacturing	Brewery
Den_ CI01								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
		Cider						distribution and		Cider
	CI01CD	Manufacture	С	l i	1	CD	Commercial	extraction sites	Factory/Manufacturing	Manufacture
	CIOTED	Manaractare	Ü	<u> </u>	1	65	Commercial	Industrial Applicable	Tuccory, Warrana accurring	Wanaractare
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
	0104 51 1							distribution and		
	CI01CM	Chemical Works	С		1	CM	Commercial	extraction sites	Factory/Manufacturing	Chemical Works
								Industrial Applicable		
		1						to manufacturing,		
		1						engineering,		
								maintenance,		
								storage / wholesale		
		1						distribution and		
	CI01CW	Cement Works	С	1	1	cw	Commercial	extraction sites	Factory/Manufacturing	Cement Works
								Industrial Applicable		
								to manufacturing,		
		Dairy						engineering,		
	CI01DA	Processing	С	1.	1	DA	Commercial	maintenance,	Factory/Manufacturing	Dairy Processing
	CIOIDA	1 TOCESSIIIR	L	1 '	1	DA	Commercial	maintenance,	i actory/iviailulacturillg	Daily FIOLESSIIIg

								storage / wholesale		
								distribution and		
								extraction sites		
								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
	CI01DY	Distillery	С		1	DY	Commercial	extraction sites	Factory/Manufacturing	Distillery
	CIOIDI	Distillery	C	<u> </u>	1	Di	Commercial		Factory/ivianuracturing	Distillery
								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
			1		1			storage / wholesale		
								distribution and		
	CI01FL	Flour Mill	С	1	1	FL	Commercial	extraction sites	Factory/Manufacturing	Flour Mill
								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
	CI01FO	Food Processing	С	1	1	FO	Commercial	extraction sites	Factory/Manufacturing	Food Processing
		0						Industrial Applicable	γ,	
Den_ Cl01								to manufacturing,		
_								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
	CI01GW	Glassworks	С		1	GW	Commercial		Factor / Manufacturing	Glassworks
	CIOTGAA	GIGSSWULKS		+ 1	1	GW	Commercial	extraction sites	Factory/Manufacturing	UIdSSWUI KS
			1		1			Industrial Applicable		
								to manufacturing,		
			1		1			engineering,		
								maintenance,		
								storage / wholesale		
			1		1			distribution and		
	CI01MG	Manufacturing	С	1	1	MG	Commercial	extraction sites	Factory/Manufacturing	Manufacturing
								Industrial Applicable		
								to manufacturing,		
			1		1			engineering,		
								maintenance,		
								storage / wholesale		
			1		1			distribution and		
	CI01OH	Oast House	С	Li	1	ОН	Commercial	extraction sites	Factory/Manufacturing	Oast House
1	5101011	Just House		1 '	1 -	U	Commicida	CAG GCGOTT SILCS	i accory/ivialialaccalling	- ast House

								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
	CI01OR	Oil Defining	С		1	OB	Commorcial		Factory/Manufacturing	Oil Defining
	CIUIUK	Oil Refining	C	'	1	OR	Commercial	extraction sites	Factory/Manufacturing	Oil Refining
								Industrial Applicable		
								to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
		Pottery						distribution and		Pottery
	CI01PG	Manufacturing	С	1	1	PG	Commercial	extraction sites	Factory/Manufacturing	Manufacturing
								Industrial Applicable		
1			1					to manufacturing,		
								engineering,		
								maintenance,		
								storage / wholesale		
								distribution and		
	CI01PM	Paper Mill	С	Į.	1	PM	Commercial	extraction sites	Factory/Manufacturing	Paper Mill
								Industrial Applicable		
								to manufacturing,		
								engineering,		
Den_ Cl01								maintenance,		
								storage / wholesale		
								distribution and		
	CI01PW	Printing Works	С	1	1	PW	Commercial	extraction sites	Factory/Manufacturing	Printing Works
	0.02	Trinically Works		•	-	1	- Commercial	Industrial Applicable	. accery, managed ing	Timening Tronto
								to manufacturing,		
1			1					engineering,		
								maintenance,		
1			1					storage / wholesale		
1			1					distribution and		
1	CI01YD	Shipyard	С	I	1	YD	Commercial	extraction sites	Factory/Manufacturing	Shipyard
								Industrial Applicable		
								to manufacturing,		
1			1					engineering,		
1			1					maintenance,		
1			1					storage / wholesale		
								distribution and		
1	CI01SR	Sugar Refinery	С	1	1	SR	Commercial	extraction sites	Factory/Manufacturing	Sugar Refinery
	CIOISIN	Jugai Neilliely	-	'	+ -	JIV	Commercial		i actory/ivianiaractaring	Jugar Nermery
								Industrial Applicable		
			1_	1.			1	to manufacturing,		
	CI01SW	Steel Works	С	I	1	SW	Commercial	engineering,	Factory/Manufacturing	Steel Works

F										_	
									maintenance,		
									storage / wholesale		
									distribution and		
									extraction sites		
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
									distribution and		
		CIO1TI	Timbor Mill	_	1.	1	T1	Commorcial		Factor /Manufacturing	Timbor Mill
		CI01TL	Timber Mill	С	I	1	TL	Commercial	extraction sites	Factory/Manufacturing	Timber Mill
									Industrial Applicable		
									to manufacturing,		
	Den_ Cl01								engineering,		
									maintenance,		
									storage / wholesale		
									distribution and		
		CI01WN	Winery	С	1	1	WN	Commercial	extraction sites	Factory/Manufacturing	Winery
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
			Mineral / Ore						storage / wholesale		
			Working /						distribution and	Mineral / Ore Working /	
		CIO2	Quarry / Mine	С	1	2		Commercial	extraction sites	Quarry / Mine	
		CIOZ	Quarry / Willie		'			Commercial	Industrial Applicable	Quarry / Willie	
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
41	Den_ CI02		Mineral Mining						distribution and	Mineral / Ore Working /	Mineral Mining /
		CI02MA	/ Active	С	I	2	MA	Commercial	extraction sites	Quarry / Mine	Active
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
			Mineral						storage / wholesale		Mineral
			Distribution /						distribution and	Mineral / Ore Working /	Distribution /
		CI02MD	Storage	С	1	2	MD	Commercial	extraction sites	Quarry / Mine	Storage
			<u> </u>						Industrial Applicable	1	Ŭ
									to manufacturing,		
									engineering,		
									maintenance,		
			Mineral						storage / wholesale	Mineral / Ore Working /	Mineral
		CIONAD			1.	1	MD	Commorcial	_		
		CI02MP	Processing	С	1	2	MP	Commercial	distribution and	Quarry / Mine	Processing

			1								_
									extraction sites		
									Industrial Applicable		
									to manufacturing,		
									engineering,		
	Day Clos								maintenance,		
	Den_ Cl02		Oil / Gas						storage / wholesale		Oil / Gas
			Extraction /						distribution and	Mineral / Ore Working /	Extraction /
		CI02OA	Active	С	1	2	OA	Commercial	extraction sites	Quarry / Mine	Active
									Industrial Applicable		
									to manufacturing,		
									engineering,		
			Mineral						maintenance,		Mineral
			Quarrying /						storage / wholesale		Quarrying / Open
			Open Extraction						distribution and	Mineral / Ore Working /	Extraction /
		CI02QA	/ Active	С	1	2	QA	Commercial	extraction sites	Quarry / Mine	Active
									Industrial Applicable		
1	1								to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
			Workshop /						distribution and	Workshop / Light	
42	Den_ Cl03	CI03	Light Industrial	С	1	3		Commercial	extraction sites	Industrial	
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
			Servicing						distribution and	Workshop / Light	
		CI03GA	Garage	С	1	3	GA	Commercial	extraction sites	Industrial	Servicing Garage
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
			Warehouse /						storage / wholesale		
1	1		Store / Storage			1.			distribution and	Warehouse / Store /	
		CI04	Depot	С	1	4		Commercial	extraction sites	Storage Depot	
									Industrial Applicable		
									to manufacturing,		
42									engineering,		
43	Den_ Cl04								maintenance,		
			Coop He calle a 1						storage / wholesale	Manahawaa / Chara /	Coop Haw diver 1
1	1	CIDACS	Crop Handling /		l.		CC	Cammanaial	distribution and	Warehouse / Store /	Crop Handling /
1		CI04CS	Storage	С		4	CS	Commercial	extraction sites	Storage Depot	Storage
1	1	CIOARI	Postal Sorting /		1.	1.		C	Industrial Applicable	Warehouse / Store /	Postal Sorting /
		CI04PL	Distribution	С	I	4	PL	Commercial	to manufacturing,	Storage Depot	Distribution

									engineering,		
									maintenance,		
									storage / wholesale		
									distribution and		
									extraction sites		
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
	Den_ CI04		Solid Fuel						distribution and	Warehouse / Store /	
		CI04SO	Storage	С	1	4	SO	Commercial	extraction sites	Storage Depot	Solid Fuel Storage
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
									distribution and	Warehouse / Store /	
		CI04TS	Timber Storage	С	1.	4	TS	Commercial	extraction sites	Storage Depot	Timber Storage
		C10413	Timber Storage	_	<u> </u>	+ -	13	Commercial	Industrial Applicable	Storage Depot	Timber Storage
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
			Wholesale						distribution and		
		CI05	Distribution	С	1	5		Commercial	extraction sites	Wholesale Distribution	
									Industrial Applicable		
44	Den Cl05								to manufacturing,		
	_								engineering,		
									maintenance,		
									storage / wholesale		
			Solid Fuel						distribution and		Solid Fuel
		CI05SF	Distribution	С		5	SF	Commercial	extraction sites	Wholesale Distribution	Distribution
		C10331	Distribution	-	<u> </u>	1	31	Commercial	Industrial Applicable	Wholesale Distribution	Distribution
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
			Timber						distribution and		Timber
		CI05TD	Distribution	С	1	5	TD	Commercial	extraction sites	Wholesale Distribution	Distribution
									Industrial Applicable		
1									to manufacturing,		
									engineering,		
1									maintenance,		
45	Den_ Cl06	CI06	Recycling Plant	С	1	6		Commercial	storage / wholesale	Recycling Plant	

	T		1	1						1	
									distribution and		
									extraction sites		
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
			Incinerator /						storage / wholesale		
			Waste Transfer						distribution and	Incinerator / Waste	
46	Den_ CI07	CI07	Station	С	1	7		Commercial	extraction sites	Transfer Station	
									Industrial Applicable		
									to manufacturing,		
									engineering,		
									maintenance,		
									storage / wholesale		
47	Den_ CI08	CI08	Maintenance					Commercial	distribution and	Maintenance Depot	
	_		Depot	С	1	8			extraction sites		
			·						Leisure - Applicable		
									to recreational sites		
		CL01	Amusements	С	L	1		Commercial	and enterprises	Amusements	
48	Den_ CL01								Leisure - Applicable		
									to recreational sites		
		CL01LP	Leisure Pier	С	L	1	LP	Commercial	and enterprises	Amusements	Leisure Pier
									Leisure - Applicable		
			Holiday /						to recreational sites		
		CL02	Campsite	С	L	2		Commercial	and enterprises	Holiday / Campsite	
			·						Leisure - Applicable	,	
									to recreational sites		
		CL02CG	Camping	С	L	2	CG	Commercial	and enterprises	Holiday / Campsite	Camping
			1 0						Leisure - Applicable	,	1 0
									to recreational sites		
49	Den CL02	CL02CV	Caravanning	С	L	2	cv	Commercial	and enterprises	Holiday / Campsite	Caravanning
	Dell_CLO2		Holiday		_				Leisure - Applicable	i i i i i i i i i i i i i i i i i i i	
			Accommodatio						to recreational sites		Holiday
		CL02HA	n	С	1	2	НА	Commercial	and enterprises	Holiday / Campsite	Accommodation
		02021111	1		<u> </u>			Commercial	Leisure - Applicable	onday / campoice	7.00011111000011011
									to recreational sites		
		CL02HO	Holiday Centre	С	L	2	но	Commercial	and enterprises	Holiday / Campsite	Holiday Centre
		0202.10	Youth	_	-	+-	1	Commercial	Leisure - Applicable	Tronday / Camporce	Youth
			Organisation						to recreational sites		Organisation
		CL02YC	Camp	С	1	2	YC	Commercial	and enterprises	Holiday / Campsite	Camp
		525210	20p		 -	<u> </u>	1.	55	Leisure - Applicable		
									to recreational sites		
		CL03	Library	С	1	3		Commercial	and enterprises	Library	
50	Den_ CL03		2.2.2.1		+-		+	55	Leisure - Applicable		
	DC11_ CL03	CL03RR	Reading Room	С	1.	3	RR	Commercial	to recreational sites	Library	Reading Room
		CLUSINI	reading routh	C	L	J	ININ	Commercial	to recreational sites	Libialy	reading Noon

		1	1		1		1				T
									and enterprises		
									Leisure - Applicable		
			Museum /						to recreational sites		
		CL04	Gallery	С	L	4		Commercial	and enterprises	Museum / Gallery	
									Leisure - Applicable		
			Art Centre /						to recreational sites		Art Centre /
		CL04AC	Gallery	С	L	4	AC	Commercial	and enterprises	Museum / Gallery	Gallery
									Leisure - Applicable		
			Aviation						to recreational sites		
		CL04AM	Museum	С	L	4	AM	Commercial	and enterprises	Museum / Gallery	Aviation Museum
									Leisure - Applicable		
									to recreational sites		
		CL04HG	Heritage Centre	С	L	4	HG	Commercial	and enterprises	Museum / Gallery	Heritage Centre
									Leisure - Applicable		
			Industrial						to recreational sites		Industrial
51	Den_ CL04	CL04IM	Museum	С	L	4	IM	Commercial	and enterprises	Museum / Gallery	Museum
	_								Leisure - Applicable		
			Military						to recreational sites		
		CL04MM	Museum	С	L	4	MM	Commercial	and enterprises	Museum / Gallery	Military Museum
									Leisure - Applicable		
			Science						to recreational sites		
		CL04SM	Museum	С	L	4	SM	Commercial	and enterprises	Museum / Gallery	Science Museum
									Leisure - Applicable		
			Transport						to recreational sites		Transport
		CL04TM	Museum	С	L	4	TM	Commercial	and enterprises	Museum / Gallery	Museum
									Leisure - Applicable		
			Maritime						to recreational sites		Maritime
		CL04NM	Museum	С	L	4	NM	Commercial	and enterprises	Museum / Gallery	Museum
			Indoor /								
			Outdoor Leisure								
			/ Sporting						Leisure - Applicable	Indoor / Outdoor Leisure	
			Activity /						to recreational sites	/ Sporting Activity /	
52	Den_ CL06	CL06	Centre	С	L	6		Commercial	and enterprises	Centre	
									Leisure - Applicable	Indoor / Outdoor Leisure	
				_					to recreational sites	/ Sporting Activity /	
53	Den_ CL06BF	CL06BF	Bowls Facility	С	L	6	BF	Commercial	and enterprises	Centre	Bowls Facility
									Leisure - Applicable	Indoor / Outdoor Leisure	
									to recreational sites	/ Sporting Activity /	
54	Den_ CL06CK	CL06CK	Cricket Facility	С	L	6	CK	Commercial	and enterprises	Centre	Cricket Facility
			Diving /						Leisure - Applicable	Indoor / Outdoor Leisure	Diving /
55			Swimming						to recreational sites	/ Sporting Activity /	Swimming
	Den_ CL06DS	CL06DS	Facility	С	L	6	DS	Commercial	and enterprises	Centre	Facility
			Equestrian						Leisure - Applicable	Indoor / Outdoor Leisure	Equestrian Sports
	Den_ CL06EQ	CL06EQ	Sports Facility	С	L	6	EQ	Commercial	to recreational sites	/ Sporting Activity /	Facility

	<u> </u>	1	T	1		1	1	1		T	1
56									and enterprises	Centre	
									Leisure - Applicable	Indoor / Outdoor Leisure	
									to recreational sites	/ Sporting Activity /	
57	Den_ CL06FB	CL06FB	Football Facility	С	L	6	FB	Commercial	and enterprises	Centre	Football Facility
									Leisure - Applicable	Indoor / Outdoor Leisure	
									to recreational sites	/ Sporting Activity /	
58	Den_ CL06GF	CL06GF	Golf Facility	С	L	6	GF	Commercial	and enterprises	Centre	Golf Facility
	_		Activity /						Leisure - Applicable	Indoor / Outdoor Leisure	·
			Leisure / Sports						to recreational sites	/ Sporting Activity /	Activity / Leisure
59	Den CL06LS	CL06LS	Centre	С	L	6	LS	Commercial	and enterprises	Centre	/ Sports Centre
	_								Leisure - Applicable	Indoor / Outdoor Leisure	
									to recreational sites	/ Sporting Activity /	
60	Den CL06PF	CL06PF	Playing Field	С	L	6	PF	Commercial	and enterprises	Centre	Playing Field
	_		, 5						Leisure - Applicable	Indoor / Outdoor Leisure	, 0
			Racquet Sports						to recreational sites	/ Sporting Activity /	Racquet Sports
61	Den CL06QS	CL06QS	Facility	С	L	6	QS	Commercial	and enterprises	Centre	Facility
			,						Leisure - Applicable	Indoor / Outdoor Leisure	,
									to recreational sites	/ Sporting Activity /	
62	Den CL06RF	CL06RF	Rugby Facility	С	L	6	RF	Commercial	and enterprises	Centre	Rugby Facility
									Leisure - Applicable	Indoor / Outdoor Leisure	
			Recreation						to recreational sites	/ Sporting Activity /	Recreation
63	Den CL06RG	CL06RG	Ground	С	L	6	RG	Commercial	and enterprises	Centre	Ground
									Leisure - Applicable	Indoor / Outdoor Leisure	
			Skateboarding						to recreational sites	/ Sporting Activity /	Skateboarding
64	Den CL06SK	CL06SK	Facility	С	Li	6	SK	Commercial	and enterprises	Centre	Facility
· ·		0200011	. domey		 -			Commercial	Leisure - Applicable	Indoor / Outdoor Leisure	. domey
			Tenpin Bowling						to recreational sites	/ Sporting Activity /	Tenpin Bowling
65	Den CL06TB	CL06TB	Facility	С	Li	6	ТВ	Commercial	and enterprises	Centre	Facility
- 55		0200.5	. domey	-	† -	+ -	1.5	Commercial	Leisure - Applicable	Indoor / Outdoor Leisure	. domey
			Water Sports						to recreational sites	/ Sporting Activity /	Water Sports
66	Den CL06WA	CL06WA	Facility	С	Li	6	WA	Commercial	and enterprises	Centre	Facility
		02001111	. domey		 -			Commercial	Leisure - Applicable	Indoor / Outdoor Leisure	ruomey
			Winter Sports						to recreational sites	/ Sporting Activity /	Winter Sports
67	Den_ CL06WP	CL06WP	Facility	С	Li	6	WP	Commercial	and enterprises	Centre	Facility
- C.		0200111	Bingo Hall /	-	† -	+ -	1	Commercial	and enterprises	Genera	. domey
			Cinema /								
			Conference /								
			Exhibition							Bingo Hall / Cinema /	
			Centre /						Leisure - Applicable	Conference / Exhibition	
			Theatre /						to recreational sites	Centre / Theatre /	
68	Den_ CL07	CL07	Concert Hall	С	L	7		Commercial	and enterprises	Concert Hall	
	Jen_ 6207	5207	Sometrium	<u> </u>	† -	† ′		Co.minerciai	Leisure - Applicable	Bingo Hall / Cinema /	
									to recreational sites	Conference / Exhibition	
		CL07TH	Theatre	С	1.	7	тн	Commercial	and enterprises	Centre / Theatre /	Theatre
		CLU/III	Heatre	·	L		1111	Commercial	unu enterprises	centre / meatre /	HICALIC

				1	T	1	1			Concort Hall	
										Concert Hall	
										Bingo Hall / Cinema /	
									Leisure - Applicable	Conference / Exhibition	
									to recreational sites	Centre / Theatre /	
		CL07CI	Cinema	С	L	7	CI	Commercial	and enterprises	Concert Hall	Cinema
										Bingo Hall / Cinema /	
									Leisure - Applicable	Conference / Exhibition	
	Den_ CL07		Entertainment			1_			to recreational sites	Centre / Theatre /	Entertainment
		CL07EN	Complex	С	L	7	EN	Commercial	and enterprises	Concert Hall	Complex
			Cf/						Laianna Annicadala	Bingo Hall / Cinema /	
			Conference / Exhibition						Leisure - Applicable to recreational sites	Conference / Exhibition Centre / Theatre /	Conference /
		CL07EX	Centre	С	1.	7	EX	Commercial	and enterprises	Concert Hall	Exhibition Centre
		CLUTEX	Centre	C	L	,	EA	Commercial	Leisure - Applicable	Concert Hall	Exhibition Centre
			Zoo / Theme						to recreational sites		
		CL08	Park	С	L	8		Commercial	and enterprises	Zoo / Theme Park	
		2200			†-	-		SS./IIIICICIOI	Leisure - Applicable	200 / Memeran	
			Amusement						to recreational sites		
		CL08AK	Park	С	L	8	AK	Commercial	and enterprises	Zoo / Theme Park	Amusement Park
									'	,	
									Leisure - Applicable		
			Model Village						to recreational sites		Model Village
69	Den_ CL08	CL08MX	Site	С	L	8	MX	Commercial	and enterprises	Zoo / Theme Park	Site
									Leisure - Applicable		
			Wildlife /						to recreational sites		Wildlife /
		CL08WZ	Zoological Park	С	L	8	WZ	Commercial	and enterprises	Zoo / Theme Park	Zoological Park
									Leisure - Applicable		
			Aquatic						to recreational sites		Aquatic
		CL08AQ	Attraction	С	L	8	AQ	Commercial	and enterprises	Zoo / Theme Park	Attraction
			Beach Hut			1				,	
			(Recreational,						Leisure - Applicable	Beach Hut (Recreational,	
			Non-Residential						to recreational sites	Non-Residential Use	
70	Den_ CL09	CL09	Use Only)	С	L	9		Commercial	and enterprises	Only)	
									Leisure - Applicable		
			Licensed Private						to recreational sites	Licensed Private	
		CL10	Members' Club	С	L	10		Commercial	and enterprises	Members' Club	
71	Den_ CL10								Leisure - Applicable		
			Recreational /	_		1			to recreational sites	Licensed Private	Recreational /
		CL10RE	Social Club	С	L	10	RE	Commercial	and enterprises	Members' Club	Social Club
			1						Leisure - Applicable		
72	B	CLAS	Arena /		1.	144			to recreational sites	A / Charle	
72	Den_ CL11	CL11	Stadium	С	L	11		Commercial	and enterprises	Arena / Stadium	

	1	1			1	1	1	1	I atau a A a alta dala	T	1
									Leisure - Applicable		
		014465	G: 1:	•			65		to recreational sites		6. 1.
		CL11SD	Stadium	С	L	11	SD	Commercial	and enterprises	Arena / Stadium	Stadium
									Leisure - Applicable		
									to recreational sites		
		CL11SJ	Showground	С	L	11	SJ	Commercial	and enterprises	Arena / Stadium	Showground
73	Den_ CM	СМ	Medical	С	М			Commercial	Medical		
74	Den_ CM01	CM01	Dentist	С	М	1		Commercial	Medical	Dentist	
			General								
			Practice Surgery							General Practice Surgery	
75	Den_ CM02	CM02	/ Clinic	С	M	2		Commercial	Medical	/ Clinic	
			Health Care							General Practice Surgery	Health Care
76	Den_ CM02HL	CM02HL	Services	С	M	2	HL	Commercial	Medical	/ Clinic	Services
										General Practice Surgery	
77	Den_ CM02HC	CM02HC	Health Centre	С	M	2	HC	Commercial	Medical	/ Clinic	Health Centre
			Hospital /								
78	Den_ CM03	CM03	Hospice	С	М	3		Commercial	Medical	Hospital / Hospice	
79	Den_ CM03HI	CM03HI	Hospice	С	М	3	HI	Commercial	Medical	Hospital / Hospice	Hospice
90	Dom CM03UD	CMOSHID	Hospital	С		2	НР	Commercial	Modical	Hospital / Hospica	Hospital
80	Den_ CM03HP	CM03HP	Hospital	C	M	3	ПР	Commercial	Medical	Hospital / Hospice	Hospital
			Medical / Testing /								
			•							Madical / Tasting /	
01	Dom CN/04	CM04	Research	С	N4	4		Commoraial	Medical	Medical / Testing /	
81	Den_ CM04	CIVIU4	Laboratory Professional	C	M	4		Commercial	iviedicai	Research Laboratory Professional Medical	
		CNAOF		С	N4	-		Commoraial	Madical		
82	Dam CMOE	CM05	Medical Service	L	M	5		Commercial	Medical	Service	A
82	Den_ CM05		Assessment /							Dunfancianal Mandinal	Assessment /
		CN 40576	Development	_		-	70	Camananaial	Madian	Professional Medical	Development
		CM05ZS	Services	С	M	5	ZS	Commercial	Medical	Service	Services
83	Den_ CN	CN	Animal Centre	С	N			Commercial	Animal Centre		
	_		Cattery /								
84	Den_ CN01	CN01	Kennel	С	N	1		Commercial	Animal Centre	Cattery / Kennel	
		CN02	Animal Services	С	N	2		Commercial	Animal Centre	Animal Services	
85	Den_ CN02		Animal								Animal
0.5		CN02AX	Quarantining	С	N	2	AX	Commercial	Animal Centre	Animal Services	Quarantining
0.5		CN03	Equestrian	С	N	3		Commercial	Animal Centre	Equestrian	
86			Horse Racing /								Horse Racing /
	Den_ CN03	CN03HB	Breeding Stable	С	N	3	НВ	Commercial	Animal Centre	Equestrian	Breeding Stable
	_		Commercial								Commercial
		CN03SB	Stabling /	С	N	3	SB	Commercial	Animal Centre	Equestrian	Stabling / Riding

			Riding								
07	Data CN04	CNO4	Vet / Animal Medical					Communication	Animal Cantus	Vet / Animal Medical	
87	Den_ CN04	CN04	Treatment Animal / Bird /	С	N	4		Commercial	Animal Centre	Treatment	
		CN05	Marine Sanctuary	С	N	5		Commercial	Animal Centre	Animal / Bird / Marine Sanctuary	
88	Den_ CN05		Animal							Animal / Bird / Marine	
		CN05AN	Sanctuary	С	N	5	AN	Commercial	Animal Centre	Sanctuary	Animal Sanctuary
			Marine	_						Animal / Bird / Marine	
		CN05MR	Sanctuary	С	N	5	MR	Commercial	Animal Centre	Sanctuary	Marine Sanctuary
		CO01	Office / Work Studio	С	0	1		Commercial	Office	Office / Work Studio	
		CO01	Embassy /, High	C	-	1		Commercial	Office	Office / Work Studio	Embassy /, High
		CO01EM	Commission / Consulate	С	0	1	EM	Commercial	Office	Office / Work Studio	Commission / Consulate
			i	С		1					
89	Den_CO01	CO01FM	Film Studio Central	C	0	1	FM	Commercial	Office	Office / Work Studio	Film Studio Central
		CO01GV	Government Service	С	0	1	GV	Commercial	Office	Office / Work Studio	Government Service
			Local Government								Local Government
		CO01LG	Service	С	0	1	LG	Commercial	Office	Office / Work Studio	Service
90	Den_ CO02	CO02	Broadcasting (TV / Radio)	С	0	2		Commercial	Office	Broadcasting (TV / Radio)	
91	Den_ CR01	CR01	Bank / Financial Service	С	R	1		Commercial	Retail	Bank / Financial Service	
92	Den_ CR02	CR02	Retail Service Agent	С	R	2		Commercial	Retail	Retail Service Agent	
	_	CR02PO	Post Office	С	R	2	PO	Commercial	Retail	Retail Service Agent	Post Office
		CR04	Market (Indoor / Outdoor)	С	R	4		Commercial	Retail	Market (Indoor / Outdoor)	
		CR04FK	Fish Market	С	R	4	FK	Commercial	Retail	Market (Indoor / Outdoor)	Fish Market
93	Den_ CR04	CDOAEV	Fruit / Vegetable				FV	Communic	Deteil	Market (Indoor /	Fruit / Vegetable
		CR04FV	Market Livestock	С	R	4	FV	Commercial	Retail	Outdoor) Market (Indoor /	Market
		CR04LV	Market	С	R	4	LV	Commercial	Retail	Outdoor)	Livestock Market
94	Den_ CR05	CR05	Petrol Filling Station	С	R	5		Commercial	Retail	Petrol Filling Station	
95	Den_ CR06	CR06	Public House / Bar / Nightclub	С	R	6		Commercial	Retail	Public House / Bar / Nightclub	

			Restaurant /								
96	Den_ CR07	CR07	Cafeteria	С	R	7		Commercial	Retail	Restaurant / Cafeteria	
30	Dell_ ello	CNO7	Shop /	-	IX.			Commercial	rictun	Restaurant / Careteria	
		CR08	Showroom	С	R	8		Commercial	Retail	Shop / Showroom	
		0.100		_		1					
97	Den_ CR08	CR08GC	Garden Centre	С	R	8	GC	Commercial	Retail	Shop / Showroom	Garden Centre
			Other Licensed								
			Premise /							Other Licensed Premise	
98	Den_ CR09	CR09	Vendor	С	R	9		Commercial	Retail	/ Vendor	
			Fast Food								
			Outlet /								
00	D CD40	CD40	Takeaway (Hot	_		40			Data II	Fast Food Outlet /	
99	Den_ CR10	CR10	/ Cold)	С	R	10		Commercial	Retail	Takeaway (Hot / Cold)	
			Automated Teller Machine							Automated Teller	
100	Den CR11	CR11	(ATM)	С	R	11		Commercial	Retail	Machine (ATM)	
100	Dell_CKII		, ,			11				iviaciiiile (ATIVI)	
		CS	Storage Land	С	S			Commercial	Storage Land		
101	Den_ CS		General Storage	_							
		CS01	Land	С	S	1		Commercial	Storage Land	General Storage Land	
		CS02	Builders' Yard	С	S	2		Commercial	Storage Land	Builders' Yard	
102	Den_ CT	СТ	Transport	С	Т			Commercial	Transport		
			Airfield /		1			Commercial	- Transport		
			Airstrip /								
			Airport / Air								
			Transport							Airfield / Airstrip /	
			Infrastructure							Airport / Air Transport	
		CT01	Facility	С	Т	1		Commercial	Transport	Infrastructure Facility	
										Airfield / Airstrip /	
										Airport / Air Transport	
		CT01AF	Airfield	С	Т	1	AF	Commercial	Transport	Infrastructure Facility	Airfield
102			4: 5							Airfield / Airstrip /	
103	Den_CT01	CTO4 AV	Air Passenger	_	-		437	6	T	Airport / Air Transport	Air Passenger
		CT01AY	Terminal	С	Т	1	AY	Commercial	Transport	Infrastructure Facility	Terminal
			Air Transport Infrastructure							Airfield / Airstrip / Airport / Air Transport	Air Transport Infrastructure
		CT01AI	Services	С	Т	1	Al	Commercial	Transport	Infrastructure Facility	Services
		CIOIAI	Jet vices		+ '	1	Ai	Commercial	Пинэрогс	Airfield / Airstrip /	Scrvices
										Airport / Air Transport	
		CT01AP	Airport	С	T	1	AP	Commercial	Transport	Infrastructure Facility	Airport
			'						'	Airfield / Airstrip /	<u>'</u>
			Helicopter							Airport / Air Transport	Helicopter
		CT01HS	Station	С	Т	1	HS	Commercial	Transport	Infrastructure Facility	Station

	T	1	1	I	1	1	1			1	
		СТО1НТ	Heliport / Helipad	С	T	1	нт	Commercial	Transport	Airfield / Airstrip / Airport / Air Transport Infrastructure Facility	Heliport / Helipad
		CIOIIII	Пеприи		'		1	Commercial	Transport	initiastructure rueinty	Пеприи
104	Den_ CT02	CT02	Bus Shelter	С	Т	2		Commercial	Transport	Bus Shelter	
		0700	Car / Coach / Commercial Vehicle / Taxi Parking / Park							Car / Coach / Commercial Vehicle / Taxi Parking / Park And	
		CT03	And Ride Site	С	Т	3		Commercial	Transport	Ride Site	
		СТОЗРК	Public Park And Ride	С	T	3	PK	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Park And Ride
105	Den_ CT03		Public Car						·	Car / Coach / Commercial Vehicle / Taxi Parking / Park And	Public Car
		CT03PP	Parking	С	T	3	PP	Commercial	Transport	Ride Site	Parking
		СТОЗРИ	Public Coach Parking	С	Т	3	PU	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Coach Parking
		CT03VP	Public Commercial Vehicle Parking	С	Т	3	VP	Commercial	Transport	Car / Coach / Commercial Vehicle / Taxi Parking / Park And Ride Site	Public Commercial Vehicle Parking
		CT04	Goods Freight Handling / Terminal	С	Т	4		Commercial	Transport	Goods Freight Handling / Terminal	
		CT04AE	Air Freight Terminal	С	Т	4	AE	Commercial	Transport	Goods Freight Handling / Terminal	Air Freight Terminal
106	Den_ CT04	CT04CF	Container Freight	С	Т	4	CF	Commercial	Transport	Goods Freight Handling / Terminal	Container Freight
		CT04RH	Road Freight Transport	С	Т	4	RH	Commercial	Transport	Goods Freight Handling / Terminal	Road Freight Transport
		CT04RT	Rail Freight Transport	С	Т	4	RT	Commercial	Transport	Goods Freight Handling / Terminal	Rail Freight Transport
107	Den_ CT05	CT05	Marina	С	Т	5		Commercial	Transport	Marina	
108	Den_ CT06	СТ06	Mooring	С	Т	6		Commercial	Transport	Mooring	
109	Den_ CT07	СТ07	Railway Asset	С	т	7		Commercial	Transport	Railway Asset	
	Den_ CT08	CT08	Station /	С	Т	8		Commercial	Transport	Station / Interchange /	

			Interchange /							Terminal / Halt	
110			Terminal / Halt								- /- /
110		CTOORC	Bus / Coach	_	_		200	C	T	Station / Interchange /	Bus / Coach
		CT08BC	Station	С	Т	8	BC	Commercial	Transport	Terminal / Halt	Station
		CTOORS	Dailway Station	С	_T	8	RS	Commorcial	Transport	Station / Interchange / Terminal / Halt	Dailway Station
		CT08RS	Railway Station	C	+'	8	RS	Commercial	Transport		Railway Station
		CT08VH	Vehicular Rail Terminal	С	T	8	VH	Commercial	Transport	Station / Interchange / Terminal / Halt	Vehicular Rail Terminal
		CIUOVII	Transport Track	C	'	0	VII	Commercial	Transport	Terminary Hait	Terrinidi
		СТ09	/ Way	С	Т	9		Commercial	Transport	Transport Track / Way	
111	Den CT09	CT09CL	Cliff Railway	С	Т	9	CL	Commercial	Transport	Transport Track / Way	Cliff Railway
	Den_ 0.03		Chair Lift /								
			Cable Car / Ski		1_						Chair Lift / Cable
		СТО9СХ	Tow	С	T	9	CX	Commercial	Transport	Transport Track / Way	Car / Ski Tow
		СТ09МО	Monorail	С	Т	9	МО	Commercial	Transport	Transport Track / Way	Monorail
		CT10	Vehicle Storage	С	Т	10		Commercial	Transport	Vehicle Storage	
112	Den_ CT10	CT10BG	Boat Storage	С	Т	10	BG	Commercial	Transport	Vehicle Storage	Boat Storage
	_		Bus / Coach								Bus / Coach
		CT10BU	Depot	С	Т	10	BU	Commercial	Transport	Vehicle Storage	Depot
			Transport								
			Related							Transport Related	
		CT11	Infrastructure	С	Т	11		Commercial	Transport	Infrastructure	
										Transport Related	
		CT11AD	Aqueduct	С	Т	11	AD	Commercial	Transport	Infrastructure	Aqueduct
113	Den_CT11			_						Transport Related	
		CT11LK	Lock	С	Т	11	LK	Commercial	Transport	Infrastructure	Lock
				_						Transport Related	
		CT11WE	Weir	С	Т	11	WE	Commercial	Transport	Infrastructure	Weir
		0711110	Weighbridge /		_	4.4				Transport Related	Weighbridge /
		CT11WG	Load Gauge	С	T	11	WG	Commercial	Transport	Infrastructure	Load Gauge
114	Den_ CT12	CT12	Overnight Lorry Park	С	Т	12		Commercial	Transport	Overnight Lorry Park	
115	Den_ CU	CU	Utility	С	U			Commercial	Utility		
			Electricity Sub-		+			Commercial	J Cimey		
116	Den_ CU01	CU01	Station	С	U	1		Commercial	Utility	Electricity Sub-Station	
117	Den CU02	CU02	Landfill	С	U	2		Commercial	Utility	Landfill	
			Power Station /			1			,		
			Energy							Power Station / Energy	
		CU03	Production	С	U	3		Commercial	Utility	Production	
			Electricity						· ·	Power Station / Energy	Electricity
	Den CU03	CU03ED	Distribution	С	U	3	ED	Commercial	Utility	Production	Distribution

			Facility								Facility
118		CU03EP	Electricity Production Facility	С	U	3	EP	Commercial	Utility	Power Station / Energy Production	Electricity Production Facility
		CU03WF	Wind Farm	С	U	3	WF	Commercial	Utility	Power Station / Energy Production	Wind Farm
		CU03WU	Wind Turbine	С	U	3	WU	Commercial	Utility	Power Station / Energy Production	Wind Turbine
		CU04	Pump House / Pumping Station / Water Tower	С	U	4	We	Commercial	Utility	Pump House / Pumping Station / Water Tower	Willia Fallonic
		CU04WC	Water Controlling / Pumping	С	U	4	wc	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Controlling / Pumping
119	Den_ CU04	CU04WD	Water Distribution / Pumping	С	U	4	WD	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Distribution / Pumping
		CU04W M	Water Quality Monitoring	С	U	4	WM	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Quality Monitoring
		CU04WS	Water Storage	С	U	4	ws	Commercial	Utility	Pump House / Pumping Station / Water Tower	Water Storage
		CU04W W	Waste Water Distribution / Pumping	С	U	4	ww	Commercial	Utility	Pump House / Pumping Station / Water Tower	Waste Water Distribution / Pumping
		CU06	Telecommunica tion	С	U	6		Commercial	Utility	Telecommunication	
120	Den_ CU06	CU06TE	Telecommunica tions Mast	С	U	6	TE	Commercial	Utility	Telecommunication	Telecommunicati ons Mast
		сиобтх	Telephone Exchange	С	U	6	TX	Commercial	Utility	Telecommunication	Telephone Exchange
		CU07	Water / Waste Water / Sewage Treatment Works	С	U	7		Commercial	Utility	Water / Waste Water / Sewage Treatment Works	
121	Den_ CU07	CU07WR	Waste Water Treatment	С	U	7	WR	Commercial	Utility	Water / Waste Water / Sewage Treatment Works	Waste Water Treatment
		CU07WT	Water Treatment	С	U	7	WT	Commercial	Utility	Water / Waste Water / Sewage Treatment Works	Water Treatment
	Den_ CU09	CU09	Other Utility Use	С	U	9		Commercial	Utility	Other Utility Use	
		CU09OV	Observatory	С	U	9	OV	Commercial	Utility	Other Utility Use	Observatory

				1	T					1	1
122		CU09RA	Radar Station	С	U	9	RA	Commercial	Utility	Other Utility Use	Radar Station
122			Satellite Earth								Satellite Earth
		CU09SE	Station	С	U	9	SE	Commercial	Utility	Other Utility Use	Station
			Cable Terminal								Cable Terminal
		CU09CQ	Station	С	U	9	CQ	Commercial	Utility	Other Utility Use	Station
			Waste	_	1						
123	Den_CU10	CU10	Management	С	U	10		Commercial	Utility	Waste Management	
		CU11	Telephone Box	С	U	11		Commercial	Utility	Telephone Box	
124	Den CU11		Other Public								Other Public
124	Dell_COII	CU11OP	Telephones	С	U	11	OP	Commercial	Utility	Telephone Box	Telephones
		CU12	Dam	С	U	12		Commercial	Utility	Dam	
			Emergency /						Emergency / Rescue		
125	Den_ CX	CX	Rescue Service	С	Х			Commercial	Service		
			Police /								
			Transport						Emergency / Rescue	Police / Transport Police	
126	Den_CX01	CX01	Police / Station	С	Х	1		Commercial	Service	/ Station	
									Emergency / Rescue	Police / Transport Police	
		CX01PT	Police Training	С	Х	1	PT	Commercial	Service	/ Station	Police Training
				_	1				Emergency / Rescue		
127	Den_ CX02	CX02	Fire Station	С	X	2		Commercial	Service	Fire Station	Fire Constant
		CX02FT	Fire Service	С	x	2	FT	Commercial	Emergency / Rescue Service	Fire Station	Fire Service
		CXUZFT	Training Ambulance	C	^		FI	Commercial	Emergency / Rescue	FIFE Station	Training
128	Den CX02	CX03	Station	С	X	3		Commercial	Service	Ambulance Station	
120	Dell_ CAU2	CAUS	Air Sea Rescue /	C	^	3		Commercial	Emergency / Rescue	Ambulance Station	Air Sea Rescue /
		CX03AA	Air Ambulance	С	X	3	AA	Commercial	Service	Ambulance Station	Air Ambulance
		C/(OS/ U/	Lifeboat		+ ^ -		701	Commercial	SCIVICE	7 timbulance Station	7 III 7 IIII BUILUINEE
			Services /						Emergency / Rescue	Lifeboat Services /	
129	Den CX04	CX04	Station	С	х	4		Commercial	Service	Station	
	_		Coastguard								
			Rescue /								
			Lookout /						Emergency / Rescue	Coastguard Rescue /	
130	Den_CX05	CX05	Station	С	Х	5		Commercial	Service	Lookout / Station	
			Mountain						Emergency / Rescue	Mountain Rescue	
131	Den_ CX06	CX06	Rescue Station	С	Х	6		Commercial	Service	Station	
422	D 01/00	GVGG	Police Box /					6	Emergency / Rescue	Dallas Day / 100 - 1	
132	Den_ CX08	CX08	Kiosk	С	X	8	1	Commercial	Service	Police Box / Kiosk	
133	Den CZ	CZ	Information	С	Z		1	Commercial	Information		
133	Den_ CE	1 02	Advertising		+-		+	Commercial	mormation		
134	Den CZ01	CZ01	Hoarding	С	Z	1		Commercial	Information	Advertising Hoarding	
-51	Den_ CZ02	0201	Tourist		 -	+-	+	Commercial	ormadon	Tourist Information	
	30 0202	CZ02	Information	С	z	2		Commercial	Information	Signage	

		CZ02VI	Visitor Information	С	Z	2	VI	Commercial	Information	Tourist Information Signage	Visitor Information
		CZUZVI	Traffic	C	-		VI	Commercial	miormation	Signage	miormation
			Information							Traffic Information	
136	Den_ CZ03	CZ03	Signage	С	Z	3		Commercial	Information	Signage	
137	Den LL	LL	Allotment	L	L			Land	Allotment		
			Amenity - Open	_							
			areas not						Amenity - Open		
			attracting						areas not attracting		
138	Den_LM	LM	visitors	L	М			Land	visitors		
									Amenity - Open		
139	Den LM01	LM01	Landscaped Roundabout	١,	М	1		Land	areas not attracting visitors	Landscaped Roundabout	
133	Dell_LIVIO1	LIVIOI	Roundabout	L	IVI	1		Lanu	Amenity - Open	Lanuscaped Roundabout	
			Verge / Central						areas not attracting	Verge / Central	
		LM02	Reservation	L	М	2		Land	visitors	Reservation	
									Amenity - Open		
140	Den_LM02		Natural Central						areas not attracting	Verge / Central	Natural Central
		LM02NV	Reservation	L	М	2	NV	Land	visitors	Reservation	Reservation
									Amenity - Open areas not attracting	Verge / Central	
		LM02VE	Natural Verge		М	2	VE	Land	visitors	Reservation	Natural Verge
		LIVIOZVE	Watarar Verge	_	141		1	Lana	Amenity - Open	Neser vacion	Natural Verge
			Maintained						areas not attracting	Maintained Amenity	
141	Den_LM03	LM03	Amenity Land	L	М	3		Land	visitors	Land	
									Amenity - Open		
			Maintained		1				areas not attracting	Maintained Surfaced	
		LM04	Surfaced Area	L	M	4		Land	visitors	Area	
142	Don IMOA		Made Central						Amenity - Open areas not attracting	Maintained Surfaced	Made Central
142	Den_LM04	LM04MV	Reservation	L	М	4	MV	Land	visitors	Area	Reservation
				_		1			Amenity - Open		
									areas not attracting	Maintained Surfaced	
		LM04PV	Pavement	L	М	4	PV	Land	visitors	Area	Pavement
		LO	Open Space	L	0			Land	Open Space		
143	Den_LO		Heath /								
		LO01	Moorland	L	0	1		Land	Open Space	Heath / Moorland	
144	Den LP	LP	Park	L	P			Land	Park		
			Public Park /								
145	Den_LP01	LP01	Garden	L	Р	1		Land	Park	Public Park / Garden	

			Public Open								
146	Den LP02	LP02	Space / Nature Reserve	L	P	2		Land	Park	Public Open Space / Nature Reserve	
110		LP03	Playground	L	P	3		Land	Park	Playground	
147	Den_LP03	LP03PA	Play Area	L	P	3	PA	Land	Park		Play Area
147			,		+ -					Playground	·
		LP03PD	Paddling Pool	L	P	3	PD	Land	Park	Playground	Paddling Pool
148	Den_LU	LU	Unused Land	L	U			Land	Unused Land		
149	Den_LU01	LU01	Vacant / Derelict Land	L	U	1		Land	Unused Land	Vacant / Derelict Land	
150	Den_LW	LW	Water	L	W			Land	Water		
		LW01	Lake / Reservoir	L	W	1		Land	Water	Lake / Reservoir	
151	Den_LW	LW01BP	Balancing Pond	L	w	1	BP	Land	Water	Lake / Reservoir	Balancing Pond
		LW01BV	Buried Reservoir	L	w	1	BV	Land	Water	Lake / Reservoir	Buried Reservoir
		LW02	Named Pond	L	W	2		Land	Water	Named Pond	
152	Den_LW02	LW02DE	Dew Pond	L	w	2	DE	Land	Water	Named Pond	Dew Pond
		LW02DP	Decoy Pond	L	W	2	DP	Land	Water	Named Pond	Decoy Pond
		LW02IW	Static Water	L	W	2	IW	Land	Water	Named Pond	Static Water
153	Den_ M	М	Military	М				Military			
		MA	Army	М	Α			Military	Army		
		MA99AR	Army Military Range	М	А	99	AR	Military	Army		Army Military Range
154	Den_ MA	MA99AS	Army Site	М	Α	99	AS	Military	Army		Army Site
		MA99AT	Army Military Training	М	А	99	AT	Military	Army		Army Military Training
		MA99AG	Army Military Storage	М	А	99	AG	Military	Army		Army Military Storage
155	Den_ MB	МВ	Ancillary Building	М	В			Military	Ancillary Building		
		MB99TG	Military Target	М	В	99	TG	Military	Ancillary Building		Military Target
		MF	Air Force	М	F			Military	Air Force		
		MF99UG	Air Force Military Storage	М	F	99	UG	Military	Air Force		Air Force Military Storage
156	Den_ MF	MF99UR	Air Force Military Range	М	F	99	UR	Military	Air Force		Air Force Military Range

		MF99US	Air Force Site	М	F	99	US	Military	Air Force		Air Force Site
		MF99UT	Air Force Military Training	M	F	99	UT	Military	Air Force		Air Force Military Training
157	Den_ MG	MG	Defence Estates	М	G			Military	Defence Estates		
		MN	Navy	М	N			Military	Navy		
		MN99VG	Naval Military Storage	М	N	99	VG	Military	Navy		Naval Military Storage
158	Den_ MN	MN99VR	Naval Military Range	М	N	99	VR	Military	Navy		Naval Military Range
		MN99VS	Naval Site	М	N	99	VS	Military	Navy		Naval Site
		MN99VT	Naval Military Training	M	N	99	VT	Military	Navy		Naval Military Training
159	Den_ OG04	OG04	Slurry Bed / Pit	0	G	4		Other (Ordnance Survey Only)	Agricultural Support Objects	Slurry Bed / Pit	<u> </u>
160	Den_ OI	OI	Industrial Support	0	I			Other (Ordnance Survey Only)	Industrial Support		
161	Den_ Ol02	0102	Caisson / Dry Dock / Grid	0	ı	2		Other (Ordnance Survey Only)	Industrial Support	Caisson / Dry Dock / Grid	
162	Den_ Ol03	0103	Channel / Conveyor / Conduit / Pipe	0		3		Other (Ordnance Survey Only)	Industrial Support	Channel / Conveyor / Conduit / Pipe	
163	Den_ Ol04	0104	Chimney / Flue	0	ı	4		Other (Ordnance Survey Only)	Industrial Support	Chimney / Flue	
164	Den_ Ol05	OI05	Crane / Hoist / Winch / Material Elevator	0	T.	5		Other (Ordnance Survey Only)	Industrial Support	Crane / Hoist / Winch / Material Elevator	
165	Den_ Ol06	0106	Flare Stack	0	1	6		Other (Ordnance Survey Only)	Industrial Support	Flare Stack	
166	Den_ Ol07	0107	Hopper / Silo / Cistern / Tank	0	1	7		Other (Ordnance Survey Only)	Industrial Support	Hopper / Silo / Cistern / Tank	
167	Den_Ol08	O108	Grab / Skip / Other Industrial Waste Machinery / Discharging	0	I	8		Other (Ordnance Survey Only)	Industrial Support	Grab / Skip / Other Industrial Waste Machinery / Discharging	
168	Den_ Ol09	0109	Kiln / Oven / Smelter	0	I	9		Other (Ordnance Survey Only)	Industrial Support	Kiln / Oven / Smelter	
169	Den_OI10	OI10	Manhole / Shaft	0	1	10		Other (Ordnance Survey Only)	Industrial Support	Manhole / Shaft	

		1	1 - 1 - 1/	ı	1	1	1	T and (a.)			
470		0110	Solar Panel /			1.0		Other (Ordnance		Solar Panel /	
170	Den_ Ol13	OI13	Waterwheel	0	1	13		Survey Only)	Industrial Support	Waterwheel	
171	Dom OB01	OR01	Postal Box	0	R	1		Other (Ordnance	Royal Mail Infrastructure	Postal Box	
1/1	Den_ OR01	ORUI	POSTALBOX	U	K	1		Survey Only) Other (Ordnance	Royal Mail	POSTAL BOX	
172	Den_ OR03	OR03	PO Box	0	R	3		Survey Only)	Infrastructure	PO Box	
1/2	Dell_Ollos	ONOS	TO BOX	0	IX.	1		Survey Only)	iiiiastiucture	1 O BOX	
173	Den_ R	R	Residential	R				Residential			
	_		Ancillary								
174	Den_ RB	RB	Building	R	В			Residential	Ancillary Building		
		RC	Car Park Space	R	С			Residential	Car Park Space		
175	Den_ RC01	INC.	Allocated	11				Residential	cui i uik space		
	Den_neer	RC01	Parking	R	С	1		Residential	Car Park Space	Allocated Parking	
		1									
176	Den_ RD	RD	Dwelling	R	D			Residential	Dwelling		
177	Den_RD01	RD01	Caravan	R	D	1		Residential	Dwelling	Caravan	
178	Den_RD02	RD02	Detached	R	D	2		Residential	Dwelling	Detached	
179	Day DD03	RD03	Semi-Detached	R	D	3		Residential	Dwelling	Semi-Detached	
1/9	Den_ RD03	KD03	Semi-Detached	ĸ	ν .	3		Residential	Dweiling	Semi-Detached	
180	Den_ RD04	RD04	Terraced	R	D	4		Residential	Dwelling	Terraced	
100		1.501	Self Contained	.,		<u> </u>		nesidentia.	2.1.68		
			Flat (Includes							Self Contained Flat	
			Maisonette /							(Includes Maisonette /	
181	Den_ RD06	RD06	Apartment)	R	D	6		Residential	Dwelling	Apartment)	
182	Den_ RD07	RD07	House Boat	R	D	7		Residential	Dwelling	House Boat	
			Sheltered								
102	Den RD08	RD08	Accommodatio	R	D	8		Residential	Duralling	Sheltered Accommodation	
183	Dell_ KD06	NDUO	n Privately	n	D	0		Residential	Dwelling	Accommodation	
			Owned Holiday								
			Caravan /							Privately Owned Holiday	
184	Den RD10	RD10	Chalet	R	D	10		Residential	Dwelling	Caravan / Chalet	
	_								Ĭ		
185	Den_ RG	RG	Garage	R	G			Residential	Garage		
			Lock-Up Garage							Lock-Up Garage / Garage	
186	Den_ RG02	RG02	/ Garage Court	R	G	2		Residential	Garage	Court	
107			House In						Harras In Advisors		
187	Don BH	ВП	Multiple	D				Posidontial	House In Multiple		
	Den_ RH	RH	Occupation	R	Н			Residential	Occupation		

188	Den_RH01	RH01	HMO Parent HMO Bedsit /	R	H	1		Residential	Occupation	HMO Parent	
			Other Non Self								
			Contained						Harras In Marikinia	HMO Bedsit / Other Non	
100	Don BUO2	DUO	Accommodatio	D.				Desidential	House In Multiple	Self Contained	
189	Den_ RH02	RH02	n HMO Not	R	Н	2		Residential	Occupation House In Multiple	Accommodation HMO Not Further	
190	Den RH03	RH03	Further Divided	R	Н	3		Residential	Occupation	Divided	
130	Dell_ KH03	KIIOS	Residential	IN.	111	3		Nesideritiai	Residential	Divided	
191	Den_ RI	RI	Institution	R	1			Residential	Institution		
131	Den_III	100	Care / Nursing	11	+ '			Nesidential	Residential		
192	Den_ RI01	RI01	Home	R	1.	1		Residential	Institution	Care / Nursing Home	
			Communal						Residential	,	
		RIO2	Residence	R	1	2		Residential	Institution	Communal Residence	
			Non-								
193	Den_ RI02		Commercial						Residential		Non-Commercial
	_	RI02NC	Lodgings	R	1	2	NC	Residential	Institution	Communal Residence	Lodgings
			Religious						Residential		Religious
		RI02RC	Community	R	1	2	RC	Residential	Institution	Communal Residence	Community
			Residential						Residential		
194	Den_ RI03	RI03	Education	R	1	3		Residential	Institution	Residential Education	
			Object of								
195	Den_ Z	Z	Interest	Z				Object of Interest			
			Archaeological						Archaeological Dig		
196	Den_ ZA	ZA	Dig Site	Z	Α			Object of Interest	Site		
197	Den ZM	ZM	Monument	Z	М			Object of Interest	Monument		
197	Dell_ Zivi	ZIVI	Obelisk /		IVI	+		Object of fifterest	Monument		
			Milestone /							Obelisk / Milestone /	
		ZM01	Standing Stone	Z	М	1		Object of Interest	Monument	Standing Stone	
198	Den_ ZM01	2.7.02	Jean and Jean a	_		1		Coject of interest	oriamene	Obelisk / Milestone /	
	Dell_ 211101	ZM01OB	Obelisk	Z	М	1	ОВ	Object of Interest	Monument	Standing Stone	Obelisk
								, , , , , , , , , , , , , , , , , , , ,		Obelisk / Milestone /	
		ZM01ST	Standing Stone	Z	М	1	ST	Object of Interest	Monument	Standing Stone	Standing Stone
			Memorial /					,		Memorial / Market	J
199	Den_ ZM02	ZM02	Market Cross	Z	М	2		Object of Interest	Monument	Cross	
200	Den_ ZM03	ZM03	Statue	Z	М	3		Object of Interest	Monument	Statue	
			Castle / Historic								
201	Den_ ZM04	ZM04	Ruin	Z	M	4		Object of Interest	Monument	Castle / Historic Ruin	
	_	70.405	Other Structure	Z	М	5		Object of Interest	Monument	Other Structure	
202	Den_ZM05	ZM05	Other Structure				<u> </u>			o tilei oti ao tale	<u> </u>

			Permanent Art								Permanent Art
			Display /								Display /
		ZM05PN	Sculpture	Z	М	5	PN	Object of Interest	Monument	Other Structure	Sculpture
			Cascade /								Cascade /
		ZM05CE	Fountain	Z	M	5	CE	Object of Interest	Monument	Other Structure	Fountain
			Windmill								Windmill
		ZM05WI	(Inactive)	Z	M	5	WI	Object of Interest	Monument	Other Structure	(Inactive)
203	Den ZS	ZS	Stately Home	Z	S			Object of Interest	Stately Home		
			Underground	_					Underground		
204	Den_ ZU	ZU	Feature	Z	U			Object of Interest	Feature		
205		71104		_	l				Underground		
205	Den_ ZU01	ZU01	Cave	Z	U	1		Object of Interest	Feature	Cave	
			Other						Other Underground		
206	Don 71/	ZV	Underground Feature	Z	V			Object of Interest	Other Underground Feature		
200	Den_ ZV	ZV	reature		V			Object of interest	Other Underground		
		ZV02	Disused Mine	Z	V	2		Object of Interest	Feature	Disused Mine	
		2002	Mineral Mining	_	•			Object of interest	Other Underground	Disasca Willie	Mineral Mining /
		ZV02MI	/ Inactive	Z	V	2	МІ	Object of Interest	Feature	Disused Mine	Inactive
			Oil And / Gas								Oil And / Gas
207	Den_ ZV02		Extraction/						Other Underground		Extraction/
	_	ZV02OI	Inactive	Z	V	2	OI	Object of Interest	Feature	Disused Mine	Inactive
			Mineral								Mineral
			Quarrying And /								Quarrying And /
			Open Extraction						Other Underground		Open Extraction /
		ZV02QI	/ Inactive	Z	V	2	QI	Object of Interest	Feature	Disused Mine	Inactive
									Other Underground		
		ZV03	Well / Spring	Z	V	3		Object of Interest	Feature	Well / Spring	
		71,100,00		_	.,			01:	Other Underground	W II / C . :	
		ZV03SG	Spring	Z	V	3	SG	Object of Interest	Feature	Well / Spring	Spring
208	Day 71/02	ZV03WL	Well	Z	V	2	WL	Object of Interest	Other Underground	Moll / Caring	Well
200	Den_ ZV03	ZV03VVL	Place Of		V	3	VVL	Object of Interest	Feature	Well / Spring	weii
209	Den_ ZW	ZW	Worship	Z	W			Object of Interest	Place Of Worship		
210	Den_ ZW99CA	ZW99CA	Cathedral	Z	w	99	CA	Object of Interest	Place Of Worship		Cathedral
211	Den_ ZW99CH	ZW99CH	Church	Z	W	99	СН	Object of Interest	Place Of Worship		Church
212	Den_ ZW99CP	ZW99CP	Chapel	Z	w	99	СР	Object of Interest	Place Of Worship		Chapel
213	Den_ ZW99KH	ZW99KH	Kingdom Hall	Z	w	99	КН	Object of Interest	Place Of Worship		Kingdom Hall
	202	_,,,,,,,,,,			1 - 2			2.2,200 01 11100 000			
214	Den_ ZW99MQ	ZW99MQ	Mosque	Z	W	99	MQ	Object of Interest	Place Of Worship		Mosque

215	Den_ ZW99SY	ZW99SY	Synagogue	Z	W	99	SY	Object of Interest	Place Of Worship	Synagogue
216	Den_ZW99TP	ZW99TP	Temple	Z	W	99	TP	Object of Interest	Place Of Worship	Temple
217	Den_Bstops	os Density of bus stops calculated from NAPTAN database.								

4.1.2 Health specific destination accessibility

Walkable destinations having the propensity to influence health in a specific way were parameterized in the present study in the form of network distance from a respondent's dwelling to the nearest destination. Network proximity was used as opposed to the conventional Euclidean/airline distance, as it provides a more accurate behavioural measurement of accessibility. Street network distance (in metres) was calculated using 'closest facility analysis' in Network Analyst, ArcGIS 10.2. In the case of parks (land use code LP) which is a larger destination occupying a significant area, multiple entry points of access were manually digitized after overlaying it on the 0.5 meter resolution colour infrared image of the area of interest. However, in the case of building destinations, a single point was employed as the location of the facility. 39 different health promoting/inhibiting land use destinations were used in the present study.

Deliverable file 3:

File Name (size)	Description							
Wales_UKB_LU_ND.csv (9.08 MB)	Street network distance in metres of UK Biobank participant's residence from specific destinations.							

Header file name: Wales_UKB_LU_ND_Header.csv (468 bytes)

Table 3: Description of variables used for calculation of destination accessibility

			Description of variable
Column No.	Variable	Variable definition: Destination category for calculation of street network distance	Included AddressBase Premium land use classes in the destination category
1	Encoded anonymised participant ID	-	-
•		Public/Village Hall/Other Community	2004 200 WD
2	ND_CC04	Facility	CC04, CC04YR
3	ND_CC12	Job Centre	CC12
4	ND_CE01	College	CE01, CE01FE, CE01HE
5	ND_CE02	Childrens Nursery/Creche	CE02
6	ND_CE03	Preparatory/First/Primary/Infant/Junior/M iddle School	CE03, CE03FS, CE03IS, CE03JS, CE03MS, CE03NP, CE03PS
7	ND_CE04	Secondary/High School	CE04, CE04NS, CE04SS
8	ND_CE05	University	CE05
0			CI01, CI01AW, CI01BB, CI01BR, CI01BW, CI01CD, CI01CM, CI01CW, CI01DA, CI01DY, CI01FL, CI01FO, CI01GW, CI01MG, CI01OH, CI01OR, CI01PG,
9	ND_CI01	Factory/Manufacturing	CIO1PM, CIO1PW, CIO1YD, CIO1SR, CIO1SW, CIO1TL, CIO1WN
10	ND_CI02	Mineral/Ore Working/Quarry/Mine	C102, C102MA, C102MD, C102MP, C102OA, C102QA
11	ND_CI03	Workshop/Light Industrial	CI03, CI03GA
12	ND_CI04	Warehouse/Store/Storage Depot	CI04, CI04CS, CI04PL, CI04SO, CI04TS
13	ND_OI04	Industrial Support - Chimney/Flue	0104
14	ND_CL03	Library	CL03, CL03RR
15	ND_CL07	Bingo Hall/Cinema/Conference/Exhibition Centre/Theatre/Concert Hall	CL07, CL07TH, CL07CI, CL07EN, CL07EX
16	ND_CM01	Dentist	CM01
17	ND_CM02	GP Practice Surgery/Clinic	CM02, CM02HL, CM02HC
18	ND_CM03	Hospital/Hospice	CM03, CM03HI, CM03HP
19	ND_CO01	Office/Work Studio	CO01
20	ND_CO01GV	Central Government Service	CO01GV

21	ND_CO01LG	Local Government Service	CO01LG
22	ND_CR01	Bank/Financial Service	CR01
23	ND_CR02	Retail Service Agent	CR02
24	ND_CR02PO	Post Office	CR02PO
25	ND_CR06	Public House/Bar/Night Club	CR06
26	ND_CR07	Restaurant/Cafeteria	CR07
27	ND_CR10	Fast Food Outlet/Takeaway (Hot/Cold)	CR10
28	ND_Bstops	Bus Stops	Bus stops (NAPTAN data)
		Car/Coach/Commercial Vehicle/Taxi	
29	ND_CT03	Parking/Park and Ride Site	CT03, CT03PK, CT03PP, CT03PU, CT03VP
30	ND_CT08	Station/Interchange/Terminal/Halt	CT08, CT08BC, CT08RS, CT08VH
31	ND_CU01	Electricity Sub-station	CU01
32	ND_CU02	Landfill	CU02
33	ND_CU03	Power Station/Energy Production	CU03, CU03ED, CU03EP, CU03WF, CU03WU
		Water/Waste Water/Sewage Treatment	
34	ND_CU07	Works	CU07, CU07WR, CU07WT
35	ND_Recycling	Recycling	CC09, CC10, Cl06, Cl07
36	ND_CX01	Police/Transport Police Station	CX01, CX01PT
37	ND_CX02	Fire Station	CX02, CX02FT
38	ND_CX03	Ambulance Station	CX03, CX03AA
			ZW, ZW99AB, ZW99CA, ZW99CH, ZW99CP, ZW99GU, ZW99KH, ZW99MQ,
39	ND_ZW	Places of Worship	ZW99MT, ZW99SU, ZW99SY, ZW99TP, ZW99LG, CC07
40	ND_LP	Parks	LP, LP01, LP02, LP03, LP03PA, LP03PD, LP04

4.2 Street network accessibility

spatial Design Network Analysis (sDNA) is a *state-of-the-art* technique of urban network analysis that have evolved from the conventional network analyses techniques like space syntax. Details on urban network analyses techniques employed in health research can be found elsewhere^{1,47}. sDNA employs a technically improved network algorithm and has been developed by Cardiff University's School of Planning and Geography (http://www.cardiff.ac.uk/sdna). sDNA is able to overcome many of the inherent problems of conventional network analysis techniques, especially the representational problems and the modifiable link problem by its ability to function with off-the-shelf street centreline data such as Ordnance Survey ITN data, with minimum preparation.

The Ordnance Survey Mastermap Integrated Transport Network (ITN) layer for Wales with a 10 mile buffer was extracted. The sDNA Prepare tool was employed for automated cleaning of the ITN layer including the initial processes of removal of traffic islands as well as repairing of split links. sDNA standardizes the network link as the fundamental unit of computation. By using such industrystandard link representation, sDNA overcomes the modifiable link unit problem, as well as provides a better physical interpretation of road centreline data. In an urban space, several socio-economic processes such as density of residences, jobs, traffic flows, pedestrian movements and so on have been known to be correlated with the density of street network links. sDNA offers the analyst a diverse choice of refined graphical indices of accessibility, thereby enabling analyses of network centrality (in terms of closeness and betweenness centrality), network detour (in terms of sum of crow flight, mean diversion ratio and diversion ratio), network shape and efficiency (in terms of convex hull area, perimeter and bearing, and network shape index), link characteristics (in terms of length, angular curvature and connectivity) and radius-based indices (in terms of number of links, total network length, total angular distance, total and mean geodesic length and number of junctions within a defined catchment radius)⁴⁸. Details of the twenty indices of physical street-level accessibility have been described in Table 4. sDNA provides the option of enumerating the centrality indices based on the notion of Euclidean or angular distance, with the choice of several weighting functions such as link weighting, link length weighting or other user-customized weighted indices. As in angular segment analysis, sDNA enumerates all the graphical accessibility indices within a specific user-defined catchment radius; nonetheless, sDNA provides the user with the option of discrete or continuous space analysis. In discrete space analysis, each link is considered as a discrete (whole) entity and, if a part of a link falls inside a given radius, the entire link is counted as being within the radius. On the other hand, in continuous space analysis, each link is treated as a continuous entity and only the fractional part of a link falling inside a given radius is counted, leading to fractional

(proportional) link counts. The former is computationally faster, while the latter produces more accurate results. This study has employed continuous analysis throughout. sDNA has been tested and has successfully reproduced results equivalent to or better than those of predecessor space syntax methods. sDNA is also innovative in its class in providing a workflow that is fully automated. The UK Ordnance Survey (OS) Topography Layer, AddressBase Premium and Integrated Transport Network Layer linkages are cross-referenced through unique identifiers; the OS supports Digital National Framework identifiers, which facilitates integration and sharing of spatial information from diverse sources.

All the sDNA measured indices of accessibility were calculated for all the street links within the boundaries of the study area (Wales with a 10 kilometre buffer). Analyses were done at several spatial scales to take in to account the influence of physical accessibility at micro (neighbourhood), meso (city) and macro (regional) levels. Nineteen different catchment radii were employed in the present study for analysis: 400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000 metres. All the sDNA network metrics were subsequently linked to the dwelling location of the UK Biobank participant. Three types of linkages were used in the present study:

- Physical accessibility indices of the street network link closest to the UK Biobank respondent's dwelling location were linked together.
- Physical accessibility indices of the street network link within a 25 metres buffer of the UK
 Biobank respondent's dwelling location were linked together.
- Physical accessibility indices of the street network link within a 50 metres buffer of the UK
 Biobank respondent's dwelling location were linked together.

In the latter two cases mean, minimum, maximum and standard deviation in the accessibility indices of all the links within 25 and 50 metres of the UK Biobank respondent's dwelling location were enumerated.

Table 4: List of sDNA modelled street accessibility indices

sDNA modelled street accessibility index (acronym used*)	Description	Spatial scale of measurement (catchment radius R in metres)		
Link characteristics: These measures describe the characte network indices per se.	ristics of individual links in the network a	nd hence they are not		
Link Connectivity (Link_Connectivity)	The number of link ends that an individual link is connected to at its end points.	Measured for each link in the network.		
Link Length (Link_Length)	Length of the individual link in the network.	Measured for each link in the network.		
Link Angular Curvature (Link_Ang_Curvature)	The cumulative angular change while traversing the full length of a link in degrees.	Measured for each link in the network.		
morphology and the social phenomen relationality in the graphs. The notion	n to the graph theory. The associations be a dependent on it are essentially capture of accessibility captured by these measur fluences individual activity behaviours an e centrality of a vertex within a graph.	d by indices of es acts to formally		
Mean Angular Distance (Mean_Ang_Dist_WI_RXXXXXc)	In graphical terminology, also called as the closeness centrality/accessibility. It is an indicator of the degree of difficulty, on average, of navigating to all possible destinations within a specified radius from each given link. This is weighted by the link length.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000		
Network Quantity Penalized for Distance (NetQuantPD_Ang_WI_XXXXXc)	This is an improved measure of the conventional closeness centrality and takes in to account the effects of network quantity. For each link within a specified radius, it takes the network quantity (defined link length) and divides it by the difficulty of access (angular). This is weighted by the link length.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000		
	In graphical terminology, also called	400, 800, 1200, 1500,		

Betweenness (Betweenness_Ang_WI_RXXXXXc)	as the betweenness centrality or path overlap or through-movement potential. It is indicative of how often a given link is used for a journey within a defined radius. Measured as the sum of geodesics that pass through a link for a journey within a defined radius. This has been weighted by origin-destination link length.	2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Two Phase Betweenness (TPBetweenness_Ang_WI_RXXXXXc)	This is betweenness weighted by a two-step floating catchment model. Measured as the sum of geodesics that pass through a link for a journey within a defined radius weighted by the proportion of network quantity accessible from geodesic origin that is represented by geodesic destination.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Two Phase Destination assignment (TPDestination_Ang_WI_RXXXXXc)	This is the total flow to each destination under the two phase betweenness model. In other words, it is similar to the two phase betweenness, but measured for the destination of each geodesic only.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Simple radial measures: These measures pertain to the charact	eristics of the links within a specified net	work radius.
Links (Links_RXXXXXc)	The number of network links within a specified network radius.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Length (Length_RXXXXXc)	The total network length within a specified network radius.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Angular Distance (Ang_Dist_RXXXXXc)	Sum of angular distance of each individual link within a specified radius.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000,

		25000, 30000, 35000, 40000, 45000, 50000
Weight (Weight_WI_RXXXXXc)	Total weight within a specified radius. Weights have been specified with respect unit of network length (in length weighted analysis).	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Mean Geometric Length (MeanGeoLen_Ang_WI_RXXXXXC)	Mean of the angular geodesic Euclidean length within a specified radius. This has been weighted by the origin to destination link length.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
•	mparing the hypothetical crow fly distand t of deviation of the network from the mo	
Mean Crow Flight Distance (Mean_Crow_Flight_Wl_RXXXXXc)	Mean of the crow flight distance between a link and all the links within a defined radius. This is weighted by the link length.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Diversion Ratio (Diversion_Ratio_Ang_WI_RXXXXXc)	Mean of the ratio of actual geodesic length to the crow flight distance for all geodesics within a defined radius. This is weighted by the link length. Indicative of the degree of deviation of the actual paths from the crow flight path.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Network shape: Measure of network efficiency in term	s of the spatial footprint of the street net	work in urban space.
Convex Hull Area (Convex_Hull_Area_RXXXXXC)	Area of the convex hull containing all the origins and destinations within a defined radius. It is an indicator of the network footprint or the spatial spread of the street network in the	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000,

	urban space.	40000, 45000, 50000
Convex Hull Perimeter (Convex_Hull_Perimeter_RXXXXXc)	Length of perimeter of the convex hull containing all the origins and destinations within a defined radius.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Convex Hull Maximum Radius (Convex_Hull_Max_Radius_RXXXXXC)	Maximum radius of the convex hull measured as the crow flight distance from the centre of the origin link to the furthest point on the convex hull of a defined radius.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Convex Hull Bearing (Convex_Hull_Bearing_RXXXXXC)	Compass bearing of the line of maximum radius of convex hull of a defined radius, measured in degrees. It indicates the direction in which one can travel furthest from the origin link, while staying inside the network radius.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000
Convex Hull Shape Index (Convex_Hull_Shape_Index_RXXXXXC)	Measures the degree of uniformity of the network in all directions. It is measured as the square of the hull perimeter divided by 4π times the hull area. Ranges from 1 in case of a circle to higher values, with higher indicating non-uniformity across all directions.	400, 800, 1200, 1500, 2000, 3000, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 25000, 30000, 35000, 40000, 45000, 50000

^{*} In each of the acronyms, the presence of:

WI – Indicates that the analyses is weighted by origin – destination link length,

RXXXXX – Indicates the catchment radius at which the analysis was conducted; this can be R500 for radius of 500 metres or R50000 for radius of 50000 metres,

c – Indicates continuous space analysis.

Deliverable files 4a-4i:

File Name (size)	Description
UKB_Wales_sDNA_closest_link.csv (72.1 MB)	Physical accessibility indices of the street network link closest to the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_mean.csv (66.8 MB)	Mean value of physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_min.csv (66.4 MB)	Minimum value of physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_max.csv (66.4 MB)	Maximum value of physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_25m_STD.csv (30.4 MB)	Standard deviation in physical the accessibility indices of all the links lying within 25 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_mean.csv (72.4 MB)	Mean value of physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_min.csv (72.1 MB)	Minimum value of physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_max.csv (71.3 MB)	Maximum value of physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.
UKB_Wales_sDNA_50m_STD.csv (58.7 MB)	Standard deviation in physical the accessibility indices of all the links lying within 50 metres of the UK Biobank respondent's dwelling location.

Header file names:

UKB_Wales_sDNA_closest_link_header.csv (9.11 KB)
UKB_Wales_sDNA_25m_mean_header.csv (10.7 KB)
UKB_Wales_sDNA_25m_min_header.csv (10.3 KB)
UKB_Wales_sDNA_25m_max_header.csv (10.3 KB)
UKB_Wales_sDNA_25m_STD_header.csv (10.3 KB)
UKB_Wales_sDNA_50m_mean_header.csv (10.6 KB)
UKB_Wales_sDNA_50m_min_header.csv (10.3 KB)
UKB_Wales_sDNA_50m_max_header.csv (10.3 KB)
UKB_Wales_sDNA_50m_STD_header.csv (10.3 KB)

Table 5: Description of variables used for calculation of physical accessibility of street links

Table: UKB_Wales_sDNA_closest_link.csv		Tables: UKB_Wale	s_sDNA_25m_mean.csv s_sDNA_50m_mean.csv	Tables: UKB_Wa	Tables: UKB_Wales_sDNA_25m_min.csv UKB_Wales_sDNA_50m_min.csv		Tables: UKB_Wales_sDNA_25m_max.csv UKB_Wales_sDNA_50m_max.csv		Tables: UKB_Wales_sDNA_25m_STD.csv UKB_Wales_sDNA_50m_STD.csv	
Column	Variable*	Column	Variable*	Column	Variable*	Column	Variable*	Column	Vosiahla*	
No.	Variable*	No.		No.		No.	Variable*	No.	Variable*	
1	Encoded anonymised participant ID	1	Encoded anonymised participant ID	1	Encoded anonymised participant ID	1	Encoded anonymised participant ID	1	Encoded anonymised participant ID	
2	Distance to closest link	2	Link_frequency	2	Link_frequency	2	Link_frequency	2	Link_frequency	
3	Link_Connectivity	3	MEAN_Link_Connectivity	3	MIN_Link_Connectivity	3	MAX_Link_Connectivity	3	STD_Link_Connectivity	
4	Link_Length	4	MEAN_Link_Length	4	MIN_Link_Length	4	MAX_Link_Length	4	STD_Link_Length	
5	Link_Ang_Curvature	5	MEAN_Link_Ang_Curvature	5	MIN_Link_Ang_Curvature	5	MAX_Link_Ang_Curvature	5	STD_Link_Ang_Curvature	
6	Mean Ang Dist WI R400c	6	MEAN_Mean_Ang_Dist_WI_R40 Oc	6	MIN_Mean_Ang_Dist_WI_R400c	6	MAX Mean Ang Dist WI R400c	6	STD Mean Ang Dist WI R400c	
	NetQuantPD_Ang_WI_R40		MEAN_NetQuantPD_Ang_WI_R4		MIN_NetQuantPD_Ang_WI_R400		MAX_NetQuantPD_Ang_WI_R40		STD_NetQuantPD_Ang_WI_R400	
7	0c	7	00c	7	С	7	0c	7	С	
8	Betweenness_Ang_WI_R40 0c	8	MEAN_Betweenness_Ang_WI_R 400c	8	MIN_Betweenness_Ang_WI_R40 0c	8	MAX_Betweenness_Ang_WI_R40 0c	8	STD_Betweenness_Ang_WI_R40 0c	
0	TPBetweenness Ang WI R	0	MEAN TPBetweenness Ang WI	0	MIN TPBetweenness Ang WI R	0	MAX_TPBetweenness_Ang_WI_R	0	STD TPBetweenness Ang WI R	
9	400c	9	R400c	9	400c	9	400c	9	400c	
	TPDestination_Ang_WI_R4		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R40		MAX_TPDestination_Ang_WI_R4		STD_TPDestination_Ang_WI_R40	
10	00c	10	400c	10	0c	10	00c	10	0c	
11	Links_R400c	11	MEAN_Links_R400c	11	MIN_Links_R400c	11	MAX_Links_R400c	11	STD_Links_R400c	
12	Length_R400c	12	MEAN_Length_R400c	12	MIN_Length_R400c	12	MAX_Length_R400c	12	STD_Length_R400c	
13	Ang_Dist_R400c	13	MEAN_Ang_Dist_R400c	13	MIN_Ang_Dist_R400c	13	MAX_Ang_Dist_R400c	13	STD_Ang_Dist_R400c	
14	Weight_Wl_R400c	14	MEAN_Weight_WI_R400c	14	MIN_Weight_WI_R400c	14	MAX_Weight_WI_R400c	14	STD_Weight_WI_R400c	
15	MeanGeoLen_Ang_WI_R40 0c	15	MEAN_MeanGeoLen_Ang_WI_R 400c	15	MIN_MeanGeoLen_Ang_WI_R40 0c	15	MAX_MeanGeoLen_Ang_WI_R40 0c	15	STD_MeanGeoLen_Ang_WI_R40 0c	
	Mean_Crow_Flight_Wl_R4		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R40		MAX_Mean_Crow_Flight_Wl_R4		STD_Mean_Crow_Flight_WI_R40	
16	00c	16	400c	16	0c	16	00c	16	0c	
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R	
17	400c	17	_R400c	17	400c	17	400c	17	400c	
18	Convex_Hull_Area_R400c	18	MEAN_Convex_Hull_Area_R400c	18	MIN_Convex_Hull_Area_R400c	18	MAX_Convex_Hull_Area_R400c	18	STD_Convex_Hull_Area_R400c	
40	Convex_Hull_Perimeter_R4	10	MEAN_Convex_Hull_Perimeter_	4.0	MIN_Convex_Hull_Perimeter_R4	40	MAX_Convex_Hull_Perimeter_R4	40	STD_Convex_Hull_Perimeter_R4	
19	00c	19	R400c	19	00c	19	00c	19	OOC	
20	Convex_Hull_Max_Radius_ R400c	20	MEAN_Convex_Hull_MEAN_Radi us R400c	20	MIN_Convex_Hull_Max_Radius_ R400c	20	MAX_Convex_Hull_Max_Radius_ R400c	20	STD_Convex_Hull_Max_Radius_R 400c	
-0	Convex_Hull_Bearing_R400		MEAN Convex Hull Bearing R4	20	MIN Convex Hull Bearing R400	20	MAX Convex Hull Bearing R400	20	1000	
21	C	21	00c	21	c	21	c	21	STD_Convex_Hull_Bearing_R400c	

	Convex Hull Shape Index		MEAN Convex Hull Shape Inde		MIN Convex Hull Shape Index		MAX Convex Hull Shape Index		STD Convex Hull Shape Index
22	R400c	22	x R400c	22	R400c	22	R400c	22	R400c
			MEAN_Mean_Ang_Dist_WI_R80				_		
23	Mean_Ang_Dist_WI_R800c	23	0c	23	MIN_Mean_Ang_Dist_WI_R800c	23	MAX_Mean_Ang_Dist_WI_R800c	23	STD_Mean_Ang_Dist_WI_R800c
	NetQuantPD_Ang_WI_R80		MEAN_NetQuantPD_Ang_WI_R8		MIN_NetQuantPD_Ang_WI_R800		MAX_NetQuantPD_Ang_WI_R80		STD_NetQuantPD_Ang_WI_R800
24	Oc	24	00c	24	с	24	0c	24	c
	Betweenness_Ang_WI_R80		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R80		MAX_Betweenness_Ang_WI_R80		STD_Betweenness_Ang_WI_R80
25	Oc	25	800c	25	0c	25	0c	25	0c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
26	800c	26	_R800c	26	800c	26	800c	26	800c
	TPDestination_Ang_WI_R8		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R80		MAX_TPDestination_Ang_WI_R8		STD_TPDestination_Ang_WI_R80
27	00c	27	800c	27	0c	27	00c	27	0c
28	Links_R800c	28	MEAN_Links_R800c	28	MIN_Links_R800c	28	MAX_Links_R800c	28	STD_Links_R800c
29	Length_R800c	29	MEAN_Length_R800c	29	MIN_Length_R800c	29	MAX_Length_R800c	29	STD_Length_R800c
30	Ang_Dist_R800c	30	MEAN_Ang_Dist_R800c	30	MIN_Ang_Dist_R800c	30	MAX_Ang_Dist_R800c	30	STD_Ang_Dist_R800c
31	Weight_Wl_R800c	31	MEAN_Weight_WI_R800c	31	MIN_Weight_WI_R800c	31	MAX_Weight_WI_R800c	31	STD_Weight_WI_R800c
	MeanGeoLen_Ang_WI_R80		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R80		MAX_MeanGeoLen_Ang_WI_R80		STD_MeanGeoLen_Ang_WI_R80
32	0c	32	800c	32	0c	32	0c	32	0c
	Mean_Crow_Flight_Wl_R8		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_Wl_R80		MAX_Mean_Crow_Flight_WI_R8		STD_Mean_Crow_Flight_Wl_R80
33	00c	33	800c	33	0c	33	00c	33	0c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
34	800c	34	_R800c	34	800c	34	800c	34	800c
35	Convex_Hull_Area_R800c	35	MEAN_Convex_Hull_Area_R800c	35	MIN_Convex_Hull_Area_R800c	35	MAX_Convex_Hull_Area_R800c	35	STD_Convex_Hull_Area_R800c
	Convex_Hull_Perimeter_R8		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R8		MAX_Convex_Hull_Perimeter_R8		STD_Convex_Hull_Perimeter_R8
36	00c	36	R800c	36	00c	36	00c	36	00c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
37	R800c	37	us_R800c	37	R800c	37	R800c	37	800c
	Convex_Hull_Bearing_R800		MEAN_Convex_Hull_Bearing_R8		MIN_Convex_Hull_Bearing_R800		MAX_Convex_Hull_Bearing_R800		
38	C	38	00c	38	C	38	C	38	STD_Convex_Hull_Bearing_R800c
20	Convex_Hull_Shape_Index_	20	MEAN_Convex_Hull_Shape_Inde	20	MIN_Convex_Hull_Shape_Index_	20	MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
39	R800c	39	x_R800c	39	R800c	39	_R800c	39	R800c
40	Mean_Ang_Dist_WI_R1200	40	MEAN_Mean_Ang_Dist_WI_R12 00c	40	MIN_Mean_Ang_Dist_WI_R1200 c	40	MAX_Mean_Ang_Dist_WI_R1200	40	CTD Mann And Diet WI D1300s
40	C NetQuantPD Ang WI R12	40	MEAN NetQuantPD Ang WI R1	40	MIN NetQuantPD Ang WI R120	40	MAX NetQuantPD Ang WI R12	40	STD_Mean_Ang_Dist_WI_R1200c STD NetQuantPD Ang WI R120
41	00c	41	200c	41	Oc	41	00c	41	Oc
41	Betweenness_Ang_WI_R12	41	MEAN_Betweenness_Ang_WI_R	41	MIN_Betweenness_Ang_WI_R12	41	MAX_Betweenness_Ang_WI_R12	41	STD_Betweenness_Ang_WI_R12
42	00c	42	1200c	42	OOc	42	00c	42	00c
	TPBetweenness_Ang_WI_R	† ' -	MEAN_TPBetweenness_Ang_WI	74	MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
43	1200c	43	R1200c	43	1200c	43	1200c	43	1200c
	TPDestination_Ang_WI_R1	1.5	MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R12	† · · ·	MAX_TPDestination_Ang_WI_R1		STD_TPDestination_Ang_WI_R12
44	200c	44	1200c	44	00c	44	200c	44	00c
45	Links R1200c	45	MEAN_Links_R1200c	45	MIN_Links_R1200c	45	MAX_Links_R1200c	45	STD_Links_R1200c

46	Length R1200c	46	MEAN Length R1200c	46	MIN Length R1200c	46	MAX Length R1200c	46	STD Length R1200c
47	Ang Dist R1200c	47	MEAN_Ang_Dist_R1200c	47	MIN_Ang_Dist_R1200c	47	MAX_Ang_Dist_R1200c	47	STD_Ang_Dist_R1200c
									
48	Weight_Wl_R1200c	48	MEAN_Weight_WI_R1200c	48	MIN_Weight_WI_R1200c	48	MAX_Weight_WI_R1200c	48	STD_Weight_WI_R1200c
40	MeanGeoLen_Ang_Wl_R12	49	MEAN_MeanGeoLen_Ang_WI_R	40	MIN_MeanGeoLen_Ang_WI_R12	40	MAX_MeanGeoLen_Ang_WI_R12	40	STD_MeanGeoLen_Ang_WI_R12
49	00c Mean Crow Flight WI R1	49	1200c MEAN Mean Crow Flight WI R	49	00c MIN_Mean_Crow_Flight_WI_R12	49	00c MAX Mean Crow Flight WI R1	49	00c STD_Mean_Crow_Flight_Wl_R12
50	200c	50	1200c	50	OOc	50	200c	50	00c
30	Diversion_Ratio_Ang_WI_R	30	MEAN_Diversion_Ratio_Ang_WI	30	MIN_Diversion_Ratio_Ang_WI_R	30	MAX_Diversion_Ratio_Ang_WI_R	30	STD_Diversion_Ratio_Ang_WI_R
51	1200c	51	R1200c	51	1200c	51	1200c	51	1200c
		_	MEAN_Convex_Hull_Area_R120					_	
52	Convex_Hull_Area_R1200c	52	0c	52	MIN_Convex_Hull_Area_R1200c	52	MAX_Convex_Hull_Area_R1200c	52	STD_Convex_Hull_Area_R1200c
	Convex_Hull_Perimeter_R1		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R1		MAX_Convex_Hull_Perimeter_R1		STD_Convex_Hull_Perimeter_R1
53	200c	53	R1200c	53	200c	53	200c	53	200c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
54	R1200c	54	us_R1200c	54	R1200c	54	R1200c	54	1200c
	Convex_Hull_Bearing_R120		MEAN_Convex_Hull_Bearing_R1		MIN_Convex_Hull_Bearing_R120		MAX_Convex_Hull_Bearing_R120		STD_Convex_Hull_Bearing_R120
55	0c	55	200c	55	0c	55	0c	55	0c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
56	R1200c	56	x_R1200c	56	R1200c	56	_R1200c	56	R1200c
	Mean_Ang_Dist_WI_R1500		MEAN_Mean_Ang_Dist_WI_R15		MIN_Mean_Ang_Dist_WI_R1500		MAX_Mean_Ang_Dist_WI_R1500		STD Mark Are Birt Mil B4500
57	C	57	00c	57	C	57	C	57	STD_Mean_Ang_Dist_WI_R1500c
Ε0	NetQuantPD_Ang_Wl_R15 00c	F0	MEAN_NetQuantPD_Ang_WI_R1 500c	58	MIN_NetQuantPD_Ang_WI_R150	F0	MAX_NetQuantPD_Ang_WI_R15 00c	F0	STD_NetQuantPD_Ang_WI_R150 Oc
58	Betweenness_Ang_WI_R15	58	MEAN_Betweenness_Ang_WI_R	58	Oc MIN_Betweenness_Ang_WI_R15	58	MAX_Betweenness_Ang_WI_R15	58	STD_Betweenness_Ang_WI_R15
59	00c	59	1500c	59	00c	59	00c	59	00c
33	TPBetweenness_Ang_WI_R	33	MEAN TPBetweenness Ang WI	33	MIN_TPBetweenness_Ang_WI_R	33	MAX_TPBetweenness_Ang_WI_R	33	STD TPBetweenness Ang WI R
60	1500c	60	R1500c	60	1500c	60	1500c	60	1500c
	TPDestination_Ang_WI_R1	00	MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R15		MAX_TPDestination_Ang_WI_R1	00	STD_TPDestination_Ang_WI_R15
61	500c	61	1500c	61	00c	61	500c	61	00c
	11-1- P4500-	62	MEAN Lists BASOS	62	MINI Lists DAFOOs	62	MANY Lists DAFOOs	62	STD Lists D4500s
62	Links_R1500c	62	MEAN_Links_R1500c	62	MIN_Links_R1500c	62	MAX_Links_R1500c	62	STD_Links_R1500c
63	Length_R1500c	63	MEAN_Length_R1500c	63	MIN_Length_R1500c	63	MAX_Length_R1500c	63	STD_Length_R1500c
64	Ang_Dist_R1500c	64	MEAN_Ang_Dist_R1500c	64	MIN_Ang_Dist_R1500c	64	MAX_Ang_Dist_R1500c	64	STD_Ang_Dist_R1500c
65	Weight_Wl_R1500c	65	MEAN_Weight_WI_R1500c	65	MIN_Weight_WI_R1500c	65	MAX_Weight_WI_R1500c	65	STD_Weight_WI_R1500c
	MeanGeoLen_Ang_Wl_R15		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R15		MAX_MeanGeoLen_Ang_Wl_R15		STD_MeanGeoLen_Ang_WI_R15
66	00c	66	1500c	66	00c	66	00c	66	00c
	Mean_Crow_Flight_Wl_R1		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_Wl_R15		MAX_Mean_Crow_Flight_WI_R1		STD_Mean_Crow_Flight_Wl_R15
67	500c	67	1500c	67	00c	67	500c	67	00c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
68	1500c	68	_R1500c	68	1500c	68	1500c	68	1500c
			MEAN_Convex_Hull_Area_R150						
69	Convex_Hull_Area_R1500c	69	0c	69	MIN_Convex_Hull_Area_R1500c	69	MAX_Convex_Hull_Area_R1500c	69	STD_Convex_Hull_Area_R1500c

	Convex Hull Perimeter R1		MEAN Convex Hull Perimeter		MIN Convex Hull Perimeter R1		MAX Convex Hull Perimeter R1		STD Convex Hull Perimeter R1
70	500c	70	R1500c	70	500c	70	500c	70	500c
70	Convex_Hull_Max_Radius_	7.0	MEAN Convex Hull MEAN Radi	,,	MIN_Convex_Hull_Max_Radius_	70	MAX_Convex_Hull_Max_Radius_	70	STD_Convex_Hull_Max_Radius_R
71	R1500c	71	us R1500c	71	R1500c	71	R1500c	71	1500c
	Convex_Hull_Bearing_R150		MEAN_Convex_Hull_Bearing_R1		MIN_Convex_Hull_Bearing_R150		MAX_Convex_Hull_Bearing_R150		STD_Convex_Hull_Bearing_R150
72	0c	72	500c	72	0c	72	0c	72	0c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
73	R1500c	73	x_R1500c	73	R1500c	73	R1500c	73	R1500c
	Mean_Ang_Dist_WI_R2000		MEAN_Mean_Ang_Dist_WI_R20		MIN_Mean_Ang_Dist_WI_R2000		MAX_Mean_Ang_Dist_WI_R2000		
74	С	74	00c	74	С	74	С	74	STD_Mean_Ang_Dist_WI_R2000c
	NetQuantPD_Ang_WI_R20		MEAN_NetQuantPD_Ang_WI_R2		MIN_NetQuantPD_Ang_WI_R200		MAX_NetQuantPD_Ang_WI_R20		STD_NetQuantPD_Ang_WI_R200
75	00c	75	000c	75	0c	75	00c	75	0c
	Betweenness_Ang_WI_R20		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R20		MAX_Betweenness_Ang_WI_R20		STD_Betweenness_Ang_WI_R20
76	00c	76	2000c	76	00c	76	00c	76	00c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
77	2000c	77	_R2000c	77	2000c	77	2000c	77	2000c
	TPDestination_Ang_WI_R2		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R20		MAX_TPDestination_Ang_WI_R2		STD_TPDestination_Ang_WI_R20
78	000c	78	2000c	78	00c	78	000c	78	00c
79	Links_R2000c	79	MEAN_Links_R2000c	79	MIN_Links_R2000c	79	MAX_Links_R2000c	79	STD_Links_R2000c
80	Length_R2000c	80	MEAN_Length_R2000c	80	MIN_Length_R2000c	80	MAX_Length_R2000c	80	STD_Length_R2000c
81	Ang_Dist_R2000c	81	MEAN_Ang_Dist_R2000c	81	MIN_Ang_Dist_R2000c	81	MAX_Ang_Dist_R2000c	81	STD_Ang_Dist_R2000c
82	Weight_Wl_R2000c	82	MEAN_Weight_Wl_R2000c	82	MIN_Weight_WI_R2000c	82	MAX_Weight_WI_R2000c	82	STD_Weight_Wl_R2000c
	MeanGeoLen_Ang_WI_R20		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R20		MAX_MeanGeoLen_Ang_WI_R20		STD_MeanGeoLen_Ang_WI_R20
83	00c	83	2000c	83	00c	83	00c	83	00c
	Mean_Crow_Flight_Wl_R2		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_Wl_R20		MAX_Mean_Crow_Flight_Wl_R2		STD_Mean_Crow_Flight_Wl_R20
84	000c	84	2000c	84	00c	84	000c	84	00c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
85	2000c	85	_R2000c	85	2000c	85	2000c	85	2000c
			MEAN_Convex_Hull_Area_R200						
86	Convex_Hull_Area_R2000c	86	0c	86	MIN_Convex_Hull_Area_R2000c	86	MAX_Convex_Hull_Area_R2000c	86	STD_Convex_Hull_Area_R2000c
	Convex_Hull_Perimeter_R2		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R2		MAX_Convex_Hull_Perimeter_R2		STD_Convex_Hull_Perimeter_R2
87	000c	87	R2000c	87	000c	87	000c	87	000c
00	Convex_Hull_Max_Radius_	00	MEAN_Convex_Hull_MEAN_Radi	00	MIN_Convex_Hull_Max_Radius_	00	MAX_Convex_Hull_Max_Radius_	00	STD_Convex_Hull_Max_Radius_R
88	R2000c	88	us_R2000c	88	R2000c	88	R2000c	88	2000c
90	Convex_Hull_Bearing_R200	89	MEAN_Convex_Hull_Bearing_R2 000c	89	MIN_Convex_Hull_Bearing_R200 0c	89	MAX_Convex_Hull_Bearing_R200	89	STD_Convex_Hull_Bearing_R200
89	Oc Convex_Hull_Shape_Index_	89	MEAN_Convex_Hull_Shape_Inde	89	MIN_Convex_Hull_Shape_Index_	89	Oc MAX_Convex_Hull_Shape_Index	89	STD_Convex_Hull_Shape_Index_
90	R2000c	90	x R2000c	90	R2000c	90	R2000c	90	R2000c
50	Mean_Ang_Dist_WI_R3000	50	MEAN_Mean_Ang_Dist_WI_R30	50	MIN_Mean_Ang_Dist_WI_R3000	50	MAX_Mean_Ang_Dist_WI_R3000	50	120000
91	Wiedii_Alig_Dist_Wi_K3000	91	00c	91	r	91	IVIAA_IVIEdII_AIIB_DISL_VVI_R3000	91	STD Mean Ang Dist WI R3000c
J1	NetQuantPD_Ang_WI_R30	J1	MEAN_NetQuantPD_Ang_WI_R3	31	MIN_NetQuantPD_Ang_Wl_R300	J1	MAX_NetQuantPD_Ang_WI_R30	71	STD_NetQuantPD_Ang_WI_R300
92	00c	92	000c	92	Oc	92	00c	92	0c
J <u>L</u>	000	J2	0000	32	00	14	000	J.L	1 00

	Betweenness Ang WI R30		MEAN Betweenness Ang WI R		MIN Betweenness Ang WI R30		MAX Betweenness Ang WI R30		STD Betweenness Ang WI R30
93	00c	93	3000c	93	00c	93	00c	93	00c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
94	3000c	94	_R3000c	94	3000c	94	3000c	94	3000c
	TPDestination_Ang_WI_R3		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R30		MAX_TPDestination_Ang_WI_R3		STD_TPDestination_Ang_WI_R30
95	000c	95	3000c	95	00c	95	000c	95	00c
96	Links_R3000c	96	MEAN_Links_R3000c	96	MIN_Links_R3000c	96	MAX_Links_R3000c	96	STD_Links_R3000c
97	Length_R3000c	97	MEAN_Length_R3000c	97	MIN_Length_R3000c	97	MAX_Length_R3000c	97	STD_Length_R3000c
98	Ang_Dist_R3000c	98	MEAN_Ang_Dist_R3000c	98	MIN_Ang_Dist_R3000c	98	MAX_Ang_Dist_R3000c	98	STD_Ang_Dist_R3000c
99	Weight_Wl_R3000c	99	MEAN_Weight_WI_R3000c	99	MIN_Weight_WI_R3000c	99	MAX_Weight_WI_R3000c	99	STD_Weight_WI_R3000c
	MeanGeoLen_Ang_WI_R30		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R30		MAX_MeanGeoLen_Ang_WI_R30		STD_MeanGeoLen_Ang_WI_R30
100	00c	100	3000c	100	00c	100	00c	100	00c
	Mean_Crow_Flight_Wl_R3		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R30		MAX_Mean_Crow_Flight_WI_R3		STD_Mean_Crow_Flight_WI_R30
101	000c	101	3000c	101	00c	101	000c	101	00c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
102	3000c	102	_R3000c	102	3000c	102	3000c	102	3000c
			MEAN_Convex_Hull_Area_R300						
103	Convex_Hull_Area_R3000c	103	0c	103	MIN_Convex_Hull_Area_R3000c	103	MAX_Convex_Hull_Area_R3000c	103	STD_Convex_Hull_Area_R3000c
	Convex_Hull_Perimeter_R3		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R3		MAX_Convex_Hull_Perimeter_R3		STD_Convex_Hull_Perimeter_R3
104	000c	104	R3000c	104	000c	104	000c	104	000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
105	R3000c	105	us_R3000c	105	R3000c	105	R3000c	105	3000c
	Convex_Hull_Bearing_R300		MEAN_Convex_Hull_Bearing_R3		MIN_Convex_Hull_Bearing_R300		MAX_Convex_Hull_Bearing_R300		STD_Convex_Hull_Bearing_R300
106	0c	106	000c	106	0c	106	0c	106	0c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
107	R3000c	107	x_R3000c	107	R3000c	107	_R3000c	107	R3000c
	Mean_Ang_Dist_WI_R5000		MEAN_Mean_Ang_Dist_WI_R50		MIN_Mean_Ang_Dist_WI_R5000		MAX_Mean_Ang_Dist_WI_R5000		
108	С	108	00c	108	С	108	С	108	STD_Mean_Ang_Dist_WI_R5000c
	NetQuantPD_Ang_WI_R50		MEAN_NetQuantPD_Ang_WI_R5		MIN_NetQuantPD_Ang_WI_R500		MAX_NetQuantPD_Ang_WI_R50		STD_NetQuantPD_Ang_WI_R500
109	00c	109	000c	109	Oc	109	00c	109	0c
110	Betweenness_Ang_WI_R50	440	MEAN_Betweenness_Ang_WI_R	440	MIN_Betweenness_Ang_WI_R50	110	MAX_Betweenness_Ang_WI_R50	440	STD_Betweenness_Ang_WI_R50
110	00c	110	5000c	110	00c	110	00c	110	00c
111	TPBetweenness_Ang_WI_R 5000c	111	MEAN_TPBetweenness_Ang_WI R5000c	111	MIN_TPBetweenness_Ang_WI_R 5000c	111	MAX_TPBetweenness_Ang_WI_R 5000c	111	STD_TPBetweenness_Ang_WI_R 5000c
111		111	_	111	MIN_TPDestination_Ang_WI_R50	111		111	
112	TPDestination_Ang_WI_R5	112	MEAN_TPDestination_Ang_WI_R 5000c	112		112	MAX_TPDestination_Ang_WI_R5 000c	112	STD_TPDestination_Ang_WI_R50 00c
112	0000	112	30000	112	00c	112	0000	112	000
113	Links_R5000c	113	MEAN_Links_R5000c	113	MIN_Links_R5000c	113	MAX_Links_R5000c	113	STD_Links_R5000c
114	Length_R5000c	114	MEAN_Length_R5000c	114	MIN_Length_R5000c	114	MAX_Length_R5000c	114	STD_Length_R5000c
115	Ang_Dist_R5000c	115	MEAN_Ang_Dist_R5000c	115	MIN_Ang_Dist_R5000c	115	MAX_Ang_Dist_R5000c	115	STD_Ang_Dist_R5000c
116	Weight_WI_R5000c	116	MEAN_Weight_WI_R5000c	116	MIN_Weight_WI_R5000c	116	MAX_Weight_WI_R5000c	116	STD_Weight_WI_R5000c

	MeanGeoLen_Ang_Wl_R50		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R50		MAX_MeanGeoLen_Ang_WI_R50		STD_MeanGeoLen_Ang_WI_R50
117	00c	117	5000c	117	00c	117	00c	117	00c
	Mean_Crow_Flight_WI_R5		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R50		MAX_Mean_Crow_Flight_WI_R5		STD_Mean_Crow_Flight_WI_R50
118	000c	118	5000c	118	00c	118	000c	118	00c
	Diversion_Ratio_Ang_WI_R		MEAN Diversion Ratio Ang WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
119	5000c	119	R5000c	119	5000c	119	5000c	119	5000c
			MEAN_Convex_Hull_Area_R500						
120	Convex_Hull_Area_R5000c	120	0c	120	MIN_Convex_Hull_Area_R5000c	120	MAX_Convex_Hull_Area_R5000c	120	STD_Convex_Hull_Area_R5000c
	Convex_Hull_Perimeter_R5		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R5		MAX_Convex_Hull_Perimeter_R5		STD_Convex_Hull_Perimeter_R5
121	000c	121	R5000c	121	000c	121	000c	121	000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
122	R5000c	122	us_R5000c	122	R5000c	122	R5000c	122	5000c
	Convex_Hull_Bearing_R500		MEAN_Convex_Hull_Bearing_R5		MIN_Convex_Hull_Bearing_R500		MAX_Convex_Hull_Bearing_R500		STD_Convex_Hull_Bearing_R500
123	0c	123	000c	123	0c	123	0c	123	0c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
124	R5000c	124	x_R5000c	124	R5000c	124	_R5000c	124	R5000c
	Mean_Ang_Dist_WI_R7500		MEAN_Mean_Ang_Dist_WI_R75		MIN_Mean_Ang_Dist_WI_R7500		MAX_Mean_Ang_Dist_WI_R7500		
125	С	125	00c	125	С	125	С	125	STD_Mean_Ang_Dist_WI_R7500c
	NetQuantPD_Ang_WI_R75		MEAN_NetQuantPD_Ang_WI_R7		MIN_NetQuantPD_Ang_WI_R750		MAX_NetQuantPD_Ang_WI_R75		STD_NetQuantPD_Ang_WI_R750
126	00c	126	500c	126	0c	126	00c	126	0c
	Betweenness_Ang_WI_R75		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R75		MAX_Betweenness_Ang_WI_R75		STD_Betweenness_Ang_WI_R75
127	00c	127	7500c	127	00c	127	00c	127	00c
128	TPBetweenness_Ang_WI_R 7500c	128	MEAN_TPBetweenness_Ang_WI _R7500c	128	MIN_TPBetweenness_Ang_WI_R 7500c	128	MAX_TPBetweenness_Ang_WI_R 7500c	128	STD_TPBetweenness_Ang_WI_R 7500c
	TPDestination_Ang_WI_R7		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R75		MAX_TPDestination_Ang_WI_R7		STD_TPDestination_Ang_WI_R75
129	500c	129	7500c	129	00c	129	500c	129	00c
130	Links_R7500c	130	MEAN_Links_R7500c	130	MIN_Links_R7500c	130	MAX_Links_R7500c	130	STD_Links_R7500c
131	Length_R7500c	131	MEAN_Length_R7500c	131	MIN_Length_R7500c	131	MAX_Length_R7500c	131	STD_Length_R7500c
132	Ang_Dist_R7500c	132	MEAN_Ang_Dist_R7500c	132	MIN_Ang_Dist_R7500c	132	MAX_Ang_Dist_R7500c	132	STD_Ang_Dist_R7500c
133	Weight_WI_R7500c	133	MEAN_Weight_WI_R7500c	133	MIN_Weight_WI_R7500c	133	MAX_Weight_WI_R7500c	133	STD_Weight_WI_R7500c
	MeanGeoLen_Ang_WI_R75		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R75		MAX_MeanGeoLen_Ang_WI_R75		STD_MeanGeoLen_Ang_WI_R75
134	00c	134	7500c	134	00c	134	00c	134	00c
	Mean_Crow_Flight_Wl_R7		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R75		MAX_Mean_Crow_Flight_WI_R7		STD_Mean_Crow_Flight_Wl_R75
135	500c	135	7500c	135	00c	135	500c	135	00c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
136	7500c	136	_R7500c	136	7500c	136	7500c	136	7500c
			MEAN_Convex_Hull_Area_R750						
137	Convex_Hull_Area_R7500c	137	0c	137	MIN_Convex_Hull_Area_R7500c	137	MAX_Convex_Hull_Area_R7500c	137	STD_Convex_Hull_Area_R7500c
	Convex_Hull_Perimeter_R7		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R7		MAX_Convex_Hull_Perimeter_R7		STD_Convex_Hull_Perimeter_R7
138	500c	138	R7500c	138	500c	138	500c	138	500c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
139	R7500c	139	us_R7500c	139	R7500c	139	R7500c	139	7500c

	Convex_Hull_Bearing_R750		MEAN_Convex_Hull_Bearing_R7		MIN_Convex_Hull_Bearing_R750		MAX_Convex_Hull_Bearing_R750		STD_Convex_Hull_Bearing_R750
140	Oc	140	500c	140	0c	140	Oc	140	Oc
110	Convex_Hull_Shape_Index_	110	MEAN_Convex_Hull_Shape_Inde	110	MIN_Convex_Hull_Shape_Index_	110	MAX_Convex_Hull_Shape_Index	110	STD_Convex_Hull_Shape_Index_
141	R7500c	141	x R7500c	141	R7500c	141	R7500c	141	R7500c
	Mean_Ang_Dist_WI_R1000		MEAN_Mean_Ang_Dist_WI_R10		MIN_Mean_Ang_Dist_WI_R1000		MAX_Mean_Ang_Dist_WI_R1000		STD_Mean_Ang_Dist_WI_R1000
142	0c	142	000c	142	0c	142	0c	142	0c
	NetQuantPD_Ang_Wl_R10		MEAN_NetQuantPD_Ang_WI_R1		MIN_NetQuantPD_Ang_WI_R100		MAX_NetQuantPD_Ang_WI_R10		STD_NetQuantPD_Ang_WI_R100
143	000c	143	0000c	143	00c	143	000c	143	00c
	Betweenness_Ang_WI_R10		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R10		MAX_Betweenness_Ang_WI_R10		STD_Betweenness_Ang_WI_R10
144	000c	144	10000c	144	000c	144	000c	144	000c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
145	10000c	145	_R10000c	145	10000c	145	10000c	145	10000c
	TPDestination_Ang_WI_R1		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R10		MAX_TPDestination_Ang_WI_R1		STD_TPDestination_Ang_WI_R10
146	0000c	146	10000c	146	000c	146	0000c	146	000c
147	Links_R10000c	147	MEAN_Links_R10000c	147	MIN_Links_R10000c	147	MAX_Links_R10000c	147	STD_Links_R10000c
148	Length_R10000c	148	MEAN_Length_R10000c	148	MIN_Length_R10000c	148	MAX_Length_R10000c	148	STD_Length_R10000c
149	Ang_Dist_R10000c	149	MEAN_Ang_Dist_R10000c	149	MIN_Ang_Dist_R10000c	149	MAX_Ang_Dist_R10000c	149	STD_Ang_Dist_R10000c
150	Weight_Wl_R10000c	150	MEAN_Weight_WI_R10000c	150	MIN_Weight_Wl_R10000c	150	MAX_Weight_WI_R10000c	150	STD_Weight_WI_R10000c
	MeanGeoLen_Ang_Wl_R10		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R10		MAX_MeanGeoLen_Ang_WI_R10		STD_MeanGeoLen_Ang_WI_R10
151	000c	151	10000c	151	000c	151	000c	151	000c
	Mean_Crow_Flight_Wl_R1		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R10		MAX_Mean_Crow_Flight_Wl_R1		STD_Mean_Crow_Flight_Wl_R10
152	0000c	152	10000c	152	000c	152	0000c	152	000c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
153	10000c	153	_R10000c	153	10000c	153	10000c	153	10000c
	Convex_Hull_Area_R10000		MEAN_Convex_Hull_Area_R100		MIN_Convex_Hull_Area_R10000		MAX_Convex_Hull_Area_R10000		
154	C	154	00c	154	C	154	C	154	STD_Convex_Hull_Area_R10000c
155	Convex_Hull_Perimeter_R1	155	MEAN_Convex_Hull_Perimeter_	155	MIN_Convex_Hull_Perimeter_R1	155	MAX_Convex_Hull_Perimeter_R1	155	STD_Convex_Hull_Perimeter_R1
155	0000c	155	R10000c	155	0000c	155	0000c	155	0000c
156	Convex_Hull_Max_Radius_ R10000c	156	MEAN_Convex_Hull_MEAN_Radi us R10000c	156	MIN_Convex_Hull_Max_Radius_ R10000c	156	MAX_Convex_Hull_Max_Radius_ R10000c	156	STD_Convex_Hull_Max_Radius_R 10000c
130	Convex Hull Bearing R100	130	MEAN_Convex_Hull_Bearing_R1	130	MIN_Convex_Hull_Bearing_R100	130	MAX_Convex_Hull_Bearing_R100	130	STD_Convex_Hull_Bearing_R100
157	00c	157	0000c	157	00c	157	00c	157	00c
137	Convex_Hull_Shape_Index_	137	MEAN_Convex_Hull_Shape_Inde	137	MIN_Convex_Hull_Shape_Index_	137	MAX_Convex_Hull_Shape_Index	137	STD_Convex_Hull_Shape_Index_
158	R10000c	158	x R10000c	158	R10000c	158	R10000c	158	R10000c
	Mean_Ang_Dist_WI_R1250		MEAN_Mean_Ang_Dist_WI_R12		MIN_Mean_Ang_Dist_WI_R1250		MAX_Mean_Ang_Dist_WI_R1250		STD_Mean_Ang_Dist_WI_R1250
159	0c	159	500c	159	0c	159	0c	159	0c
	NetQuantPD_Ang_WI_R12		MEAN_NetQuantPD_Ang_WI_R1		MIN_NetQuantPD_Ang_WI_R125		MAX_NetQuantPD_Ang_WI_R12		STD_NetQuantPD_Ang_WI_R125
160	500c	160	2500c	160	00c	160	500c	160	00c
	Betweenness_Ang_WI_R12		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R12		MAX_Betweenness_Ang_WI_R12		STD_Betweenness_Ang_WI_R12
161	500c	161	12500c	161	500c	161	500c	161	500c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
162	12500c	162	_R12500c	162	12500c	162	12500c	162	12500c

	TPDestination_Ang_Wl_R1		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R12		MAX_TPDestination_Ang_WI_R1		STD_TPDestination_Ang_WI_R12
163	2500c	163	12500c	163	500c	163	2500c	163	500c
164	Links_R12500c	164	MEAN_Links_R12500c	164	MIN_Links_R12500c	164	MAX_Links_R12500c	164	STD_Links_R12500c
165	Length_R12500c	165	MEAN_Length_R12500c	165	MIN_Length_R12500c	165	MAX_Length_R12500c	165	STD_Length_R12500c
166	Ang_Dist_R12500c	166	MEAN_Ang_Dist_R12500c	166	MIN_Ang_Dist_R12500c	166	MAX_Ang_Dist_R12500c	166	STD_Ang_Dist_R12500c
167	Weight_Wl_R12500c	167	MEAN_Weight_WI_R12500c	167	MIN_Weight_WI_R12500c	167	MAX_Weight_WI_R12500c	167	STD_Weight_WI_R12500c
168	MeanGeoLen_Ang_WI_R12 500c	168	MEAN_MeanGeoLen_Ang_WI_R 12500c	168	MIN_MeanGeoLen_Ang_WI_R12 500c	168	MAX_MeanGeoLen_Ang_WI_R12 500c	168	STD_MeanGeoLen_Ang_Wl_R12 500c
100	Mean_Crow_Flight_Wl_R1	100	MEAN_Mean_Crow_Flight_WI_R	100	MIN_Mean_Crow_Flight_WI_R12	100	MAX_Mean_Crow_Flight_WI_R1	100	STD_Mean_Crow_Flight_Wl_R12
169	2500c	169	12500c	169	500c	169	2500c	169	500c
	Diversion_Ratio_Ang_Wl_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
170	12500c	170		170	12500c	170	12500c	170	12500c
	Convex_Hull_Area_R12500		MEAN_Convex_Hull_Area_R125		MIN_Convex_Hull_Area_R12500		MAX_Convex_Hull_Area_R12500		
171	С	171	00c	171	С	171	С	171	STD_Convex_Hull_Area_R12500c
	Convex_Hull_Perimeter_R1		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R1		MAX_Convex_Hull_Perimeter_R1		STD_Convex_Hull_Perimeter_R1
172	2500c	172	R12500c	172	2500c	172	2500c	172	2500c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
173	R12500c	173	us_R12500c	173	R12500c	173	R12500c	173	12500c
	Convex_Hull_Bearing_R125		MEAN_Convex_Hull_Bearing_R1		MIN_Convex_Hull_Bearing_R125		MAX_Convex_Hull_Bearing_R125		STD_Convex_Hull_Bearing_R125
174	00c	174	2500c	174	00c	174	00c	174	00c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
175	R12500c	175	x_R12500c	175	R12500c	175	_R12500c	175	R12500c
	Mean_Ang_Dist_WI_R1500		MEAN_Mean_Ang_Dist_WI_R15		MIN_Mean_Ang_Dist_WI_R1500		MAX_Mean_Ang_Dist_WI_R1500		STD_Mean_Ang_Dist_WI_R1500
176	0c	176	000c	176	0c	176	0c	176	0c
	NetQuantPD_Ang_Wl_R15		MEAN_NetQuantPD_Ang_WI_R1		MIN_NetQuantPD_Ang_WI_R150		MAX_NetQuantPD_Ang_WI_R15		STD_NetQuantPD_Ang_Wl_R150
177	000c	177	5000c	177	00c	177	000c	177	00c
	Betweenness_Ang_WI_R15		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R15		MAX_Betweenness_Ang_WI_R15		STD_Betweenness_Ang_WI_R15
178	000c	178	15000c	178	000c	178	000c	178	000c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
179	15000c	179	_R15000c	179	15000c	179	15000c	179	15000c
	TPDestination_Ang_Wl_R1		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R15		MAX_TPDestination_Ang_WI_R1		STD_TPDestination_Ang_WI_R15
180	5000c	180	15000c	180	000c	180	5000c	180	000c
181	Links_R15000c	181	MEAN_Links_R15000c	181	MIN_Links_R15000c	181	MAX_Links_R15000c	181	STD_Links_R15000c
182	Length_R15000c	182	MEAN_Length_R15000c	182	MIN_Length_R15000c	182	MAX_Length_R15000c	182	STD_Length_R15000c
183	Ang_Dist_R15000c	183	MEAN_Ang_Dist_R15000c	183	MIN_Ang_Dist_R15000c	183	MAX_Ang_Dist_R15000c	183	STD_Ang_Dist_R15000c
184	Weight_Wl_R15000c	184	MEAN_Weight_WI_R15000c	184	MIN_Weight_WI_R15000c	184	MAX_Weight_WI_R15000c	184	STD_Weight_WI_R15000c
	MeanGeoLen_Ang_WI_R15		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R15		MAX_MeanGeoLen_Ang_WI_R15		STD_MeanGeoLen_Ang_WI_R15
185	000c	185	15000c	185	000c	185	000c	185	000c
	Mean_Crow_Flight_Wl_R1		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R15		MAX_Mean_Crow_Flight_Wl_R1		STD_Mean_Crow_Flight_Wl_R15
186	5000c	186	15000c	186	000c	186	5000c	186	000c

	Diversion_Ratio_Ang_WI_R	1	MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
187	15000c	187	R15000c	187	15000c	187	15000c	187	15000c
107	Convex_Hull_Area_R15000	107	MEAN_Convex_Hull_Area_R150	107	MIN_Convex_Hull_Area_R15000	107	MAX Convex Hull Area R15000	107	130000
188	c	188	00c	188	C	188	c	188	STD Convex Hull Area R15000c
	Convex Hull Perimeter R1		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R1		MAX Convex Hull Perimeter R1		STD Convex Hull Perimeter R1
189	5000c	189	R15000c	189	5000c	189	5000c	189	5000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
190	R15000c	190	us_R15000c	190	R15000c	190	R15000c	190	15000c
	Convex_Hull_Bearing_R150		MEAN_Convex_Hull_Bearing_R1		MIN_Convex_Hull_Bearing_R150		MAX_Convex_Hull_Bearing_R150		STD_Convex_Hull_Bearing_R150
191	00c	191	5000c	191	00c	191	00c	191	00c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
192	R15000c	192	x_R15000c	192	R15000c	192	_R15000c	192	R15000c
	Mean_Ang_Dist_WI_R1750		MEAN_Mean_Ang_Dist_WI_R17		MIN_Mean_Ang_Dist_WI_R1750		MAX_Mean_Ang_Dist_WI_R1750		STD_Mean_Ang_Dist_WI_R1750
193	0c	193	500c	193	0c	193	0c	193	0c
	NetQuantPD_Ang_WI_R17		MEAN_NetQuantPD_Ang_WI_R1		MIN_NetQuantPD_Ang_WI_R175		MAX_NetQuantPD_Ang_WI_R17		STD_NetQuantPD_Ang_WI_R175
194	500c	194	7500c	194	00c	194	500c	194	00c
	Betweenness_Ang_WI_R17		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R17		MAX_Betweenness_Ang_WI_R17		STD_Betweenness_Ang_WI_R17
195	500c	195	17500c	195	500c	195	500c	195	500c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
196	17500c	196	_R17500c	196	17500c	196	17500c	196	17500c
	TPDestination_Ang_WI_R1		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R17		MAX_TPDestination_Ang_WI_R1		STD_TPDestination_Ang_WI_R17
197	7500c	197	17500c	197	500c	197	7500c	197	500c
198	Links_R17500c	198	MEAN_Links_R17500c	198	MIN_Links_R17500c	198	MAX_Links_R17500c	198	STD_Links_R17500c
199	Length_R17500c	199	MEAN_Length_R17500c	199	MIN_Length_R17500c	199	MAX_Length_R17500c	199	STD_Length_R17500c
200	Ang_Dist_R17500c	200	MEAN_Ang_Dist_R17500c	200	MIN_Ang_Dist_R17500c	200	MAX_Ang_Dist_R17500c	200	STD_Ang_Dist_R17500c
201	Weight_Wl_R17500c	201	MEAN_Weight_WI_R17500c	201	MIN_Weight_WI_R17500c	201	MAX_Weight_Wl_R17500c	201	STD_Weight_Wl_R17500c
	MeanGeoLen_Ang_Wl_R17		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R17		MAX_MeanGeoLen_Ang_WI_R17		STD_MeanGeoLen_Ang_WI_R17
202	500c	202	17500c	202	500c	202	500c	202	500c
	Mean_Crow_Flight_Wl_R1		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_Wl_R17		MAX_Mean_Crow_Flight_WI_R1		STD_Mean_Crow_Flight_Wl_R17
203	7500c	203	17500c	203	500c	203	7500c	203	500c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
204	17500c	204	_R17500c	204	17500c	204	17500c	204	17500c
	Convex_Hull_Area_R17500		MEAN_Convex_Hull_Area_R175		MIN_Convex_Hull_Area_R17500		MAX_Convex_Hull_Area_R17500		
205	C	205	00c	205	C	205	C	205	STD_Convex_Hull_Area_R17500c
205	Convex_Hull_Perimeter_R1	200	MEAN_Convex_Hull_Perimeter_	205	MIN_Convex_Hull_Perimeter_R1	200	MAX_Convex_Hull_Perimeter_R1	205	STD_Convex_Hull_Perimeter_R1
206	7500c	206	R17500c	206	7500c	206	7500c	206	7500c
207	Convex_Hull_Max_Radius_	207	MEAN_Convex_Hull_MEAN_Radi	207	MIN_Convex_Hull_Max_Radius_	207	MAX_Convex_Hull_Max_Radius_	207	STD_Convex_Hull_Max_Radius_R
207	R17500c	207	us_R17500c	207	R17500c	207	R17500c	207	17500c
200	Convex_Hull_Bearing_R175	200	MEAN_Convex_Hull_Bearing_R1	200	MIN_Convex_Hull_Bearing_R175	200	MAX_Convex_Hull_Bearing_R175	200	STD_Convex_Hull_Bearing_R175
208	Convey Hull Shane Index	208	7500c MEAN_Convex_Hull_Shape_Inde	208	00c MIN_Convex_Hull_Shape_Index_	208	00c	208	00c STD_Convex_Hull_Shape_Index_
209	Convex_Hull_Shape_Index_ R17500c	209	x R17500c	209	R17500c	209	MAX_Convex_Hull_Shape_Index R17500c	209	R17500c
209	K1/2000	209	x_k1\2000	209	KT\200C	209	_k1/2000	209	K1/SUUC

	Mean Ang Dist WI R2000		MEAN Mean Ang Dist WI R20		MIN Mean Ang Dist WI R2000		MAX_Mean_Ang_Dist_WI_R2000		STD_Mean_Ang_Dist_WI_R2000
210	0c	210	000c	210	0c	210	0c	210	0c
	NetQuantPD_Ang_WI_R20		MEAN_NetQuantPD_Ang_WI_R2		MIN_NetQuantPD_Ang_WI_R200		MAX_NetQuantPD_Ang_WI_R20		STD_NetQuantPD_Ang_WI_R200
211	000c	211	0000c	211	00c	211	000c	211	00c
	Betweenness_Ang_WI_R20		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R20		MAX_Betweenness_Ang_WI_R20		STD_Betweenness_Ang_WI_R20
212	000c	212	20000c	212	000c	212	000c	212	000c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
213	20000c	213	_R20000c	213	20000c	213	20000c	213	20000c
	TPDestination_Ang_WI_R2		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R20		MAX_TPDestination_Ang_WI_R2		STD_TPDestination_Ang_WI_R20
214	0000c	214	20000c	214	000c	214	0000c	214	000c
215	Links_R20000c	215	MEAN_Links_R20000c	215	MIN_Links_R20000c	215	MAX_Links_R20000c	215	STD_Links_R20000c
216	Length_R20000c	216	MEAN_Length_R20000c	216	MIN_Length_R20000c	216	MAX_Length_R20000c	216	STD_Length_R20000c
217	Ang_Dist_R20000c	217	MEAN_Ang_Dist_R20000c	217	MIN_Ang_Dist_R20000c	217	MAX_Ang_Dist_R20000c	217	STD_Ang_Dist_R20000c
218	Weight_Wl_R20000c	218	MEAN_Weight_WI_R20000c	218	MIN_Weight_WI_R20000c	218	MAX_Weight_WI_R20000c	218	STD_Weight_WI_R20000c
	MeanGeoLen_Ang_WI_R20		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R20		MAX_MeanGeoLen_Ang_WI_R20		STD_MeanGeoLen_Ang_WI_R20
219	000c	219	20000c	219	000c	219	000c	219	000c
	Mean_Crow_Flight_WI_R2		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R20		MAX_Mean_Crow_Flight_WI_R2		STD_Mean_Crow_Flight_Wl_R20
220	0000c	220	20000c	220	000c	220	0000c	220	000c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
221	20000c	221	_R20000c	221	20000c	221	20000c	221	20000c
	Convex_Hull_Area_R20000		MEAN_Convex_Hull_Area_R200		MIN_Convex_Hull_Area_R20000		MAX_Convex_Hull_Area_R20000		
222	С	222	00c	222	С	222	С	222	STD_Convex_Hull_Area_R20000c
	Convex_Hull_Perimeter_R2		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R2		MAX_Convex_Hull_Perimeter_R2		STD_Convex_Hull_Perimeter_R2
223	0000c	223	R20000c	223	0000c	223	0000c	223	0000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
224	R20000c	224	us_R20000c	224	R20000c	224	R20000c	224	20000c
	Convex_Hull_Bearing_R200		MEAN_Convex_Hull_Bearing_R2		MIN_Convex_Hull_Bearing_R200		MAX_Convex_Hull_Bearing_R200		STD_Convex_Hull_Bearing_R200
225	00c	225	0000c	225	00c	225	00c	225	00c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
226	R20000c	226	x_R20000c	226	R20000c	226	_R20000c	226	R20000c
	Mean_Ang_Dist_WI_R2500		MEAN_Mean_Ang_Dist_WI_R25		MIN_Mean_Ang_Dist_WI_R2500		MAX_Mean_Ang_Dist_WI_R2500		STD_Mean_Ang_Dist_WI_R2500
227	0c	227	000c	227	0c	227	0c	227	0c
222	NetQuantPD_Ang_WI_R25	222	MEAN_NetQuantPD_Ang_WI_R2	220	MIN_NetQuantPD_Ang_WI_R250	220	MAX_NetQuantPD_Ang_WI_R25	220	STD_NetQuantPD_Ang_WI_R250
228	000c	228	5000c	228	00c	228	000c	228	00c
229	Betweenness_Ang_WI_R25 000c	229	MEAN_Betweenness_Ang_WI_R 25000c	229	MIN_Betweenness_Ang_WI_R25 000c	229	MAX_Betweenness_Ang_WI_R25 000c	229	STD_Betweenness_Ang_WI_R25
	TPBetweenness_Ang_WI_R	_	MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R	_	MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
230	25000c	230	_R25000c	230	25000c	230	25000c	230	25000c
	TPDestination_Ang_WI_R2		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R25		MAX_TPDestination_Ang_WI_R2		STD_TPDestination_Ang_WI_R25
231	5000c	231	25000c	231	000c	231	5000c	231	000c
232	Links_R25000c	232	MEAN_Links_R25000c	232	MIN_Links_R25000c	232	MAX_Links_R25000c	232	STD_Links_R25000c
233	Length_R25000c	233	MEAN_Length_R25000c	233	MIN_Length_R25000c	233	MAX_Length_R25000c	233	STD_Length_R25000c

	1								
234	Ang_Dist_R25000c	234	MEAN_Ang_Dist_R25000c	234	MIN_Ang_Dist_R25000c	234	MAX_Ang_Dist_R25000c	234	STD_Ang_Dist_R25000c
235	Weight_Wl_R25000c	235	MEAN_Weight_WI_R25000c	235	MIN_Weight_WI_R25000c	235	MAX_Weight_WI_R25000c	235	STD_Weight_Wl_R25000c
	MeanGeoLen_Ang_Wl_R25		MEAN_MeanGeoLen_Ang_Wl_R		MIN_MeanGeoLen_Ang_WI_R25		MAX_MeanGeoLen_Ang_WI_R25		STD_MeanGeoLen_Ang_WI_R25
236	000c	236	25000c	236	000c	236	000c	236	000c
	Mean_Crow_Flight_Wl_R2		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R25		MAX_Mean_Crow_Flight_WI_R2		STD_Mean_Crow_Flight_Wl_R25
237	5000c	237	25000c	237	000c	237	5000c	237	000c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
238	25000c	238	_R25000c	238	25000c	238	25000c	238	25000c
	Convex_Hull_Area_R25000		MEAN_Convex_Hull_Area_R250		MIN_Convex_Hull_Area_R25000		MAX_Convex_Hull_Area_R25000		
239	С	239	00c	239	С	239	С	239	STD_Convex_Hull_Area_R25000c
	Convex_Hull_Perimeter_R2		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R2		MAX_Convex_Hull_Perimeter_R2		STD_Convex_Hull_Perimeter_R2
240	5000c	240	R25000c	240	5000c	240	5000c	240	5000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
241	R25000c	241	us_R25000c	241	R25000c	241	R25000c	241	25000c
	Convex_Hull_Bearing_R250		MEAN_Convex_Hull_Bearing_R2		MIN_Convex_Hull_Bearing_R250		MAX_Convex_Hull_Bearing_R250		STD_Convex_Hull_Bearing_R250
242	00c	242	5000c	242	00c	242	00c	242	00c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
243	R25000c	243	x_R25000c	243	R25000c	243	_R25000c	243	R25000c
	Mean_Ang_Dist_WI_R3000		MEAN_Mean_Ang_Dist_WI_R30		MIN_Mean_Ang_Dist_WI_R3000		MAX_Mean_Ang_Dist_WI_R3000		STD_Mean_Ang_Dist_WI_R3000
244	0c	244	000c	244	0c	244	0c	244	0c
	NetQuantPD_Ang_WI_R30		MEAN_NetQuantPD_Ang_WI_R3		MIN_NetQuantPD_Ang_WI_R300		MAX_NetQuantPD_Ang_WI_R30		STD_NetQuantPD_Ang_WI_R300
245	000c	245	0000c	245	00c	245	000c	245	00c
	Betweenness_Ang_WI_R30		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R30		MAX_Betweenness_Ang_WI_R30		STD_Betweenness_Ang_WI_R30
246	000c	246	30000c	246	000c	246	000c	246	000c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
247	30000c	247	_R30000c	247	30000c	247	30000c	247	30000c
	TPDestination_Ang_WI_R3		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R30		MAX_TPDestination_Ang_WI_R3		STD_TPDestination_Ang_WI_R30
248	0000c	248	30000c	248	000c	248	0000c	248	000c
249	Links R30000c	249	MEAN Links R30000c	249	MIN Links R30000c	249	MAX Links R30000c	249	STD Links R30000c
243	EIIIK3_K30000C	243	WEAN_EITIKS_N30000C	243	IVIIIV_EIIIK3_I\30000C	243	IVIAX_LITIKS_K30000C	249	310_EIIIK3_K30000C
250	Length_R30000c	250	MEAN_Length_R30000c	250	MIN_Length_R30000c	250	MAX_Length_R30000c	250	STD_Length_R30000c
251	Ang_Dist_R30000c	251	MEAN_Ang_Dist_R30000c	251	MIN_Ang_Dist_R30000c	251	MAX_Ang_Dist_R30000c	251	STD_Ang_Dist_R30000c
252	Weight WI R30000c	252	MEAN Weight WI R30000c	252	MIN Weight WI R30000c	252	MAX Weight WI R30000c	252	STD Weight WI R30000c
	MeanGeoLen_Ang_WI_R30		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R30		MAX_MeanGeoLen_Ang_WI_R30		STD_MeanGeoLen_Ang_WI_R30
253	000c	253	30000c	253	000c	253	000c	253	000c
	Mean_Crow_Flight_Wl_R3		MEAN_Mean_Crow_Flight_WI_R		MIN_Mean_Crow_Flight_WI_R30		MAX_Mean_Crow_Flight_WI_R3		STD_Mean_Crow_Flight_Wl_R30
254	0000c	254	30000c	254	000c	254	0000c	254	000c
	Diversion_Ratio_Ang_Wl_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
255	30000c	255	R30000c	255	30000c	255	30000c	255	30000c
	Convex_Hull_Area_R30000		MEAN_Convex_Hull_Area_R300		MIN_Convex_Hull_Area_R30000		MAX_Convex_Hull_Area_R30000		
256	c	256	00c	256		256	c	256	STD Convex Hull Area R30000c
	Convex_Hull_Perimeter_R3		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R3		MAX_Convex_Hull_Perimeter_R3		STD_Convex_Hull_Perimeter_R3
257	0000c	257	R30000c	257	0000c	257	0000c	257	0000c

	Convex Hull Max Radius		MEAN Convex Hull MEAN Radi		MIN Convex Hull Max Radius		MAX Convex Hull Max Radius		STD Convex Hull Max Radius R
258	R30000c	258	us R30000c	258	R30000c	258	R30000c	258	30000c
250	Convex_Hull_Bearing_R300	200	MEAN_Convex_Hull_Bearing_R3		MIN_Convex_Hull_Bearing_R300	200	MAX_Convex_Hull_Bearing_R300	250	STD_Convex_Hull_Bearing_R300
259	00c	259	0000c	259	00c	259	00c	259	00c
	Convex Hull Shape Index		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX Convex Hull Shape Index		STD_Convex_Hull_Shape_Index_
260	R30000c	260	x_R30000c	260	R30000c	260		260	R30000c
	Mean_Ang_Dist_WI_R3500		MEAN_Mean_Ang_Dist_WI_R35		MIN_Mean_Ang_Dist_WI_R3500		MAX_Mean_Ang_Dist_WI_R3500		STD_Mean_Ang_Dist_WI_R3500
261	0c	261	000c	261	0c	261	Oc	261	0c
	NetQuantPD_Ang_Wl_R35		MEAN_NetQuantPD_Ang_WI_R3		MIN_NetQuantPD_Ang_WI_R350		MAX_NetQuantPD_Ang_WI_R35		STD_NetQuantPD_Ang_WI_R350
262	000c	262	5000c	262	00c	262	000c	262	00c
	Betweenness_Ang_WI_R35		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R35		MAX_Betweenness_Ang_WI_R35		STD_Betweenness_Ang_WI_R35
263	000c	263	35000c	263	000c	263	000c	263	000c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
264	35000c	264	_R35000c	264	35000c	264	35000c	264	35000c
	TPDestination_Ang_WI_R3		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R35		MAX_TPDestination_Ang_WI_R3		STD_TPDestination_Ang_WI_R35
265	5000c	265	35000c	265	000c	265	5000c	265	000c
266	Links_R35000c	266	MEAN_Links_R35000c	266	MIN_Links_R35000c	266	MAX_Links_R35000c	266	STD_Links_R35000c
267	Length_R35000c	267	MEAN_Length_R35000c	267	MIN_Length_R35000c	267	MAX_Length_R35000c	267	STD_Length_R35000c
268	Ang_Dist_R35000c	268	MEAN_Ang_Dist_R35000c	268	MIN_Ang_Dist_R35000c	268	MAX_Ang_Dist_R35000c	268	STD_Ang_Dist_R35000c
269	Weight_WI_R35000c	269	MEAN_Weight_WI_R35000c	269	MIN_Weight_Wl_R35000c	269	MAX_Weight_WI_R35000c	269	STD_Weight_WI_R35000c
	MeanGeoLen_Ang_WI_R35		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R35		MAX_MeanGeoLen_Ang_WI_R35		STD_MeanGeoLen_Ang_WI_R35
270	000c	270	35000c	270	000c	270	000c	270	000c
	Mean_Crow_Flight_Wl_R3		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R35		MAX_Mean_Crow_Flight_Wl_R3		STD_Mean_Crow_Flight_Wl_R35
271	5000c	271	35000c	271	000c	271	5000c	271	000c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
272	35000c	272	_R35000c	272	35000c	272	35000c	272	35000c
	Convex_Hull_Area_R35000		MEAN_Convex_Hull_Area_R350		MIN_Convex_Hull_Area_R35000		MAX_Convex_Hull_Area_R35000		
273	С	273	00c	273	С	273	С	273	STD_Convex_Hull_Area_R35000c
	Convex_Hull_Perimeter_R3		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R3		MAX_Convex_Hull_Perimeter_R3		STD_Convex_Hull_Perimeter_R3
274	5000c	274	R35000c	274	5000c	274	5000c	274	5000c
275	Convex_Hull_Max_Radius_	275	MEAN_Convex_Hull_MEAN_Radi	275	MIN_Convex_Hull_Max_Radius_	275	MAX_Convex_Hull_Max_Radius_	275	STD_Convex_Hull_Max_Radius_R 35000c
275	R35000c	275	us_R35000c MEAN_Convex_Hull_Bearing_R3	275	R35000c MIN_Convex_Hull_Bearing_R350	275	R35000c MAX_Convex_Hull_Bearing_R350	275	STD_Convex_Hull_Bearing_R350
276	Convex_Hull_Bearing_R350 00c	276	5000c	276	00c	276	00c	276	O0c
270	Convex_Hull_Shape_Index_	270	MEAN_Convex_Hull_Shape_Inde	270	MIN_Convex_Hull_Shape_Index_	270	MAX_Convex_Hull_Shape_Index	270	STD_Convex_Hull_Shape_Index_
277	R35000c	277	x R35000c	277	R35000c	277	R35000c	277	R35000c
211	Mean Ang Dist WI R4000	211	MEAN_Mean_Ang_Dist_WI_R40	211	MIN_Mean_Ang_Dist_WI_R4000	211	MAX_Mean_Ang_Dist_WI_R4000	211	STD Mean Ang Dist WI R4000
278	Oc	278	000c	278	Oc	278	Oc	278	Oc Oc
_,0	NetQuantPD_Ang_WI_R40	_,0	MEAN_NetQuantPD_Ang_WI_R4	2,0	MIN_NetQuantPD_Ang_WI_R400	_,0	MAX_NetQuantPD_Ang_WI_R40		STD_NetQuantPD_Ang_WI_R400
279	000c	279	0000c	279	OOc	279	000c	279	00c
	Betweenness_Ang_WI_R40	T	MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R40	T	MAX_Betweenness_Ang_WI_R40		STD_Betweenness_Ang_WI_R40
		280	40000c		000c	280		ı	000c

	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
281	40000c	281	R40000c	281	40000c	281	40000c	281	4000c
	TPDestination_Ang_WI_R4		MEAN_TPDestination_Ang_WI_R		MIN_TPDestination_Ang_WI_R40		MAX_TPDestination_Ang_WI_R4		STD_TPDestination_Ang_WI_R40
282	0000c	282	40000c	282	000c	282	0000c	282	000c
283	Links_R40000c	283	MEAN_Links_R40000c	283	MIN_Links_R40000c	283	MAX_Links_R40000c	283	STD_Links_R40000c
284	Length_R40000c	284	MEAN_Length_R40000c	284	MIN_Length_R40000c	284	MAX_Length_R40000c	284	STD_Length_R40000c
285	Ang_Dist_R40000c	285	MEAN_Ang_Dist_R40000c	285	MIN_Ang_Dist_R40000c	285	MAX_Ang_Dist_R40000c	285	STD_Ang_Dist_R40000c
286	Weight_WI_R40000c	286	MEAN_Weight_WI_R40000c	286	MIN_Weight_WI_R40000c	286	MAX_Weight_WI_R40000c	286	STD_Weight_WI_R40000c
	MeanGeoLen_Ang_WI_R40		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R40		MAX_MeanGeoLen_Ang_WI_R40		STD_MeanGeoLen_Ang_WI_R40
287	000c	287	40000c	287	000c	287	000c	287	000c
	Mean_Crow_Flight_Wl_R4		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_Wl_R40		MAX_Mean_Crow_Flight_Wl_R4		STD_Mean_Crow_Flight_Wl_R40
288	0000c	288	40000c	288	000c	288	0000c	288	000c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
289	40000c	289	_R40000c	289	40000c	289	40000c	289	40000c
	Convex_Hull_Area_R40000		MEAN_Convex_Hull_Area_R400		MIN_Convex_Hull_Area_R40000		MAX_Convex_Hull_Area_R40000		
290	С	290	00c	290	С	290	С	290	STD_Convex_Hull_Area_R40000c
	Convex_Hull_Perimeter_R4		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R4		MAX_Convex_Hull_Perimeter_R4		STD_Convex_Hull_Perimeter_R4
291	0000c	291	R40000c	291	0000c	291	0000c	291	0000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
292	R40000c	292	us_R40000c	292	R40000c	292	R40000c	292	40000c
	Convex_Hull_Bearing_R400		MEAN_Convex_Hull_Bearing_R4		MIN_Convex_Hull_Bearing_R400		MAX_Convex_Hull_Bearing_R400		STD_Convex_Hull_Bearing_R400
293	00c	293	0000c	293	00c	293	00c	293	00c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
294	R40000c	294	x_R40000c	294	R40000c	294	_R40000c	294	R40000c
	Mean_Ang_Dist_WI_R4500		MEAN_Mean_Ang_Dist_WI_R45		MIN_Mean_Ang_Dist_WI_R4500		MAX_Mean_Ang_Dist_WI_R4500		STD_Mean_Ang_Dist_WI_R4500
295	0c	295	000c	295	0c	295	0c	295	0c
	NetQuantPD_Ang_WI_R45		MEAN_NetQuantPD_Ang_WI_R4		MIN_NetQuantPD_Ang_WI_R450		MAX_NetQuantPD_Ang_WI_R45		STD_NetQuantPD_Ang_WI_R450
296	000c	296	5000c	296	00c	296	000c	296	00c
	Betweenness_Ang_WI_R45		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R45		MAX_Betweenness_Ang_WI_R45		STD_Betweenness_Ang_WI_R45
297	000c	297	45000c	297	000c	297	000c	297	000c
	TPBetweenness_Ang_WI_R		MEAN_TPBetweenness_Ang_WI		MIN_TPBetweenness_Ang_WI_R		MAX_TPBetweenness_Ang_WI_R		STD_TPBetweenness_Ang_WI_R
298	45000c	298	_R45000c	298	45000c	298	45000c	298	45000c
200	TPDestination_Ang_WI_R4	200	MEAN_TPDestination_Ang_WI_R	200	MIN_TPDestination_Ang_WI_R45	200	MAX_TPDestination_Ang_WI_R4	200	STD_TPDestination_Ang_WI_R45
299	5000c	299	45000c	299	000c	299	5000c	299	000c
300	Links_R45000c	300	MEAN_Links_R45000c	300	MIN_Links_R45000c	300	MAX_Links_R45000c	300	STD_Links_R45000c
301	Length_R45000c	301	Length_R45000c	301	Length_R45000c	301	Length_R45000c	301	Length_R45000c
302	Ang_Dist_R45000c	302	MEAN_Ang_Dist_R45000c	302	MIN_Ang_Dist_R45000c	302	MAX_Ang_Dist_R45000c	302	STD_Ang_Dist_R45000c
303	Weight_WI_R45000c	303	MEAN_Weight_WI_R45000c	303	MIN_Weight_WI_R45000c	303	MAX_Weight_WI_R45000c	303	STD_Weight_WI_R45000c
	MeanGeoLen_Ang_WI_R45		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R45		MAX_MeanGeoLen_Ang_WI_R45		STD_MeanGeoLen_Ang_WI_R45
304	000c	304	45000c	304	000c	304	000c	304	000c

	Mean_Crow_Flight_WI_R4		MEAN Mean Crow Flight WI R		MIN_Mean_Crow_Flight_WI_R45		MAX_Mean_Crow_Flight_WI_R4		STD_Mean_Crow_Flight_WI_R45
305	5000c	305	45000c	305	000c	305	5000c	305	000c
303	Diversion_Ratio_Ang_WI_R	303	MEAN_Diversion_Ratio_Ang_WI	303	MIN_Diversion_Ratio_Ang_WI_R	303	MAX_Diversion_Ratio_Ang_WI_R	303	STD_Diversion_Ratio_Ang_WI_R
306	45000c	306	R45000c	306	45000c	306	45000c	306	45000c
	Convex_Hull_Area_R45000		MEAN_Convex_Hull_Area_R450		MIN_Convex_Hull_Area_R45000		MAX_Convex_Hull_Area_R45000		
307	c	307	00c	307	c	307	c	307	STD Convex Hull Area R45000c
	Convex_Hull_Perimeter_R4		MEAN_Convex_Hull_Perimeter_		MIN_Convex_Hull_Perimeter_R4		MAX_Convex_Hull_Perimeter_R4		STD Convex Hull Perimeter R4
308	5000c	308	R45000c	308	5000c	308	5000c	308	5000c
	Convex_Hull_Max_Radius_		MEAN_Convex_Hull_MEAN_Radi		MIN_Convex_Hull_Max_Radius_		MAX_Convex_Hull_Max_Radius_		STD_Convex_Hull_Max_Radius_R
309	R45000c	309	us_R45000c	309	R45000c	309	R45000c	309	45000c
	Convex_Hull_Bearing_R450		MEAN_Convex_Hull_Bearing_R4		MIN_Convex_Hull_Bearing_R450		MAX_Convex_Hull_Bearing_R450		STD_Convex_Hull_Bearing_R450
310	00c	310	5000c	310	00c	310	00c	310	00c
	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
311	R45000c	311	x_R45000c	311	R45000c	311	_R45000c	311	R45000c
	Mean_Ang_Dist_WI_R5000		MEAN_Mean_Ang_Dist_WI_R50		MIN_Mean_Ang_Dist_WI_R5000		MAX_Mean_Ang_Dist_WI_R5000		STD_Mean_Ang_Dist_WI_R5000
312	0c	312	000c	312	0c	312	0c	312	0c
	NetQuantPD_Ang_WI_R50		MEAN_NetQuantPD_Ang_WI_R5		MIN_NetQuantPD_Ang_WI_R500		MAX_NetQuantPD_Ang_WI_R50		STD_NetQuantPD_Ang_WI_R500
313	000c	313	0000c	313	00c	313	000c	313	00c
	Betweenness_Ang_WI_R50		MEAN_Betweenness_Ang_WI_R		MIN_Betweenness_Ang_WI_R50		MAX_Betweenness_Ang_WI_R50		STD_Betweenness_Ang_WI_R50
314	000c	314	50000c	314	000c	314	000c	314	000c
245	TPBetweenness_Ang_WI_R	245	MEAN_TPBetweenness_Ang_WI	245	MIN_TPBetweenness_Ang_WI_R	245	MAX_TPBetweenness_Ang_WI_R	245	STD_TPBetweenness_Ang_WI_R
315	50000c	315	_R50000c	315	50000c	315	50000c	315	50000c
316	TPDestination_Ang_WI_R5 0000c	316	MEAN_TPDestination_Ang_WI_R 50000c	316	MIN_TPDestination_Ang_WI_R50 000c	316	MAX_TPDestination_Ang_WI_R5 0000c	316	STD_TPDestination_Ang_WI_R50 000c
317	Links R50000c	317	MEAN Links R50000c	317	MIN Links R50000c	317	MAX Links R50000c	317	STD Links R50000c
318	Longth BE0000c	318	MEAN Longth BE0000c	318	MIN Longth BE0000s	318	MAX Longth BE0000c	318	STD Longth BE0000c
310	Length_R50000c	310	MEAN_Length_R50000c	310	MIN_Length_R50000c	310	MAX_Length_R50000c	310	STD_Length_R50000c
319	Ang_Dist_R50000c	319	MEAN_Ang_Dist_R50000c	319	MIN_Ang_Dist_R50000c	319	MAX_Ang_Dist_R50000c	319	STD_Ang_Dist_R50000c
320	Weight_Wl_R50000c	320	MEAN_Weight_WI_R50000c	320	MIN_Weight_WI_R50000c	320	MAX_Weight_WI_R50000c	320	STD_Weight_WI_R50000c
	MeanGeoLen_Ang_WI_R50		MEAN_MeanGeoLen_Ang_WI_R		MIN_MeanGeoLen_Ang_WI_R50		MAX_MeanGeoLen_Ang_WI_R50		STD_MeanGeoLen_Ang_WI_R50
321	000c	321	50000c	321	000c	321	000c	321	000c
	Mean_Crow_Flight_Wl_R5		MEAN_Mean_Crow_Flight_Wl_R		MIN_Mean_Crow_Flight_WI_R50		MAX_Mean_Crow_Flight_WI_R5		STD_Mean_Crow_Flight_Wl_R50
322	0000c	322	50000c	322	000c	322	0000c	322	000c
	Diversion_Ratio_Ang_WI_R		MEAN_Diversion_Ratio_Ang_WI		MIN_Diversion_Ratio_Ang_WI_R		MAX_Diversion_Ratio_Ang_WI_R		STD_Diversion_Ratio_Ang_WI_R
323	50000c	323	_R50000c	323	50000c	323	50000c	323	50000c
	Convex_Hull_Area_R50000		MEAN_Convex_Hull_Area_R500		MIN_Convex_Hull_Area_R50000		MAX_Convex_Hull_Area_R50000		
324	C	324	00c	324	C	324	C	324	STD_Convex_Hull_Area_R50000c
225	Convex_Hull_Perimeter_R5	225	MEAN_Convex_Hull_Perimeter_	225	MIN_Convex_Hull_Perimeter_R5	225	MAX_Convex_Hull_Perimeter_R5	225	STD_Convex_Hull_Perimeter_R5
325	0000c	325	R50000c	325	0000c	325	0000c	325	OOOOc
226	Convex_Hull_Max_Radius_	226	MEAN_Convex_Hull_MEAN_Radi	220	MIN_Convex_Hull_Max_Radius_	226	MAX_Convex_Hull_Max_Radius_ R50000c	226	STD_Convex_Hull_Max_Radius_R 50000c
326	R50000c	326	us_R50000c	326	R50000c MIN_Convex_Hull_Bearing_R500	326		326	
327	Convex_Hull_Bearing_R500 00c	327	MEAN_Convex_Hull_Bearing_R5 0000c	327	NIIN_Convex_Hull_Bearing_R500	327	MAX_Convex_Hull_Bearing_R500 00c	327	STD_Convex_Hull_Bearing_R500 00c
327	UUC	327	UUUUL	327	UUL	527	UUL	527	000

	Convex_Hull_Shape_Index_		MEAN_Convex_Hull_Shape_Inde		MIN_Convex_Hull_Shape_Index_		MAX_Convex_Hull_Shape_Index		STD_Convex_Hull_Shape_Index_
328	R50000c	328	x_R50000c	328	R50000c	328	_R50000c	328	R50000c

^{*} For meaning of each acronym used in the variable column and their description, please see Table 3.

4.3 Greenness

Normalized Difference Vegetation Index (NDVI) has been employed as an objective measure of greenness. The NDVI is a unitless index calculated from the reflectance measures in satellite data, comparing the amount of energy absorbed by the chlorophyll in the red portion and the amount scattered by the internal structure of the leaves in the near-infrared region. This contrast has been employed as an estimate for vegetation greenness, as indicated by the following formula:

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$

where RED and NIR stand for the spectral reflectance measurements acquired in the visible (red) and near-infrared regions, respectively. The index ranges between -1 and +1, with higher values reflective of healthy green vegetation and vice versa. A collection 0.50 metre resolution Colour Infrared (CIR) imagery data collected by Blue Sky were merged together, area of interest extracted and employed in the calculation of NDVI index in Raster Calculator - Spatial Analyst, ArcGIS 10.2. The CIR band 2, 630–690 nm, was used as the red region of the electromagnetic spectrum, while band 1, 760–900 nm, acted as the infrared region, so that the formulae used was NDVI = (Band 1 - Band 2) / (Band 1 + Band 2). Neighbourhoods of 0.5 and 1.0 kilometre Euclidean buffers around each UK Biobank participant's residence were defined and the greenness was calculated in terms of mean, minimum, maximum and standard deviation in the NDVI values within the defined 0.5 and 1.0 kilometre circular buffers.

Deliverable file 5:

File Name (1.33 MB)	Description
Wales_UKB_NDVI.csv	Normalized Difference Vegetation Index greenness within pre-defined Euclidean buffers (0.5 Km, 1.0 Km) of UK Biobank participant's residence.

Header file name: Wales_UKB_NDVI_Header.csv (172 bytes)

Table 6: Description of variables used

Column No.	Variable	Description
1	Encoded anonymised participant ID	-
2	NDVI_500m_mean	Mean NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
3	NDVI_500m_min	Minimum value of NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
4	NDVI_500m_max	Maximum value of NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
5	NDVI_500m_STD	Standard deviation in NDVI within 0.5 Km Euclidean buffer of UK Biobank participant's residence
6	NDVI_1000m_mean	Mean NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence
7	NDVI_1000m_min	Minimum value of NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence
8	NDVI_1000m_max	Maximum value of NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence
9	NDVI_1000m_STD	Standard deviation in NDVI within 1.0 Km Euclidean buffer of UK Biobank participant's residence

4.4 Terrain (slope)

A series of 5 metre resolution Bluesky digital terrain model were mosaicked together and the area of interest extracted. Slope analysis was conducted in Spatial Analyst, ArcGIS 10.2. As in the case of greenness, neighbourhoods of 0.5 and 1.0 kilometre Euclidean buffers around each UK Biobank participant's residence were defined and slope (in degrees) within an individual's home range was operationalized in terms of mean, minimum, maximum and standard deviation in the values within the defined 0.5 and 1.0 kilometre circular buffers.

Deliverable file 6:

File Name (size)	Description
UKB_Wales_slope.csv (1.62 MB)	Terrain (slope in degrees) within pre-defined Euclidean buffers (0.5 Km, 1.0 Km) of UK Biobank participant's residence.

Header file name: UKB_Wales_slope_Header.csv (188 bytes)

Table 7: Description of variables used

Column No.	Variable	Description
1	Encoded anonymised	
1	participant ID	-
	Slope500m_Mean	Mean slope within 0.5 Km Euclidean buffer of UK Biobank
2	oropeocom_mean	participant's residence
	SlanaE00m Minimum	Minimum value of slope within 0.5 Km Euclidean buffer of
3	Slope500m_Minimum	UK Biobank participant's residence
	Slope500m_Maximum	Maximum value of slope within 0.5 Km Euclidean buffer of
4		UK Biobank participant's residence
	Class FOO as CTD	Standard deviation in slope within 0.5 Km Euclidean buffer
5	Slope500m_STD	of UK Biobank participant's residence
	Cl 4000	Mean slope within 1.0 Km Euclidean buffer of UK Biobank
6	Slope1000m_Mean	participant's residence
	si 4000 hai i	Minimum value of slope within 1.0 Km Euclidean buffer of
7	Slope1000m_Minimum	UK Biobank participant's residence
	Cl 4000	Maximum value of slope within 1.0 Km Euclidean buffer of
8	Slope1000m_Maximum	UK Biobank participant's residence
	Classication of CTD	Standard deviation in slope within 1.0 Km Euclidean buffer
9	Slope1000m_STD	of UK Biobank participant's residence

4.5 Welsh index of multiple deprivation (area-level deprivation)

The Welsh index of multiple deprivation (WIMD) scores, measured at the level of lower super output areas (LSOA) census areas have been employed as indicators of neighbourhood deprivation. WIMD 2008 and 2011 have been employed in the present study. The composite WIMD score originates from eight unitless indicators of disadvantage (so-called *domain indices*) for income, employment, health, education, access to services, community safety, physical environment and housing having domain weights of 23.5%, 23.5%, 14%, 14%, 10%, 5%, 5% and 5% respectively⁴⁹. Thus, each geocoded UK respondent's address was associated with the WIMD (2008 and 2011) scores of the LSOA in which it's spatially located.

Deliverable file 7:

File Name (size)	Description				
UKB_Wales_WIMD.csv (2.16 MB)	WIMD 2008 and 2011 scores of the LSOAs within which UK Biobank participant resides.				

Header file name: UKB_Wales_WIMD_Header.csv (528 bytes)

Table 8: Description of variables used

Column		
No.	Variables	Description
1	Encoded anonymised participant ID	-
2	LSOA_2011_code	2011 lower super output area code
3	LSOA_2011_name	2011 lower super output area code
4	Income_2008_score	WIMD 2008 income domain
5	Employment_2008_score	WIMD 2008 employment domain
6	Health_2008_score	WIMD 2008 health domain
7	Education_2008_score	WIMD 2008 education domain
8	Access_to_services_2008_score	WIMD 2008 access to services domain
9	Housing_2008_score	WIMD 2008 housing domain
10	Physical_environment_2008_score	WIMD 2008 physical environment domain
11	Community_safety_2008_score	WIMD 2008 community safety domain
12	WIMD_2008_score	WIMD 2008 overall score
13	Income_2011_score	WIMD 2011 income domain
14	Employment_2011_score	WIMD 2011 employment domain
15	Health_2011_score	WIMD 2011 health domain
16	Education_2011_score	WIMD 2011 education domain
17	Access_to_services_2011_score	WIMD 2011 access to services domain
18	Housing_2011_score	WIMD 2011 housing domain
19	Physical_environment_2011_score	WIMD 2011 physical environment domain
20	Community_safety_2011_score	WIMD 2011 community safety domain
21	WIMD_2011_score	WIMD 2011 overall score

4.6 Building class

The building class GIS datasets were extracted for the area of interest. The building footprints were subsequently linked with the geocoded UK Biobank participants' residences through a spatial query. After taking in to account the missing data, linkages could be obtained for N=15,470 Biobank respondents. There are 9 age categories and 19 type categories in this dataset. However, age categories 1, 2 and 8 as well as type categories of 3, 5 and 15 have been removed from the latest release (indicated by DNU; see Fig. 1). The age and type codes are combined together to form the building class code of each dwelling.

Deliverable file 8:

File Name (size)	Description					
Wales_UKB_Building_Class.csv (587 KB)	Building class of the dwelling within which UK Biobank participant resides.					

Header file name: Wales_UKB_Building_Class_Header.csv (111 bytes)

Table 9: Building class quality code used⁵⁰

Class code	Definition
A	 Very experienced PI compiled the dataset The imagery used was 12.5cm resolution or better The imagery was of very good or better quality with high definition of building features Field verification was undertaken with fieldwork photos available Some local knowledge was available or gained during the field visit.
В	 Experienced PI compiled the dataset The imagery used was 25cm resolution or better The imagery was of good or better quality with reasonable definition of building features Field verification was undertaken Some local knowledge was available or gained during the field visit
С	 Less experienced PI compiled the dataset The imagery used was 50cm resolution or better The imagery was often of a poor quality with poor definition of building features Only limited field verification was undertaken Little local knowledge was available or gained during the field visit.

Version 6 September 2012

IMAGE TO INFORMATION BUILDING CLASS REFERENCE SHEET

Cities Revealed		BUILDING CLASS REFERENCE SHEET								
	AGE	Historio to end Georgian -1837	Early and Middle Victorian 1837-1870	Late Victorian/ Edwardian 1870-1914	World War 1 - World War 2 1814-1846	Post war regeneration 1945-1984	31xtles/ seventies 1994- 1979	Modern 1979-1999	Recent years 2000-photo date*	Unknown date
TYPE			3		4	5	6	7	8	0
Very Tall Flats (point blooks)	1					55	74	93	(113) DNU	
Tall flats 6-16 storeys (slabs)	2					56	75	94	(114) DNU	
Medium height flats 6-8 storeys	3			(25) DNU	(40) DNU	(57) DNU	(76) DNU	(95) DNU	(115) DNU	
Lower 3-4 storey and smaller flats, detached and linked	4			26	41	58	77	96	(116) DNU	
Tall terraces 3-4 storeys	5	(2) DNU	(13) DNU	(27) DNU	(42) DNU	(59) DNU	(78) DNU	(97) DNU	(117) DNU	
Low terraces, 2 storeys with large T- rear extension	6	(3) DNU	(14) DNU	28	43	60	79	98	(118) DNU	
Low terraces, small	5	(4) DNU	(15) DNU	29	44	61	80	99	(119) DNU	
Linked and step linked houses, 2-3 or mixed 2 and 3 storeys	8					62	81	100	(120) DNU	
Planned balanced- mixed estates	9					63	82	101	121	
Standard size semis	10	(5) DNU	(16) DNU	30	45	64	83	102	(122) DNU	
Semi type house in multiples of 4,8,8 etc.	11			31	46	65	84	103	(123) DNU	
Large property semis	12	(6) DNU	(17) DNU	32	47	66	85	104	(124) DNU	
Smaller detached houses	13	(7) DNU	(18) DNU	33	48	67	86	105	(125) DNU	
Large detached houses	14	(8) DNU	(19) DNU	34	49	68	87	106	(126) DNU	
Very large detached houses, sometimes converted to flats	.4	(9) DNU	(20) DNU	(35) DNU	(50) DNU	(69) DNU	(88) DNU	(107) DNU	(127) DNU	
Mixed housing in small settlements	16									108
Non residential building	17									132
Probably Residential building - Unknown classification	18									333
Address point unreliable - no	19									999

Fig. 2 Building class codes⁵¹

Table 10: Description of variables used

Column		
No.	Variables	Description
1	Encoded anonymised participant ID	-
2	Building_Class_code	Refer fig. 2
3	Age_code	Refer fig. 2
4	Type_code	Refer fig. 2
5	Quality_code	Refer Table 9
6	Class_Name	Categorized as public and non-public buildings

5. References:

- 1. Sarkar, C., Webster, C. and Gallacher, J. (2014) Healthy Cities: Public Health through Urban Planning. Cheltenham, UK: Edward Elgar Publishing Limited. (*In press, due April 2014*).
- 2. Litman, T. (2003) Measuring transportation: traffic, mobility and accessibility, ITE Journal (Institute of Transportation Engineers), 73, 28–32.
- 3. Norman, G.J., Nutter, S.K., Ryan, S., Sallis, J.F., Calfas, K.J. and Patrick, K. (2006) Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. Journal of Physical Activity and Health, 3, S118–28.
- 4. Diez Roux, A.V., Evenson, K.R., McGinn, A.P., Brown, D.G., Moore, L., Brines, S. and Jacobs, D.R., Jr (2007) Availability of recreational resources and physical activity in adults. American Journal of Public Health, 97, 493–9.
- 5. Nielsen, T.S., Hansen, K.B., 2007. Do green areas affect health? Results from a Danish survey on the use of green areas and health indicators. Health and Place 13, 839–850.
- 6. Björk, J., Albin, M., Grahn, P., Jacobsson, H., Ardö, J., Wadbro, J. and Ostergren, P.O. (2008) Recreational values of the natural environment in relation to neighbourhood satisfaction, physical activity, obesity and wellbeing. Journal of Epidemiology and Community Health, 62.
- 7. Wolch, J., Jerrett, M., Reynolds, K., McConnell, R., Chang, R., Dahmann, N., Brady, K., Gilliland, F., Su, J.G., Berhane, K., 2011. Childhood obesity and proximity to urban parks and recreational resources: a longitudinal cohort study. Health and Place 17, 207–214.
- 8. Handy, S., Cao, X. and Mokhtarian, P.L. (2006) Self-selection in the relationship between the built environment and walking: empirical evidence from Northern California. Journal of the American Planning Association, 72, 55–74.

- 9. Cerin, E., Leslie, E., Toit, L., Owen, N. and Frank, L.D. (2007) Destinations that matter: associations with walking for transport. Health and Place, 13, 713–24.
- 10. Saarloos, D., Alfonso, H., Giles-Corti, B., Middleton, N. and Almeida, O.P. (2011) The built environment and depression in later life: the Health in Men Study. American Journal of Geriatric Psychiatry, 19, 461–70.
- Sallis, J.F., Bowles, H.R., Bauman, A., Ainsworth, B.E., Bull, F.C., Craig, C.L., Sjöström, M., De Bourdeaudhuij, I., Lefevre, J., Matsudo, V., Matsudo, S., Macfarlane, D.J., Gomez, L.F., Inoue, S., Murase, N., Volbekiene, V., McLean, G., Carr, H., Heggebo, L.K., Tomten, H. and Bergman, P. (2009) Neighborhood environments and physical activity among adults in 11 countries. American Journal of Preventive Medicine, 36, 484–90.
- 12. Wood, L., Frank, L.D. and Giles-Corti, B. (2010) Sense of community and its relationship with walking and neighborhood design. Social Science and Medicine, 70, 1381–90.
- 13. Bassett, D.R., Jr, Pucher, J., Buehler, R., Thompson, D.L. and Crouter, S.E. (2008) Walking, cycling, and obesity rates in Europe, North America and Australia. Journal of Physical Activity and Health, 5, 795–814.
- 14. Brown, B.B. and Werner, C.M. (2008) Before and after a new light rail stop: resident attitudes, travel behavior, and obesity. Journal of the American Planning Association, 75, 5—12.
- 15. Edwards, R.D. (2008) Public transit, obesity, and medical costs: assessing the magnitudes. Preventive Medicine, 46, 14–21.
- 16. Inagami, S., Cohen, D.A., Finch, B.K. and Asch, S.M. (2006) You are where you shop: grocery store locations, weight, and neighborhoods. American Journal of Preventive Medicine, 31, 10–17.
- 17. Morland, K., Diez Roux, A.V. and Wing, S. (2006) Supermarkets, other food stores, and obesity: the Atherosclerosis Risk in Communities Study. American Journal of Preventive Medicine, 30, 333–9.
- 18. Black, J.L., Macinko, J., Dixon, L.B. and Fryer, J.G.E. (2010) Neighborhoods and obesity in New York City. Health and Place, 16, 489–99.
- 19. Giles-Corti, B., Macintyre, S., Clarkson, J.P., Pikora, T. and Donovan, R.J. (2003) Environmental and lifestyle factors associated with overweight and obesity in Perth, Australia. American Journal of Health Promotion, 18, 93–102.
- 20. Rutt, C.D., Coleman, K.J., 2005. Examining the relationships among built environment, physical activity, and body mass index in El Paso, TX. Preventive Medicine 40, 831–841.

- 21. Field, A., Witten, K., Robinson, E. and Pledger, M. (2004) Who gets to what? Access to community resources in two New Zealand cities. Urban Policy and Research, 22, 189–205.
- 22. Pearce, J., Witten, K., Bartie, P., 2006. Neighbourhoods and health: a GIS approach to measuring community resource accessibility. Journal of Epidemiology and Community Health 60, 389–395.
- 23. Lovett, A., Haynes, R., Sünnenberg, G. and Gale, S. (2002) Car travel time and accessibility by bus to general practitioner services: a study using patient registers and GIS. Social Science and Medicine, 55, 97–111.
- 24. Luo, W. and Wang, F. (2003) Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. Environment and Planning B: Planning and Design, 30, 865–84.
- 25. Frank, L.D., Andresen, M.A. and Schmid, T.L. (2004) Obesity relationships with community design, physical activity, and time spent in cars. American Journal of Preventive Medicine, 27, 87–96.
- 26. Li, F., Harmer, P.A., Cardinal, B.J., Bosworth, M., Acock, A., Johnson-Shelton, D. and Moore, J.M. (2008) Built environment, adiposity, and physical activity in adults aged 50–75. American Journal of Preventive Medicine, 35, 38–46.
- 27. Troped, P.J., Wilson, J.S., Matthews, C.E., Cromley, E.K. and Melly, S.J. (2010) The built environment and location-based physical activity. American Journal of Preventive Medicine, 38, 429–38.
- 28. Ball, K., Lamb, K., Travaglini, N. and Ellaway, A. (2012) Street connectivity and obesity in Glasgow, Scotland: impact of age, sex and socioeconomic position. Health and Place, 18, 1307–13.
- 29. Sarkar, C., Gallacher, J. and Webster, C. (2013) Built environment configuration and change in body mass index: the Caerphilly Prospective Study (CaPS). Health and Place, 19, 33–44.
- 30. Sarkar, C., Gallacher, J. and Webster, C. (2013) Urban built environment configuration and psychological distress in older men: Results from the Caerphilly study. BMC Public Health, 13, 695.
- 31. Mehta, N.K. and Chang, V.W. (2008) Weight status and restaurant availability: a multilevel analysis. American Journal of Preventive Medicine, 34, 127.

- 32. Dengel, D.R., Hearst, M.O., Harmon, J.H., Forsyth, A. and Lytle, L.A. (2009) Does the built environment relate to the metabolic syndrome in adolescents? Health and Place, 15, 946–51.
- 33. Burgoine, T., Alvanides, S. and Lake, A.A. (2011) Assessing the obesogenic environment of North East England. Health and Place, 17, 738–47.
- 34. Huckle, T., Huakau, J., Sweetsur, P., Huisman, O., Casswell, S. 92008) Density of alcohol outlets and teenage drinking: Living in an alcogenic environment is associated with higher consumption in a metropolitan setting. Addiction, 103, 1614-1621.
- 35. Fone, D., Dunstan, F., White, J., Webster, C., Rodgers, S., Lee, S., Shiode, N., Orford, S., Weightman, A. and Brennan, I. (2012) Change in alcohol outlet density and alcohol-related harm to population health (CHALICE). BMC Public Health, 12, 428.
- 36. Diez Roux, A. V. (2004) Estimating neighborhood health effects: The challenges of causal inference in a complex world. Social Science and Medicine, 58, 1953-1960.
- 37. Diez Roux, A. V. (2004) The study of group-level factors in epidemiology: rethinking variables, study designs, and analytical approaches. Epidemiologic Reviews, 26, 104-111.
- 38. Manolio, T. A. & Collins, R. (2010) Enhancing the feasibility of large cohort studies. The Journal of the American Medical Association, 304, 2290-2291.
- 39. Manolio, T. A., Weis, B. K., Cowie, C. C., Hoover, R. N., Hudson, K., Kramer, B. S., Berg, C., Collins, R., Ewart, W. & Gaziano, J. M. 2012. New models for large prospective studies: Is there a better way? American Journal of Epidemiology, 175, 859-866.
- 40. Gallacher, J.E.J. (2007) The case for large scale fungible cohorts. European Journal of Public Health, 17, 548–549.
- 41. UK Biobank (2007) UK Biobank: Protocol for a large-scale prospective epidemiological resource. http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf.
- 42. Collins, R. (2012) What makes UK Biobank special? The Lancet, 379, 1173-1174.
- 43. Ordnance Survey UK (2012) AddressBase Products: Getting started guide, available at: http://www.ordnancesurvey.co.uk/docs/user-guides/addressbase-products-getting-started-guide.pdf.
- 44. Ordnance Survey UK (2013) AddressBase Products: User Guide, v1.3 06/2013, available at: http://www.ordnancesurvey.co.uk/docs/user-guides/addressbase-products-user-guide.pdf.

- 45. Ordnance Survey UK (2012) AddressBase Products: Classification scheme, v 1.1 04/2012, available at: http://www.ordnancesurvey.co.uk/docs/user-guides/addressbase-plus-premium-classification-codes.zip.
- 46. Department of Transport (2012) NPTG and NaPTAN Schema Guide, 2.4-v0.57, available at: http://www.dft.gov.uk/naptan/schema/schemas.htm#2.4guide.
- 47. Hillier, B. (1996) Space is the machine: A configurational theory of architecture. Cambridge: Cambridge University Press.
- 48. Chiaradia, A.J., Webster, C. and Crispin, C. (2013) sDNA: A software for spatial design network analysis. Specifications, available at: http://www.cardiff.ac.uk/sdna/.
- 49. Welsh Government (2011) Welsh Index of Multiple Deprivation 2011: Summary Report, available at: http://wales.gov.uk/docs/statistics/2011/110831wimd11summaryen.pdf.
- 50. GeoInformation Group (2012) Cities Revealed building class datasets: Note to users, available at:
 http://www.landmap.ac.uk/images/stories/datasets/building_class_100/Building_Class_Note_s_2012.pdf.
- 51. GeoInformation Group (2012) Image to information: Building class reference sheet, available at:

 http://www.landmap.ac.uk/images/stories/datasets/building_class100/Building_Class_Reference_sheet_v6_Sep_12.pdf.