The HKU Scholars Hub The University of Hong Kong

Title	Resin zirconia bonding with two isocyanatosilanes with addition of cross-linker silane		
Author(s)	Lung, CYK; Matinlinna, JP; Vallittu, PK		
Citation	The 88th General Session and Exhibition of the IADR, Barcelona, Spain, 14-17 July 2010.		
Issued Date	2010		
URL	http://hdl.handle.net/10722/209836		
Rights	Creative Commons: Attribution 3.0 Hong Kong License		

RESIN ZIRCONIA BONDING WITH ISOCYANATOSILANES AND CROSS-LINKER SILANE

OBJECTIVE: To investigate the effect of two isocyanato silanes and addition of cross-linking silane on the shear bond strength of zirconia.

MATERIALS AND METHODS: 15 specimens of yttria-stabilized-zirconia (Nobel Biocare) were silicatized (Rocatec Soft, 3M ESPE). The pressure was 280kPa, time was 30s/cm^2 . 3M ESPE Silsilane was a control. 0.1 and 1.0 vol.% two silanes, 3-isocyanatopropyltrimethoxysilane (ICMS) and 3-isocyanatopropyltriethoxysilane (ICS) and solutions of 0.1 and 1.0 vol.% of two silanes with 0.05 and 0.5 vol.% cross-linking bis-1,2-(triethoxysilyl) ethane (BTSE) were prepared in 95% ethanol and at pH 4. The primers were applied onto silicatized zirconia and allowed to react for 5 mins. RelyX Unicem resin cement (3M ESPE) was introduced into the cylindrical stub onto the zirconia and light-cured for 40s. All samples were tested at dry condition. The shear bond strength was measured by using a universal testing machine (Instron LTD). One-way analysis of variance (ANOVA) was used for data analysis with the level of significance α =0.05.

RESULT: There was no significantly difference for the mean shear bond strengths for 0.1 and 1.0 vol.% of ICMS and ICS (p = 0.205 and p = 0.952). There was significant difference between the control group and 0.1 and 1.0 vol.% ICS and ICMS (p<0.02). There was significant difference in shear bond strengths for 0.1 vol. and 1.0 vol.% ICMS with addition of cross-linking silane (p < 0.04 and p < 0.01). There was no significant difference in mean shear bond strength for 0.1 and 1.0 vol.% ICS (p = 0.642 and p = 0.562) with cross-linking silane added. There was no significant difference between the control group and 0.1 and 1.0 vol.% ICMS with cross-linking silane added (p=0.76)

Silane	Silane concentration / vol.%	Cross-linking silane	Mean shear
		concentration / vol.%	bond strength / MPa ±
			SD
3M ESPE	< 3.0	0	8.76±1.40
Sil-silane			
	0.1	0	6.78 ± 3.21
ICS	0.1	0.05	5.97 ± 1.88
	1.0	0	6.64 ± 2.19
	1.0	0.5	7.21 ± 3.11
	0.1	0	7.41 ± 1.67
ICMS	0.1	0.05	9.52 ± 2.56
	1.0	0	6.59 ± 2.58
	1.0	0.5	9.21 ± 3.94

CONCLUSION: Addition of cross-linking silane may enhance the shear bond strength between silica-coated zirconia and resin cement.