The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	A Novel Silane Primer System Approach for Resin Zirconia Bonding
Author(s)	Lung, CYK; Matinlinna, JP; Kukk, E
Citation	The 89th General Session and Exhibition of the IADR, 40th Annual Meeting and Exhibition of the AADR and 35th Annual Meeting of the CADR, San Diego, CA., 16-19 March 2011.
Issued Date	2011
URL	http://hdl.handle.net/10722/209837
Rights	Creative Commons: Attribution 3.0 Hong Kong License

A NOVEL SILANE PRIMER SYSTEM APPROACH FOR RESIN ZIRCONIA BONDING

OBJECTIVE: To investigate the effect of two cross-linking silanes blended with 3acryloxypropyltrimethoxysilane on the shear bond strength between resin cement and silicacoated zirconia.

MATERIALS AND METHODS: 90 specimens of zirconia (Nobel Biocare) were subjected to silica-coating by Rocatec Plus (3M ESPE, 110 μ m) sand at an operation pressure of 280 kPa, for 30 s/cm². 3M ESPE Sil-silane (3M ESPE) was used as a control. Primers of 1.0 vol% of 3-acryloxypropyltrimethoxysilane (ACPS), with 0.5 vol% cross-linking silanes bis-1,2-(triethoxysilyl) ethane (BTSE; Gelest) and bis[3-(trimethoxysilyl)propyl] amine (BTMA; ABCR) were prepared in a 95% ethanol and 5% deionised-water solvent mixture. The solutions were applied onto silica-coated zirconia surfaces and allowed to react for 5 min. RelyX resin cement (3M ESPE) was introduced into cylindrical stubs onto the zirconia surface and light-cured for 40 s twice. Half of the specimens were subjected to shear bond strength testing after dry storage and the other half after thermo-cycling for 6000 cycles, in an Instron machine. The silanized surfaces were analyzed with X-ray photoelectron spectroscopy. Data were compared with one-way ANOVA (significance level α =0.05).

RESULT: There was no significant difference in mean shear bond strengths between control silane and ACPS blended with either of the two cross-linking silanes after dry storage (p>0.13). However, there was a significant difference in shear bond strengths after thermo-cycling ($p<3.8\times10^{-8}$); ACPS+BTMA exhibited the highest shear bond strength (Table 1). Failure mode analysis suggested predominantly adhesive failure.

	Mean shear bond strength±SD / MPa							
Silane	Dry	Thermocycling (6000	Debonding	Adhesive	Mixed %	Cohesive	
		cycles)		/%	/%		/%	
Control	10.3±1.7	10.5±2.4		0	93.3	6.7	0	
ACPS+BTSE	11.8±3.5	5.8±2.2		0	53.3	6.7	40.0	
ACPS+BTMA	9.8±2.8	13.9±4.2		0	93.3	6.7	0	

CONCLUSION: An experimental primer of a combination of an organofunctional silane and a cross-linking-silane may promote superior bonding than the control silane product.