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Abstract 

Hypothyroidism impairs endothelium-dependent dilatations, while hyperthyroidism augments 

the production of endothelial nitric oxide. Thus, experiments were designed to determine if 

thyroid hormone causes endothelium-dependent responses, or alleviates diabetic endothelial 

dysfunction. Isometric tension was measured in rings with or without endothelium of arteries 

from normal and diabetic Sprague-Dawley rats. Release of 6-keto prostaglandin F1α and 

thromboxane B2 were measured by enzyme linked immunosorbent assay and protein levels 

[endothelial nitric oxide synthase (eNOS), cyclooxygenases (COX)] by immunoblotting. 

Triiodothyronine (T3) caused concentration-dependent (3x10-6 to 3x10-5M) relaxations in 

mesenteric (pEC50, 4.96±0.19) and femoral (pEC50, 4.57±0.35) arteries without endothelium. In 

femoral arteries of rats with diabetes, 

5-methylamino-2-(2S,3R,5R,8S,9S)-3,5,9-trimethyl-2-(1-oxo-(1H-pyrrol-2- 

-yl)propan-2-yl)-1,7-dioxaspiro-(5,5)undecan-8-yl)methyl)benzooxazole-4-carboxylic acid (A23187, 

3x10-7 to 10-6M) caused partly endothelium-dependent contractions. After chronic T3-treatment 

with (10μg/kg/day; four weeks), the contractions to A23187 of preparations with and without 

endothelium were comparable, the thromboxane B2-release was reduced (by 38.1±9.2%). The 

pEC50 of 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619, TP-receptor agonist) 

was increased in T3-treated diabetic rats compared with controls (8.53±0.06 vs 7.94±0.09). The 

protein expression of eNOS increased (by 228%) but that of COX-1 decreased (by 35%) after 

chronic T3 treatment. In human umbilical vein endothelial cells incubated for one week with T3 

(10-10 to 10-7M) in the presence but not in the absence of interleukin-1β (1ng/ml), the expression 

of eNOS was increased compared to control. In conclusion, thyroid hormone acutely relaxes 
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mesenteric and femoral vascular smooth muscle, but given chronically reduces the release of 

endothelium-derived vasoconstrictor prostanoids while enhancing the responsiveness of TP 

receptors of vascular smooth muscle. 

Key words 

COX-1; endothelium-derived contracting factor(s); eNOS; type 1 diabetes; TP receptors  

Chemical compounds studied in this article 
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Abbreviations 
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5-methylamino-2-(2S,3R,5R,8S,9S)-3,5,9-trimethyl-2-(1-oxo-(1H-pyrrol-2-yl)propan-2-yl)-1,7-dioxa

spiro-(5,5)undecan-8-yl)methyl)benzooxazole-4-carboxylic acid; COX, cyclooxygenase; EC, 

endothelial cell; EDCFs, endothelium-derived contracting factors; eNOS, endothelial nitric oxide 

synthase; HUVECs, human umbilical vein endothelial cells; L-NAME, Nω-nitro-L-arginine  methyl  

ester; NO, nitric oxide; S18886, 

3-[(6-amino-(4-chlorobenzensulphonyl)-2-methyl-5,6,7,8-tetrahydronapht]-1-yl)propionic acid; 

SD, Sprague-Dawley; SHR, spontaneously hypertensive rat; T3 , 3, 5, 3’-tri-iodothyronine; TP 

receptor, thromboxane prostanoid receptor; U46619, 9, 11-dideoxy-11α, 

9α-epoxymethanoprostaglandin F2α 
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1. Introduction 

The endothelium, a thin layer of cells lining the interior surface of blood vessels, can control local 

vascular tone. It does so by releasing endothelium-derived relaxing factors (Furchgott and 

Vanhoutte, 1989; Furchgott and Zawadzki, 1980), including nitric oxide (NO) and/or several 

other endothelium-derived hyperpolarizing substances (Félétou and Vanhoutte, 2007, 2006; 

Vanhoutte 2004). In addition, in particular in arteries of obese, diabetic or hypertensive animals, 

the release of endothelium-derived contracting factors [EDCFs], causing activation of the 

underlying smooth muscle cells (Tang and Vanhoutte, 2010; Vanhoutte, 2011; Wong and 

Vanhoutte, 2010c), contributes to endothelium-dependent changes in vascular diameter.  

 

Several hormones can trigger endothelium-dependent responses. These include catecholamines 

acting on endothelial α2-adrenergic receptors (Vanhoutte and Miller, 1989), vasopressin and 

oxytocin activating V1-vasopressinergic receptors (Katusic et al., 1986, 1984), and insulin (Liu et 

al., 2012). Hormones, in particular estrogens, also chronically modulate endothelium-dependent 

responses (Chambliss and Shaul, 2002; Gisclard et al., 1988). 

 

Hypothyroidism causes impaired endothelium-dependent dilatations (Taddei et al., 2003). 

Furthermore, diabetic patients have a higher prevalence of thyroid disorders compared to the 

normal population (Hage et al., 2011). Thyroid hormone is synthesized and stored in the follicular 

and the colloid cells of the thyroid gland and plays a role in differentiation, growth, and 

metabolism (Yen, 2001). The hormone also affects the cardiovascular system. Thus, 

hyperthyroidism results in increased heart rate and atrial fibrillation, while hypothyroidism causes 
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opposite changes (Ichiki, 2010). Although thyroid hormone can cause vasodilatation 

(Carrillo-Sepúlveda et al., 2010; Ishikawa et al., 1989), its acute effect on endothelial cells is 

controversial, since both an absence of effect of 3, 5, 3’-tri-iodothyronine (T3) on NO production 

(Ojamaa et al., 1996) and activation of endothelial NO synthase through the PI3K/Akt pathway 

(Hiroi et al., 2006) have been reported. Therefore, the present experiments were designed to 

determine in isolated arteries of normal rats whether or not the acute exposure to thyroid 

hormone causes or affects endothelium-dependent responses. Furthermore, clinical studies 

suggest impaired endothelium-dependent dilatations in hypothyroid patients (Lekakis et al., 1997) 

while hyperthyroidism causes excessive endothelial NO production (Napoli et al., 2001). Such an 

increased production of NO should reduce the occurrence of endothelium-dependent 

contractions (Tang et al., 2005a). Thus, the present study also investigated whether or not 

chronic treatment with thyroid hormone can alleviate the exaggerated EDCF-mediated responses 

that characterize the endothelial dysfunction resulting from type 1 diabetes (Shi et al., 2007a). 

 

2. Materials and Methods 

All experimental protocols were approved by The University of Hong Kong Committee on the Use 

of Live Animals for Teaching and Research. 

 

2.1. Experimental animals 

The experiments were performed on isolated arteries of male Sprague Dawley (SD) rats. The rats 

used to test the direct effect of thyroid hormone were eight weeks old (250-350g). To test the 

effect of the hormone on endothelial dysfunction, twelve weeks old rats (450-600g) were made 
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diabetic by the intraperitoneal administration of streptozotocin [30 mg/kg; dissolved in citric 

acid-trisodium citrate (0.2mM) buffer (pH 4.0-4.5)] given once per day for three consecutive days 

(Shi et al., 2006). Seventy-two h after the last injection, tail blood samples were obtained, and 

the glucose concentration was measured using a one-touch glucometer (LifeScan Inc., Milpitas, 

CA, USA). Induction of diabetes was considered successful when the fasting glucose level was 

higher than 16.6mM. The diabetic rats were divided randomly into two groups, one receiving 

vehicle alone and the other a daily intraperitoneal injection of T3 (10μg/kg/day). T3 was selected 

over thyroxine, because it mediates the effects of the latter in vivo and is more widely used in 

experimental animals (Carrillo-Sepúlveda et al., 2010; Dillmann, 1982; Hiroi et al., 2006; 

Szkudelski et al., 2003). Doses of 3μg/kg (considered physiological) and 30 or 50μg/kg 

(considered pharmacological) of T3 have been administrated daily to diabetic rats by others 

investigators (Dillmann, 1982; Szkudelski et al., 2003). Since 3μg/kg has no obvious metabolic 

effect, preliminary experiments were performed using 10μg/kg, 50μg/kg and 100μg/kg of T3, 

however, the latter two doses were severely toxic in diabetic rats, prompting the use of 

10μg/kg/day for further studies.  

 

The rats were housed in the laboratory animal unit of The University of Hong Kong, and fed with 

normal chow. Water was provided ad libitum. The diabetic rats were studied four weeks after the 

last streptozotocin injection. On the day of the experiment, the non-fasting glucose level was 

measured again. After three h fasting, the rats were anesthetized with sodium pentobarbitone 

(70mg/kg, intraperitoneally) and euthanized. Blood samples were collected from the inferior 

vena cava for measuring the T3 level in serum.  
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2.2. Tissue preparation 

The thoracic aorta, mesenteric arteries or femoral arteries were dissected free and placed in 

ice-cold modified Krebs-Ringer solution of the following composition (mM): NaCl 120, KCL 4.76, 

CaCl2 2.5, MgSO4 1.18, NaHCO3 25.0, NaH2PO4 1.18 and calcium disodium 

ethylenediaminetetraacetic acid 0.026, glucose 5.5 (control solution). The blood vessels were cut 

into rings (3-4mm length in aorta, 1.5-2mm length in mesenteric and femoral arteries). In some 

preparations, the endothelial cell layer was removed by the injection of 1ml of Triton (0.5%, 

diluted in control solution) in the artery prior to cutting it into rings.  

 

2.3. Isometric tension measurement 

The preparations were suspended in organ chambers, which contained warmed (37°C), aerated 

(95% O2, 5% CO2) control solution (5ml). They were connected to a force transducer and a 

bio-signal acquisition system (PowerLab, ADInstruments, Sydney, Australia) to record isometric 

tension. The rings were stretched to an optimal tension (2.5g in aorta, 2g in mesenteric and 1g in 

femoral arteries; determined in preliminary experiments; data not shown) and allowed to 

equilibrate for 90 min. They were then exposed twice to 60mM KCL to obtain a reference 

contraction.  

To study the acute vascular effects of T3 in normal aorta, mesenteric or femoral arteries, U46619 

(3×10-8M) was added to the chamber and when a stable contraction level had been reached, 

cumulative concentrations (10-7 to 3×10-5M) of T3 were administered. In some experiments, the 

rings were first incubated with pharmacological inhibitors (Table 1). The concentrations of the 

inhibitors tested were selected from earlier work in the laboratory or from the literature (Table 
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1). 

To examine whether or not the hormone has indirect effects, 10-7M T3 (a concentration that has 

no direct effect) was added to the organ chamber; after an incubation period of 30 min, 

cumulative concentrations of phenylephrine (10-9 to 10-5M) were given to quiescent rings or 

cumulative concentrations of acetylcholine (10-9 to 10-6M) were added during contractions to 

phenylephrine (10-6M).  

To study the effect of chronic treatment with thyroid hormone on endothelium-dependent 

relaxations, cumulative concentrations of acetylcholine (10-9 to 10-6M) were added during 

contractions to phenylephrine (10-6M) to rings of the aorta and mesenteric arteries from both T3 

and vehicle treated diabetic rats. 

To study the acute effect of thyroid hormone on endothelium-dependent contractions, rings of 

femoral arteries from diabetic rats were incubated with L-NAME (3×10-4M, 30 min) plus T3 

(10-7M), and exposed to cumulative concentrations of the calcium ionophore A23187 (10-8 to 

10-6M) . 

To study the effect of chronic treatment with thyroid hormone on endothelium-dependent 

contractions, rings of femoral arteries from both T3 and vehicle treated group were incubated 

with L-NAME (3×10-4M, 30 min) or L-NAME (3×10-4M, 30 min) plus indomethacin [cyclooxygenase 

(COX) inhibitor, 5×10-6M, 30 min) or S18886 [thromboxane prostanoid (TP) receptor antagonist, 

10-7M, 30 min], and exposed to cumulative concentrations of the calcium ionophore A23187 (10-8 

to 10-6M). The responses to cumulative concentrations of phenylephrine or U46619 of femoral 

arteries without endothelium of T3 and vehicle treated rats were also determined. 
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2.4. Serum levels of thyroid hormone 

The serum T3 levels from vehicle and T3 treated diabetic rats were measured with an enzyme 

linked immunosorbent assay using commercially available kits [NO. 1700 for total T3; Alpha 

Diagnostic International (San Antonio, TX, USA)]. The levels of T3 are expressed as nanograms per 

deciliter of serum. 

 

2.5. Release of 6-keto prostaglandin F1α and thromboxane B2 

Rings of femoral artery from both T3 and vehicle treated diabetic rats were suspended in organ 

chambers containing warm and aerated control solution. After 90 min of equilibration and 30 min 

of incubation with L-NAME (3×10-4M), a single dose (10-6M) of A23187 was added. After ten min, 

0.5ml of the bath solution was sampled for the measurement of the release of 6-keto 

prostaglandin F1α and thromboxane B2 using enzyme linked immunosorbent assay kits [Cayman 

Chemical Company (Ann Arbor, MI, USA)]. These samples were assayed in triplicates. The release 

of prostanoids is expressed in picograms per millimeter length of the ring (Wong et al., 2008; 

Wong et al., 2010b).  

 

2.6. Cell culture 

Human umbilical vein endothelial cells (HUVECs) were purchased from American Type Culture 

Collection (ATCC, Manassas, VA, USA), and cultured in Ham’s Kaighn’s Modification F12K medium 

(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (Invitrogen), 

containing 1% penicillin/streptomycin (100U/ml). Heparin (0.1 mg/ml) and endothelial cell 

growth factor (0.05mg/ml) were added in the medium. The cells were incubated at 37°C in an 
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atmosphere containing 5% CO2 and 95% room air. To study the acute or chronic effect of thyroid 

hormone on the expression of endothelial nitric oxide synthase (eNOS), COX-1 and COX-2 in 

HUVECs, different concentrations (10-10 to 10-7M) of T3 were administered for 30 min, 24 h or 

seven days. In some experiments, cells were also exposed to interleukin (IL)-1β (1ng/ml). 

 

2.7. Protein extraction and Western blotting 

Femoral arteries (cut into small pieces) or cultured cells were homogenized in lysis buffer with 

the usual inhibitors (Li et al., 2011). The proteins were separated by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membrane and detected 

with the appropriate antibodies (1:1000 eNOS monoclonal, 1:300 COX-1 monoclonal, 1:300 

COX-2 polyclonal, 1:200 TP receptor polyclonal, 1:3000 β-actin monoclonal). Then, the blots were 

treated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody (1:3000), 

incubated with AmershamTM ECLTM Western Blotting Detection Reagent (GE Healthcare, Boston, 

MA, USA) and subsequently exposed to X-ray film (Fuji Super RX medical X-ray film; Fuji Photo 

Film, Dusseldorf, Germany). ImageJ software (National Institutes of Health, MD, USA) was used to 

analyze the optical densities of the immunoreactive bands. The presence of protein was 

normalized to that of β-actin. 

 

2.8. Chemicals 

3,5,3’-tri-iodothyronine, A23187 

[5-methylamino-2-(2S,3R,5R,8S,9S)-3,5,9-trimethyl-2-(1-oxo-(1H-pyrrol-2-yl)propan-2-yl)-1,7-diox

aspiro-(5,5)undecan-8-yl)methyl)benzooxazole-4-carboxylic acid], acetylcholine, BaCl2, 
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charybdotoxin, glibenclamide, iberiotoxin, L-NAME [Nω-nitro-L-arginine  methyl  ester], 

nifedipine, ODQ [1H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one], ouabain, phenylephrine, 

indomethacin and thapsigargin were purchased from Sigma Chemical (St. Louis, MO, USA). 

U46619 [9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α] was purchased from Biomol 

(Plymouth Meeting, PA, USA). 1400W [N-(3-(Aminomethyl)benzyl)acetamidine] was purchased 

from Enzo Life science (Farmingdale, NY, USA). Rp-8-Br-cAMPs [8-bromoadenosine-3',5'-cyclic 

monophosphorothioate, Rp-isomer] was purchased from Biolog Life Science (Bremen, Germany). 

Calhex 231 [4-Chloro-N-[(1S,2S)-2-[[(1R)-1-(1-naphthalenyl)ethyl]amino]cyclohexyl]-benzamide 

hydrochloride] was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). 

[D-Trp7,9,10]-Substance P was purchased from Tocris Bioscience (Bristol, UK). The eNOS 

monoclonal antibody was purchased from BD Transduction Laboratories (San Jose, CA, USA).  

KT5823 [2,3,9,10,11,12-hexahydro-10R-methoxy-2,9-dimethyl-1-oxo-9S,12R-epoxy-1H-diindolo[1,

2,3-fg:3’,2’,1’-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester], COX-1 

monoclonal, COX-2 polyclonal, TP receptor polyclonal antibodies and anti-β-actin were purchased 

from Cayman Chemical. S18886, 

3-[(6-amino-(4-chlorobenzensulphonyl)-2-methyl-5,6,7,8-tetrahydronapht]-1-yl)propionic acid 

was a kind gift of the Institut de Recherches Servier (Suresnes, France). T3 was dissolved in 50mM 

NaOH per 1mg, U46619 was prepared in absolute ethanol. A23187 and ODQ were dissolved in 

absolute DMSO (0.1% in the organ chamber). All other chemicals were prepared in deionized 

water. Concentrations are expressed as final molar concentrations.  

 

2.9. Data analysis 
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Relaxations are expressed as percentage of the contractions to either phenylephrine or U46619, 

and contractions are expressed as a percentage of the reference response to 60mM KCL obtained 

at the beginning of the experiment. The pEC50 is defined as the negative logarithm to base 10 of 

the EC50, which is the concentration of an agonist required to produce 50% of the maximal 

possible effect. Data are presented as means ± S.E.M.; n refers to the number of rats or cell 

cultures. Statistical analysis was done by one or two-way analysis of variance. The results were 

analyzed with and graphed by Prism version 5 (GraphPad Software Inc. San Diego, CA). 

Differences were considered to be statistically significant when P was less than 0.05. 

 

3. Results 

 

3.1. Normal SD rats 

3.1.1. Vascular responsiveness  

3.1.1.1 Direct effects 

Cumulative concentrations (10-7 to 3×10-5M) of T3 did not cause significant changes in tension in 

aortic rings with or without endothelium of normal rats. In mesenteric arteries, T3, from 3x10-7 to 

3×10-5M, caused significant and comparable decreases in tension in preparations with and 

without endothelium contracted with U46619 (3×10-8M). Similar results were obtained in femoral 

arteries (Fig. 1). The T3-induced relaxations in U46619 pre-contracted mesenteric arteries without 

endothelium were not affected significantly by inhibitors of NOS [L-NAME (3×10-4M) and 1400W 

(10-5M)], of potassium channels [iberiotoxin (10-7M), charybdotoxin (10-7M), BaCl2 (10−6M) or 

glibenclamide (10-5M)], of Na+-K+-ATPase [ouabain (5×10−7M)], of L-type calcium channels 
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[nifedipine (10-7M)], of the calcium sensing receptor [calhex 231 (3×10-6 M)], of G-proteins 

[pertussis toxin (400ng/ml) or [D-Trp7,9,10]-Substance P (10-5M)], of sarco/endoplasmic reticulum 

calcium transport ATPase [thapsigargin (10-6M)], of soluble guanylyl cyclase [ODQ (10−5M)] or of 

protein kinases [Rp-8-Br-cAMPs (10-4M) or KT5823 (10-6M)] (Table 1). 

 

3.1.1.2. Indirect effects 

In the aorta or mesenteric and femoral arteries with endothelium, 30 min of incubation with T3 

(10-7M) did not significantly affect phenylephrine-induced contractions or acetylcholine-induced 

relaxations (Fig. 2).  

 

3.2. Diabetic rats 

3.2.1. General conditions 

Four weeks after the last streptozotocin injection, the body weight was significantly lower and 

the blood glucose level significantly increased in both T3 and vehicle treated diabetic rats; there 

were no significant differences between the two groups as concerns those two parameters (Table 

2). After four weeks of chronic T3 treatment, the total T3 serum level was significantly greater 

than that in the vehicle treated diabetic group (Table 2). 

 

3.2.2. Vascular responsiveness 

3.2.2.1. Endothelium-dependent relaxations 

In the aorta and mesenteric arteries of vehicle treated diabetic rats, there was no impairment of 

relaxations to the endothelium-dependent vasodilator acetylcholine when compared with the 
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age-matched normal SD rats (Fig. 3). Chronic treatment with T3 did not affect the reference 

contractions to 60mM KCL in aortic [3.22±0.15 and 3.15±0.19 gram in rings from vehicle and 

hormone-treated rats, respectively], mesenteric [2.31±0.04 and 2.42±0.13 gram, respectively] 

preparations and did not affect acetylcholine-induced relaxations significantly either (Fig. 3). 

 

3.2.2.2. Endothelium-dependent contractions  

These experiments were performed in preparations incubated with the NOS inhibitor L-NAME 

(3×10-4M), in order to optimize endothelium-dependent contractions (Auch-Schwelk et al., 1992; 

Tang et al., 2005a). In the femoral artery of vehicle treated diabetic rats , A23187 (10-8 to 10-6M) 

caused concentration-dependent contractions which were significantly larger in preparations 

with than in those without endothelium; the difference between the two types of preparations 

was reduced significantly by incubation with indomethacin (5×10-6M) or S18886 (10-7M) (Fig. 4 

and Fig. 5, Left). Thirty min of incubation with T3 (10-7M) did not significantly affect 

A23187-induced contractions in rings with endothelium (Fig. 4). After four weeks of chronic 

treatment with T3, there was no significant difference in the response to the ionophore between 

preparations with and without endothelium. The A23187 induced contractions in rings without 

endothelium were significantly larger in arteries from rats treated chronically with T3 than in 

those from vehicle-treated animals; the augmented contraction to the ionophore in the former 

was abolished by incubation with indomethacin or S18886 (Fig. 5, Right). Chronic treatment with 

T3 did not affect the reference contractions to 60mM KCL in femoral preparations with and 

without endothelium. 
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3.2.2.3. Endothelium-independent contractions 

In femoral artery rings without endothelium, both phenylephrine (10-9 to 10-5M) and U46619 

(10-9 to 10-7M) evoked concentration-dependent contractions. There was no significant difference 

in phenylephrine-induced contraction between preparations of T3 and vehicle treated diabetic 

rats (Fig. 6, Left). However, the concentration-response curve to the TP-agonist was shifted 

significantly to the left (Fig. 6, Right) in arteries from T3 treated animals (Table 3). 

 

3.2.3. Release of prostanoids 

A23187 evoked the release of 6-keto prostaglandin F1α and thromboxane B2, in femoral arteries of 

both vehicle and T3 treated diabetic rats. The release of the two prostanoids was significantly less 

in rings without than in those with endothelium. The production of 6-keto prostaglandin F1α was 

comparable in preparations with endothelium of T3 and vehicle treated diabetic rats (Fig. 7, Left). 

A significantly lower release of thromboxane B2 (by 38.1±9.2%) was observed in the rings with, 

but not in those without endothelium, of T3 compared to vehicle treated animals (Fig. 7, Right).  

 

3.2.4. Protein expression  

3.2.4.1. Arteries 

Four weeks after the injection of streptozotocin, the protein level of eNOS and COX-1 were 

significantly greater in preparations with than in those without endothelium of both T3 and 

vehicle treated diabetic rats. The expression of eNOS (140kDa) was significantly increased by 

227.5±24.1% (Fig. 8, A) but that of COX-1 (72kDa) was significantly reduced by 34.9±7.4% (Fig. 8, 

B) in preparations with endothelium of T3 treated diabetic rats. The expression level of COX-2 
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(72kDa) was similar among the different groups (Fig. 8, C). In femoral artery rings without 

endothelium, the protein levels of TP receptors (55kDa) were not significantly different between 

T3 and vehicle treated diabetic rats (Fig. 8, D). 

 

3.2.4.2. Cell culture  

Acute (30 min) or more prolonged (one or seven days) exposure to T3 (10-10 to 10-7M), did not 

significantly affect the protein levels of eNOS, or COX-1 in quiescent HUVECs (data not shown). 

COX-2 was not detectable in either vehicle or T3 treated unstimulated HUVECs (data not shown). 

Incubation of HUVECs with IL-1β (1ng/ml; for one or seven days) induced a weak protein 

expression of COX-2, which was not different between vehicle and T3 treated cells. When 

combined with IL-1β, incubation with T3 (10-10 to 10-7M, one day) did not significantly affect the 

protein levels of eNOS or those of either COX-1 or COX-2 (data not shown); however, 

co-incubation with IL-1β for seven days resulted in a significant, concentration-dependent 

increase in the protein content of eNOS without changes in those of COX-1 or COX-2 (Fig. 9). 

 

4. Discussion 

 

The present study determined the direct effect of thyroid hormone in arteries of different size of 

normal rats. The hormone did not relax the aorta, a conduit artery, but did so in smaller femoral 

and mesenteric arteries, implying that its direct vasodilator effect may be more important in 

resistance vessels. To judge from the similar relaxations observed in presence and absence of 

endothelium, the effect of the hormone is endothelium-independent, a conclusion consistent 
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with previous studies (Ishikawa et al., 1989; Park et al., 1997). This direct vasodilator effect of T3 

in smaller arteries may help to explain why systemic vascular resistance is closely linked to the 

thyroid status in patients (Klein and Ojamaa, 2001). The present study explored, using accepted 

pharmacological inhibitors, a variety of possible explanations for the direct vasodilator properties 

of thyroid hormone. However, the actual underlying mechanism remained elusive. One 

unexplored possibility is acute inhibition of the transmembrane conductance regulator chloride 

channel, although the lack of effect of glibenclamide makes this unlikely (Cai, 2013; Fong, 2013).  

 

To investigate whether or not T3 modifies endothelial dysfunction, rats with 

streptozotocin-induced diabetes were exposed chronically to the hormone. Streptozotocin 

destroys β cells of the Langerhans islets, reducing insulin release (Junod et al., 1969). The lower 

body weight and the higher blood glucose levels demonstrate the successful development of 

diabetes. The present experiments do not confirm in mice with type 1 diabetes the attenuation of 

hyperglycemia, observed in db/db mice - with chronic T3 treatment, attributed to improved 

insulin signaling rather than increased production of the hormone (Lin and Sun, 2011).  

 

Diabetic endothelial dysfunction (De Vriese et al., 2000; Shi et al., 2007a; Stehouwer et al., 

1997), is characterized in type 1 diabetes by occurrence of endothelium-dependent contractions 

(Shi et al., 2007a). The present study confirms the absence of impaired endothelium-dependent 

relaxations to acetylcholine in arteries of rats at an early stage of diabetes (Shi et al., 2006; Shi 

and Vanhoutte, 2009). Impairment of acetylcholine-induced relaxations can occur in arteries 

such as used in the present study after longer exposure to (Cameron and Cotter, 1992; Fukao et 
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al., 1997; Pieper and Peltier, 1995; Shimizu et al., 1993), or with higher doses of (Palmer et al., 

1998; Pieper et al., 1997; Taylor et al., 1994) streptozotocin, or in skeletal muscle (Hill and Ege, 

1994) and basilar (Mayhan and Patel, 1998) arteries. The present absence of effect of chronic T3 

treatment on relaxations to acetylcholine contrasts with the augmentation observed in the aorta 

and femoral artery of normoglycemic animals (Deng et al., 2010). In the latter study, the 

relaxations to acetylcholine were also studied during phenylephrine contractions, but the 

response to the α1-adrenergic agonist was reduced by hyperthyroidism, which was not the case in 

our experiments. Functional antagonists such as endothelium-derived or exogenous nitric oxide 

are more effective in causing relaxation against weaker pre-contraction levels (Flavahan and 

Vanhoutte, 1988).  

 

Acetylcholine induces endothelium-dependent contractions in aorta of spontaneously 

hypertensive (SHR) and normotensive rats (Li et al., 2011; Tang et al., 2005b). However, it does 

not evoke such responses in femoral arteries of SD rats whereas the calcium ionophore A23187 

does (Shi et al., 2007a; Shi et al., 2007b). Streptozotocin-induced diabetes exacerbates such 

EDCF-mediated responses (Shi et al., 2007a). Therefore, the present study focused on A23187 

responses in the femoral artery. The results confirm that it elicits endothelium-dependent 

contractions of this preparation from diabetic rats (Shi et al., 2007a). This 

endothelium-dependent contraction was abolished by indomethacin [a nonspecific 

cyclooxygenases (COX) inhibitor] or S18886 [a specific TP receptor antagonist], confirming that 

A23187 releases COX-derived EDCF (Lüscher and Vanhoutte, 1986; Tang et al., 2007; Wong et al., 

2010a) and that these factors activate TP receptors of the underlying vascular smooth muscle 
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(Auch-Schwelk et al., 1990; Tang and Vanhoutte, 2009). In the SHR aorta, A23187 releases both 

prostacyclin and thromboxane A2 as EDCF, and the latter is the most potent TP receptor agonist 

(Gluais et al., 2005; Gluais et al., 2006). The present results confirm that A23187 augments the 

endothelial production of 6-keto prostaglandin F1α and thromboxane B2. After four weeks of T3 

treatment, no difference in contraction to A23187 was observed between preparations with and 

without endothelium, implying that the hormone reduces EDCF release. This interpretation is 

strengthened by the lesser endothelial production of thromboxane B2 in arteries of diabetic rats. 

T3, through changes in gene transcription, increases the number of calcium-activated ATPase 

pump units in the sarcoplasmic reticulum and thus causes more efficient pumping by the 

calcium-activated ATPase (Dillmann, 1990). If this were to occur in the endothelium of diabetic 

rats, increased activity of calcium-activated ATPase may counteract the effect of A23187 on the 

COX-1 axis, reducing EDCF release. 

 

The difference of COX-1 level between preparations with and without endothelium in T3 and 

vehicle treated diabetic rats, is in line with the importance of endothelial COX-1 for the 

occurrence of endothelium-dependent contractions (Tang and Vanhoutte, 2010). The absence of 

difference in COX-2 level confirms that COX-1 plays the prominent role in endothelial dysfunction 

in rodents (Ge et al., 1995; Shi et al., 2008; Tang et al., 2005b). However, a lower COX-1 level was 

observed in T3 treated diabetic rats, which also fits with the lower production of thromboxane B2 

by the endothelial cells of arteries chronically exposed to the hormone.  

 

Chronic inflammation is involved in the pathogenesis of type 1 diabetes, and contributes to the 
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inhibition of growth and function of the β cells of the pancreas (Eizirik et al., 2009; Wellen and 

Hotamisligil, 2005). Conversely, diabetes-induced increases in oxidative stress augment the 

release of pro-inflammatory cytokines sustaining the inflammatory state (Zhang et al. 2003). In 

addition, the inflammatory mediators may accelerate the onset of endothelial dysfunction in type 

1 diabetes (Goldberg, 2009; Stehouwer et al., 1997). Hence, to mimic the chronic impact of 

diabetes on endothelial cells, cultures of HUVECs were exposed to IL-1β, a cytokine involved in 

the pathology of the disease (Liu et al., 2012; Mandrup-Poulsen et al., 2010; Reimers, 1998). In 

the present study, prolonged exposure to the hormone on a background of IL-1β stimulation, 

caused the expected expression of COX-2 (Uracz et al., 2002), but also increased the protein level 

of eNOS, a finding in line with the present observations in arteries of T3-treated diabetic rats. 

Thus, the inflammatory response that accompanies diabetes (Wellen and Hotamisligil, 2005) 

may be required for the expression of a chronic augmentation in eNOS caused by thyroid 

hormone. The resulting increase in NO bioavailability would explain the curtailment of 

endothelium-dependent contractions (Tang et al., 2005a). Taken in conjunction, the present 

findings permit to conclude that chronic treatment with T3 of rats with type 1 diabetes attenuates 

the release of EDCF by augmenting total eNOS and reducing the presence and/or activity of 

cyclooxygenase in their endothelial cells. Since acute exposure to T3 did not affect 

endothelium-dependent contractions to A23187, the effect of the long-term treatment with the 

hormone is genomic in nature.  

 

The absence of difference in the response to phenylephrine between femoral arteries of the T3 

and vehicle treated groups, contrasts with the reduction observed in normoglycemic rats (Deng 
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et al., 2010). We have no explanation for this discrepancy. However the findings obtained under 

our experimental conditions imply that T3 has no effect on α-adrenoceptors and does not 

chronically increase the intrinsic responsiveness of vascular smooth muscle in arteries of diabetic 

rats. By contrast, since no changes in the protein presence of TP receptors were obvious, the 

augmented contractions and the shift to the left of the concentration-response curve to the 

prototypical TP agonist U44169 (Gluais et al., 2005) imply that chronic treatment with T3 

increases the sensitivity of these receptors. Hence, chronic T3 treatment in diabetic rats also 

augmented contractions to A23187 in preparations without endothelium. Since this augmented 

contraction was abolished by indomethacin and S18886 (implying that A23187 triggers the 

COX-mediated pathway in vascular smooth muscle), it must be due to activation of TP receptors 

and is explained by the hyperresponsiveness of the TP receptors. The present experiments do not 

permit to speculate further on the molecular mechanism underlying this phenomenon. In terms 

of relevance for the in vivo situation, any increase in TP receptor responsiveness would be offset 

by the reduced release in endothelium-derived vasoconstrictor prostanoids. 

 

In summary, the present study demonstrates that, administered in vitro in pharmacological high 

concentrations, T3 acutely relaxes mesenteric and femoral vascular smooth muscle of normal rats 

but does so in an endothelium-independent manner. The mechanism underlying this direct 

relaxing effect remains elusive, as is its importance in vivo. In type 1 diabetic rats, while chronic in 

vivo T3 treatment with pathophysiological relevant doses can reduce the ex vivo release of EDCF 

(an interpretation confirmed by the measurement of prostanoid release and explained by the 

reduced expression of COX-1 and the increased presence of eNOS), it increases the sensitivity of 
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TP receptors of vascular smooth muscle (Fig. 10). Thus, thyroid hormone can affect both 

endothelial and vascular smooth muscle cells in rat arteries. 
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Legends 

Fig. 1 

Effects of increasing concentrations of T3 (five min/dose) on contractions of rat arteries with [+EC] 

or without [-EC] endothelium during sustained contractions to U46619 (3×10-8M). Data expressed 

as percentage of the pre-contraction to U46619 [100%: aorta, 3.64±0.23g; mesenteric arteries, 

2.38±0.25g; femoral arteries, 2.04±0.17g] and shown as means ± S.E.M.; n=4. *Statistically 

significant difference between preparations of vehicle and T3 groups (P< 0.05). 

Fig. 2   

Effect of incubation with T3 (10-7M, 30 min) on responses of rat arteries with endothelium. Left: 

contractions of quiescent preparations to increasing concentrations of phenylephrine. Data 

expressed as percentage of the pre-contraction to KCL [100%: aorta, 3.52±0.14g; mesenteric 

arteries, 2.27±0.32g; femoral arteries, 2.24±0.35g] and shown as means ± S.E.M.; Right: 

relaxations to increasing concentrations of acetylcholine during sustained contractions to 

phenylephrine (10-6M). Data expressed as percentage of the pre-contraction to phenylephrine 

[100%: aorta, 3.45±0.19g; mesenteric arteries, 2.12±0.34g; femoral arteries, 2.15±0.26g] and 

shown as means ± S.E.M.; n=4.  

Fig. 3 

Relaxations to cumulative concentrations of acetylcholine during sustained contractions to 

phenylephrine (10-6M), in aorta and mesenteric arteries with endothelium from normal rats, 

vehicle and T3 treated diabetic rats. Data expressed as percentage of the pre-contraction to 

phenylephrine [100%: vehicle treated diabetic rats, aorta, 3.36±0.27g, mesenteric arteries, 

2.08±0.20g; T3 treated diabetic rats, aorta, 3.22±0.41g, mesenteric arteries, 2.29±0.25g] and 
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shown as means ± S.E.M.; n= 4. 

Fig. 4 

Responses, in the presence of L-NAME (3×10-4M) or L-NAME (3×10-4 M) plus T3 (10-7M, 30 min), 

to cumulative concentrations of A23187, in femoral arteries with (+EC) or without (-EC) from 

diabetic rats. Data expressed as percentage of the pre-contraction to KCL [100%: with 

endothelium, 2.03±0.32g; without endothelium, 1.98±0.28g] and shown as means ± S.E.M.; n= 5.  

 

Fig. 5 

Responses, in the presence of L-NAME (3×10-4 M), to cumulative concentrations of A23187, with 

or without indomethacin (5×10-6 M) or S18886 (10-7M), in femoral arteries with (+EC) or without 

(-EC) from vehicle (Left) and T3 (Right) treated diabetic rats. Data expressed as percentage of the 

pre-contraction to KCL [100%: vehicle treated diabetic rats, with endothelium, 2.03±0.32g; 

without endothelium, 1.98±0.28g; T3 treated diabetic rats, with endothelium, 2.05±0.18g; 

without endothelium, 2.12±0.33g] and shown as means ± S.E.M.; n=10 to 15. *Statistically 

significant difference between preparations with and without endothelium (P<0.05). #Statistically 

significant difference between preparations in the presence and absence of indomethacin or 

S18886 (P< 0.05). 

Fig. 6 

Responses to cumulative concentrations of phenylephrine (Left) and U46619 (Right) in rings of 

femoral arteries without endothelium from T3 and vehicle treated diabetic rats. Data expressed as 

percentage of the pre-contraction to KCL [100%: vehicle treated diabetic rats, 1.98±0.28g; T3 

treated diabetic rats, 2.12±0.33g] and shown as means ± S.E.M.; n=5 to 10. *Statistically 
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significant difference between arteries of vehicle and T3 treated diabetic rats (P< 0.05).  

Fig. 7 

Release of 6-keto prostaglandin F1α (Left) and thromboxane B2 (Right) in response to A23187 

(10-6M) in femoral arterial rings with (+EC) and without (-EC) endothelium from T3 and vehicle 

treated diabetic rats. Data shown as means ± S.E.M.; n=8 to 12. *Statistically significant difference 

between preparations with and without endothelium (P< 0.05); #Statistically significant difference 

between preparations of vehicle and T3 treated diabetic rats (P< 0.05). 

Fig. 8 

Western blotting analysis of the protein expression of eNOS (A), COX-1 (B), COX-2 (C) and TP 

receptor (D) in femoral arterial rings from vehicle and T3 treated diabetic rats. Data shown as 

means ± S.E.M.; n=3. *Statistically significant difference between preparations with and without 

endothelium (P< 0.05); #statistically significant difference between arteries of vehicle and T3 

treated diabetic rats (P< 0.05). All the samples were derived at the same time and processed in 

parallel. 

Fig. 9 

Western blotting analysis of the protein expression of eNOS, COX-1 and COX-2 in HUVECs 

stimulated with T3 (10-10 to 10-7M) for one week in the presence of IL-1β (1ng/ml). Data shown as 

means ± S.E.M.; n=3. *Statistically significant difference between preparations of vehicle and T3 

treated groups. 

Fig. 10 

In arteries of diabetic rat, A23187 elicits endothelium-dependent contractions, which can be 

abolished by indomethacin or S18886. After chronic T3 treatment, the release of EDCF is reduced, 
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which could be due to the increased expression of eNOS and/or the reduced presence of COX-1. 

T3 treatment increases the sensitivity of TP receptors of the vascular smooth muscle, which lead 

to the comparable contractions to A23187 in preparations with and without endothelium. The 

presence of indomethacin or S18886 can block A23187 induced contractions in preparations 

without endothelium. 
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Table 1 

Effects of various pharmacological inhibitors on the relaxation evoked byT3 in rat mesenteric arteriesa. 

Treatment pEC50 of T3
b Concentrationc Targetd Referencese 

Vehicle 

Rp-8-Br-cAMPs 

KT5823 

L-NAME 

1400W 

ODQ 

Charybdotoxin 

Iberiotoxin 

BaCl2 

Glibenclamide 

ouabain 

nifedipine 

calhex 231 

thapsigargin 

pertussis toxin 

D-Trp-SPf 

4.96±0.19 

4.89±0.22 

4.86±0.11 

4.93±0.13 

4.93±0.09 

4.98±0.05 

5.14±0.45 

4.89±0.23 

4.95±0.12 

4.95±0.20 

5.05±0.08 

4.85±0.13 

5.10±0.32 

4.79±0.18 

5.02±0.06 

4.95±0.08 

- 

10-4M 

10-6M 

3 X 10-4M 

10-5M 

10−5 M 

10-7M 

10-7M 

10−6M 

10-5M 

5 × 10−7M 

10-7M 

3 X 10-6 M 

10-6 M 

400ng/ml 

10-5M 

- 

protein kinase A 

protein kinase G 

eNOS, iNOS 

iNOS 

sGC 

IKCa, BKCa 

BKCa 

KIR 

KATP 

Na+-K+-ATPase 

L-type Ca2+-channel 

CaSR 

SERCA 

Gαi proteins 

Gαq proteins 

- 

Keung et al., 2005 

Keung et al., 2005 

Shi et al., 2007a 

Zhang et al., 2012 

Li et al., 2013 

Edwards et al., 1998 

Li et al., 2013 

Li et al., 2013 

Li et al., 2013 

Li et al., 2013 

Cognard et al., 1990 

Weston et al., 2008 

Chan et al., 2011 

Wong et al., 2010 

Mukai et al., 1992 

a Preparations without endothelium were contracted with U46619 ( 3×10-8M). 

b Values are means ± S.E.M.; n=6 to 10. 

c Incubation during 30 min, except for pertussis toxin (two h), prior to the contraction with U46619. 
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d Abbreviations: BKCa, large conductance Ca2+-activated potassium channel; CaSR, calcium sensing receptor; eNOS, 

endothelial nitric oxide synthase; IKCa, intermediate conductance Ca2+-activated potassium channel; iNOS, 

inducible nitric oxide synthase; KATP, ATP-sensitive K+ channel; KIR, inwardly-rectifying K+ channel; SERCA, 

sarco/endoplasmic reticulum Ca2+-ATPases; sGC, soluble guanylyl cyclase.  

e Justifying the used concentration of the inhibitors. 

f D-Trp-SP: [D-Trp7,9,10]-Substance P. 
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Table 2 

Body weight, blood glucose and serum T3 level in vehicle and T3 treated diabetic ratsa.   

  Vehicle            T3 treatedc  

 Before  STZb Before  STZb 

Body weight (g) 571.9±5.9 423.4±9.0d 552.9±7.7 414.9±10.5d 

Blood glucose (mmol/L) 5.8±0.2 25.0±0.7e 5.7±0.2 23.6±0.8e 

Serum T3 (ng/dL) - 226.8±20.1 - 411.3±27.4f 

a Data shown as means ± S.E.M.; n=10 to 20.  

b Streptozotocin (STZ; 30 mg/kg; intraperitoneally; once per day for three consecutive days) was given followed by 

vehicle or T3 treatment. 

c Daily intraperitoneal injection of T3 (10μg/kg/day) for four weeks.  

d Statistically significant difference in body weight between before and four weeks after streptozotocin treatment 

(P<0.05). 

e Statistically significant difference in blood glucose level between before and four weeks after streptozotocin 

treatment (P< 0.05).  

f Statistically significant difference in serum T3 level between vehicle and T3 treated diabetic rats (P< 0.05). 
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Table 3 

pEC50 to phenylephrine or U46619 in femoral arteries from vehicle and T3 treated diabetic ratsa. 

  Phenylephrine U46619  

 Vehicleb T3 treatedb   Vehicleb   T3 treatedb 

pEC50 6.55±0.30 6.76±0.21 7.94±0.09   8.53±0.06c 

a Data shown as means ± S.E.M.; n=5 to 10.  

b Vehicle or T3 treatment (10μg/kg/day; intraperitoneally) was given on diabetic rats for four weeks. 

c Statistically significant difference in pEC50 to U46619 between vehicle and T3 treated diabetic rats (P< 0.05). 
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