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dengue virus (DENV) interacts with host

KDEL receptors (KDELR) in the ER.

Depleting KDELR, disrupting DENV/

KDELR interaction or blocking KDELR

cycling between the ER and Golgi reduce

virus release, resulting in virus

accumulation in the ER. The authors

propose that KDELR functions as

intracellular receptors to assist in DENV

exit from the ER.
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SUMMARY

Membrane receptors at the surface of target cells are
key host factors for virion entry; however, it is un-
known whether trafficking and secretion of progeny
virus requires host intracellular receptors. In this
study, we demonstrate that dengue virus (DENV) in-
teracts with KDEL receptors (KDELR), which cycle
between the ER and Golgi apparatus, for vesicular
transport from ER to Golgi. Depletion of KDELR by
siRNA reduced egress of both DENV progeny and re-
combinant subviral particles (RSPs). Coimmunopre-
cipitation of KDELR with dengue structural protein
prM required three positively charged residues at
the N terminus, whose mutation disrupted protein
interaction and inhibited RSP transport from the
ER to the Golgi. Finally, siRNA depletion of class II
Arfs, which results in KDELR accumulation in the
Golgi, phenocopied results obtained with muta-
genized prME and KDELR knockdown. Our results
have uncovered a function for KDELR as an internal
receptor involved in DENV trafficking.

INTRODUCTION

Dengue, a mosquito-borne viral infection endemic in over

100 countries, is caused by four serotypes of dengue virus

(DENV1–4). In addition to a febrile, influenza-like illness, severe

dengue represents a public health concern in Asia and South

America where it is a major cause of death across all ages (Guz-

man et al., 2010; Messina et al., 2014). Despite the global burden

of disease, there is no specific treatment and, therefore, amolec-

ular understanding of host-pathogen interactions during the

cellular life cycle is needed to guide the development of effective

drugs (Guzman et al., 2010).
1496 Cell Reports 10, 1496–1507, March 10, 2015 ª2015 The Author
DENV has two structural glycoproteins: pre-membrane (prM)

and envelope (E) (Kuhn et al., 2002); E mediates interaction

with cellular receptor(s) for viral attachment and entry (Chen

et al., 1997), whereas prM assists E in its correct folding (Coura-

geot et al., 2000) and protects it from pre-fusion in the acidic

environment of the secretory pathway (Zhang et al., 2003). As-

sembly of DENV occurs at the ER and requires interaction of

prM and E (Mukhopadhyay et al., 2005; Pryor et al., 2004).

Nascent virions bud into the lumen of the ER, accumulating in

dilated cisternae oriented toward the cis-Golgi, and are translo-

cated to the Golgi via trafficking vesicles (Welsch et al., 2009). In

the trans-Golgi network (TGN), prM protein is cleaved by the

cellular protease furin, resulting in the release of the pr peptide

and formation of infectious DENV (Li et al., 2008; Yu et al.,

2008). Besides mature virions, non-infectious recombinant sub-

viral particles (RSP) can be produced by cells expressing DENV

prME proteins (Mukhopadhyay et al., 2005). Dengue RSP traffic

along the same compartments as infectious DENV, and repre-

sent a safe and convenient tool for the study of virus-host inter-

actions during secretion (Wang et al., 2009).

Although DENV egress has been studied for many years, most

cellular targets identified in high-throughput screens have not

been mapped to the secretory pathway (Sessions et al., 2009).

We recently identified two cellular factors, ADP-ribosylation

factor 4 and 5 (Arf4 and Arf5), which are involved in secretion

of DENV progeny (Kudelko et al., 2012). Because Arfs play an

important role in the recruitment of coat proteins necessary for

the formation of trafficking vesicles (D’Souza-Schorey and

Chavrier, 2006), our results indicate that Arf4+5 are acting at

an early step of DENV secretion (Kudelko et al., 2012). The spe-

cific involvement of Arfs, which are dispensable factors for the

constitutive pathway, in DENV trafficking suggested that the

virus uses amore complex machinery and that other cellular fac-

tors besides Arf4+5 might also assist to exit the infected cell.

Sorting of cargo is dependent on molecular recognition, a

process equivalent to receptor-ligand interactions; however, it

is not known whether newly formed DENV exploits host factors
s
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to move along the secretory pathway. Intriguingly, depletion of

Arf4+5 has also been reported to inhibit the retrograde traf-

ficking of KDEL receptor (KDELR) from Golgi to ER (Volpicelli-

Daley et al., 2005). The three KDELR members (KDELR1–3)

identified (Hsu et al., 1992; Lewis and Pelham, 1990, 1992b;

Raykhel et al., 2007) are transmembrane proteins cycling be-

tween ER and Golgi apparatus to prevent leakage of ER-resi-

dent proteins, such as chaperones, and retrieve them back to

the ER (Lewis and Pelham, 1990). As KDELR binding to cargo

through a C terminus KDEL motif occurs only in the Golgi appa-

ratus, we investigated their possible involvement in transloca-

tion of DENV from assembly and budding sites in the ER to

the Golgi.

We show here that KDELR1 and KDELR2 play crucial roles for

DENV1–3, but not DENV4 secretion. KDELR interacted with

DENV through three positively charged amino acids at the N ter-

minus of prM. DENV secretion could be blocked either by de-

pletion of KDELR, arrest of KDELR cycle, or disruption of prM/

KDELR interaction. Under these conditions, progeny DENV

accumulated in the ER and did not reach the Golgi apparatus.

Our results demonstrate that KDELRs function as luminal recep-

tors for DENV transport along the secretory pathway.

RESULTS

KDELR Interact with prM of DENV1
We previously demonstrated that depletion of Arf4+5 inhibited

DENV1 and RSP release without disrupting constitutive secre-

tion (Kudelko et al., 2012). To gain insight into the underlying mo-

lecular mechanism, we investigated the role of KDELRs, which

accumulate in a peri-nuclear region and are not recycled back

to the ER following Arf4+5 depletion (Volpicelli-Daley et al.,

2005). All three KDELR identified thus far were detected by

RT-PCR in our cellular models (Figure 1A). We observed a redis-

tribution of KDELR in cells stably transfected with prME (HeLa-

prME-DENV1), with an apparent reduction of co-staining with

the cis-Golgi marker GM130 in comparison to parental HeLa

(Figure 1B). Moreover, partial co-localization of E and KDELR

was observed in either HeLa-prME-DENV1 or Vero E6 cells in-

fected with DENV1 (Figure 1C). Although a prominent aggrega-

tion of E protein was seen in HeLa-prME-DENV1 (Figure 1C),

this did not reflect different distribution, as prME co-localized

with ER marker in both cell lines (data not shown). Similar results

were obtained in cells co-transfected with DENV1 prME and

KDELR1-RFP (Figure S1A). These observations suggested the

participation of KDELRs in DENV1 life cycle.

We next performed co-immunoprecipitation (coIP) using either

dengue patient serum (DPS), containing antibodies recognizing

prME (Kudelko et al., 2012), or normal human serum (NHS) as

control. Pellets of coIPs were analyzed with western blotting

(WB) with antibodies recognizing either prM and E, or the three

KDELR. prME glycoprotein was specifically pulled down by

DPS, but not NHS (Figure 1D). Although expression levels were

comparable, KDELR were detected only in pellets from HeLa-

prME-DENV1, but not parental cells (Figure 1D). Similarly,

when coIP was performed with replication-competent DENV1,

a strong signal for KDELRwas visible only in pellets from infected

Vero E6 cells (Figure 1E), confirming a biochemical interaction
Cell
between KDELR and prME. KDELR were also precipitated

from lysates of stable cell lines producing RSP of DENV2 and

DENV3, but not DENV4 (Figure 1F), suggesting a certain degree

of specificity between serotypes.

To investigate which portion of the envelope glycoprotein, prM

or E, was responsible for interaction with KDELR, the 4G2mono-

clonal antibody, recognizing E but not prM, was used in coIP

assays. KDELR were not present in pellets obtained following in-

cubation with the 4G2 monoclonal (Figure 1G), indicating that E

was not responsible for interaction with KDELR. These observa-

tions were corroborated by detecting KDELR in coIP pellets with

the prM-6.1 monoclonal antibody, which recognizes prM but not

E protein (Figure 1G). The biochemical interaction between prM

and KDELR was further validated by coIP in 293T cells co-trans-

fected with prME and KDELR1-myc (Figure S1B). To conclu-

sively define the role of prM and E in the interaction with KDELR,

we used two complementary approaches. First, glutathione

S-transferase (GST)-fusion proteins with truncated prM frag-

ments were incubated with lysates of cells stably transfected

with KDELR1-myc. Pull-down assays showed that prM-DTM,

the full-length protein without the transmembrane domain

(130 amino acids), pr fragment (91 amino acids) and the first

40 amino acids of prM sequence (pr40) could all interact with

KDELR (Figure 1H), revealing that the amino-terminal domain

of prM was sufficient to mediate interaction with KDELR.

Second, mature and immature RSP were used as baits to pull

down KDELR from cell lysates. Immature RSP were produced

in the presence of NH4Cl, an inhibitor of furin, and thus contained

full-length prM and E (Wang et al., 2009). Mature RSP were pro-

duced from immature RSP after in vitro cleavage by furin, which

released the pr fragment and, therefore, contained only E andM.

KDELR could only be detected when immature, but not mature

RSP were incubated with HeLa cell lysates and then subjected

to immune-precipitation (Figure 1I). These results demonstrate

that interaction with KDELR was dependent on the N-terminal

pr fragment of prM, as its release from immature RSP prevented

pull-down of KDELR.

KDELR Knockdown Reduces Secretion of DENV RSP
To investigate the impact of the interaction between KDELR and

prM on DENV1 life cycle, we transfected HeLa-prME-DENV1

cells that constitutively secrete RSP with siRNAs targeting all

three KDELR; this resulted in an 81% ± 4% (n = 3) reduction of

KDELR protein (Figure 2A). Silencing of KDELR did not affect

cell viability, as determined by propidium iodide staining (Fig-

ure S2A), or morphology (Figure S2B). Our results show that

depletion of KDELR had no effect on intracellular E protein

expression, but significantly reduced RSP secretion (Figure 2A).

To test whether the effect of KDELR on RSP release was part

of a general mechanism that would interfere with the constitutive

secretory pathway, we analyzed ssHRP release (Bard et al.,

2006; Kudelko et al., 2012). No difference was observed in

secreted ssHRPor intracellular HRP activity after downregulation

of KDELR or Arf4+5, when compared to controls (Figure 2B). In

contrast, secretion of ssHRP-KDEL occurred only in cells treated

with KDELR or Arf4+5 siRNAs, confirming that both manoeuvers

had interfered with retrieval of KDELR to the ER, resulting in a

parallel reduction of HRP activity in cell lysates (Figure 2B). These
Reports 10, 1496–1507, March 10, 2015 ª2015 The Authors 1497



Figure 1. KDELR Interact with prM Glycoprotein of DENV1-3

(A) Expression of all three KDELR (KDELR1–3) isoforms was detected by RT- PCR in the cell lines used in our experiments. GAPDH was used as control for the

amount of cDNA template.

(B) In contrast to parental HeLa, endogenous KDELR (red) did not accumulate in cis-Golgi (anti-GM130, green) in cells stably expressing prME of DENV1 (prME).

(C) Endogenous KDELR (red) and DENV1 prM and E proteins (revealed with an anti-prME polyclonal antibody, green) were partially co-localized in HeLa-prME-

DENV1 (prME, top) and DENV1 infected Vero E6 cells (MOI = 0.1, bottom); scale bar represents10 mm.

(legend continued on next page)
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Figure 2. KDELR Knockdown Reduces

Secretion of DENV1 RSP

(A) HeLa-prME-DENV1 cells were transfected with

siRNAs against all three KDELR isoforms, Arf4/Arf5

(Arf4+5), and non-targeting (NT). Knockdown effi-

ciency was determined with WB. E protein in su-

pernatants (SN) and cell lysates (CL) was depicted

by WB, quantified by densitometry and RSPs

secretion was expressed as the percentage of E

protein detected in SN relative to the total amount

(SN+CL). GAPDH was used as the loading control

across wells. Results are means ± SD (n = 3, right).

(B) KDELR downregulation did not inhibit consti-

tutive secretion. HeLa cells expressing a secreted

form of horseradish peroxidase (ssHRP) or ssHRP-

KDEL were transfected with siRNAs targeting

KDELR (gray) or Arf4+5 (black). Secreted and

intracellular ssHRP horseradish peroxidase activ-

ity was measured in both SN and CL. Results are

means ± SD (n = 3).

(C) HeLa-prME-DENV1 cells were transfected with

siRNAs targeting KDELR either individually or in

various combinations. SN and CL were analyzed

by WB to assess RSP secretion (anti-E), release of

chaperones (anti-Bip and anti-calreticulin) and

knockdown of KDELR (KR-10). GAPDH was used

as the loading control across wells. Results are

representative of three independent experiments.

*p < 0.05; **p < 0.005 versus control (NT) siRNAs.
results demonstrate that KDELR specifically assisted RSP

release and their involvement was independent of perturbation

of the constitutive pathway.

To study the role of individual KDELR on DENV1 secretion,

siRNAs targeting individual KDELR were transfected into HeLa-

prME-DENV1 in various combinations. Although individual knock-

downs of KDELR did not induce significant changes, KDELR1+2

and KDELR1+2+3 siRNAs drastically reduced RSP release

(Figure 2C), indicating both a crucial role for KDELR1/KDELR2

and functional compensation between these two isoforms.

As KDELR depletion caused the release of KDEL-carrying pro-

teins (Figure 2B), the effect on DENV1 secretion might have been
(D) KDELRwere pulled downwith dengue patient serum (DPS) fromHeLa-prME-DENV1 (prME) but not parent

as control. Cell lysates (CL) or pellets following immunoprecipitation (IP) were analyzed withWB. InWB of IP p

detected with NHS (middle) corresponded to IgG heavy chains of the IP antibody.

(E) CoIP with DPS pulled down KDELR from lysates of DENV1 infected Vero E6 (5 days postinfection; MOI

(F) KDELR were precipitated by coIP from cells stably expressing prME of DENV1–3, but not DENV4. Ce

DENV1–4 on top of the gel) were collected for coIP assay as described above. Whereas DPS could pull do

DENV1–4, KDELRs were only detected in DENV1–3 IP pellets.

(G) KDELR were not pulled down by coIP using antibody 4G2, which recognizes E but not prM. In contrast, K

which recognizes prM but not E, was used.

(H) GST-fusion proteins of prM fragments pulled down c-myc-tagged KDELR. Cell lysates (input) and pull-dow

anti-c-myc antibodies.

(I) Immature (i) but not mature (m) RSP pull down KDELR. HeLa cells lysates were incubated with purified mat

DPS or NHS.

Results are representative of at least three independent experiments.

Cell Reports 10, 1496–1507
simply due to shortage of chaperones,

such as Bip and calreticulin, which are

required for the assembly of DENV (Lim-

jindaporn et al., 2009). This possibility
was excluded by showing that, although both proteins were de-

tected in supernatants from cells treated with KDELR1+2 and

KDELR1+2+3 siRNAs, their amount in cell lysates was not

appreciably modified when compared to controls (Figure 2C).

These experiments also show that only KDELR1 and KDELR2

were necessary for chaperones retention in the ER (Figure 2C),

suggesting that KDELR isoforms assisting DENV1 secretion

and retrieving ER-resident proteins were the same. Since KR-

10 antibody could not distinguish between the three KDELR (Fig-

ure 2C), the efficacy of siRNA targeting each isoform was inde-

pendently verified in cells expressing tagged KDELR1-3 (Fig-

ure S2C) (Kudelko et al., 2012).
al HeLa cells. Normal human serum (NHS) was used

ellets revealed with anti-E antibody, theweak bands

= 0.01) but not uninfected cells.

ll lysates (CL) from HeLa-prME-DENV1–4 (labeled

wn comparable amounts of prM and E proteins of

DELRs were detected when the antibody prM-6.1,

n pellets were revealed withWBwith anti-GST and

ure or immature RSP and then subjected to IP using

, March 10, 2015 ª2015 The Authors 1499



Figure 3. KDELR Knockdown Reduces

DENV Egress

(A) KDELR knockdown reduced DENV1 virus

titer. Vero E6 cells were transfected with KDELR

siRNAs (gray) before being challenged with

DENV1 (MOI = 0.1). Non-targeting (NT, open) and

Arf4+5 (black) siRNAs served as negative and

positive controls, respectively. Viral titers were

measured at 1, 3, and 5 days postinfection (p.i.).

Results are means ± SD (n = 3). SN were

collected at 5 days p.i. and E protein was de-

tected by WB (inset).

(B) siRNA-treated Vero E6 cells were challenged

with DENV1 at increasing MOIs and viral titers

were measured 5 days p.i. Results are means ±SD

(six to eight observations from two independent

experiments). Inset showsWB of E protein in SN at

5 days p.i.

(C) The effect of simultaneous knockdown of

KDELR and Arf4+5 (K+A, hatched) on DENV1 titers

was measured at 1 and 5 days p.i. Results are

means ± SD (n = 3). E protein in SN was detected

by WB (inset).

(D) KDELR knockdown inhibited secretion of

DENV2 and DENV3, but not DENV4 progeny vi-

rus. Cells were treated as described in (A) and

infected at an MOI of 0.1. Progeny virus was

measured at 5 days p.i. Results are means ± SD

of three to four measurements from one of two

independent experiments with similar results.

E protein in SN was detected in parallel by WB

(inset). *p < 0.05; **p < 0.005 versus control (NT)

siRNAs.
KDELR Knockdown Reduces DENV Egress
Wenext investigated the effect of KDELR knockdown on replica-

tive DENV1 in Vero E6 cells. At 3 and 5 days post-infection, titers

of progeny virus from KDELR-depleted cells were significantly

lower than those of control cells (Figure 3A). A similar reduction

was also found in cells treated with Arf4+5 siRNA (Figure 3A; Ku-

delko et al., 2012). Besides viral titers, a drastic reduction of E

protein levels was detected in supernatants from cells treated

with KDELR or Arf4+5 siRNAs (Figure 3A, inset). A significant

decrease of DENV1 egress was also observed in KDELR-

depleted cells challenged with different MOI (Figure 3B). In

further experiments, Vero E6 cells were co-transfected with

KDELR and Arf4+5 siRNAs before being challenged with

DENV1. Measurements of progeny virus titer and E protein

showed a similar inhibition in comparison to control cells (Fig-

ure 3C), suggesting that KDELR and Arf4+5 converged on the

same pathway to interfere with DENV1 secretion. The efficiency

of siRNA treatments was verified by WB (Figure S3A). We next

tested in parallel the impact of KDELR silencing on all four

DENV serotypes and observed a significant reduction of viral

progeny titer for both DENV2 and DENV3, but not DENV4 (Fig-

ure 3D), consistent with the finding that only DENV1–3 were

able to interact with KDELRs (see Figure 1F). Control experi-

ments confirmed that siRNA treatment did not affect cell

morphology and viability (Figures S3B and S3C). We then inves-

tigated the impact of KDELRs on egress of West Nile Virus
1500 Cell Reports 10, 1496–1507, March 10, 2015 ª2015 The Author
(WNV), another flavivirus transmitted by mosquito vectors

(Campbell et al., 2002) and found that viral progeny titer from

KDELR-depleted cells was not different from that measured in

controls (5.6 ± 2.5 3 109 versus 6.7 ± 1.6 3 109, respectively;

mean ± SD of n = 6 from two independent experiments). These

results are in keeping with our previous findings that different

flaviviruses budding in the ER do not rely on the same cellular

factors for intracellular traffic (Kudelko et al., 2012).

Finally, to exclude that the effect of KDELR knockdown on

DENV1 egress was the consequence of changes in the early

stages of the virus life cycle, we infected Vero E6 cells for

18 hr, less than the minimum time required for newly formed vi-

rions to be released from infected cells (Lindenbach and Rice,

2001). Our experiments show that similar amounts of viral RNA

were measured in cells pre-treated with either KDELR or control

siRNAs (Figure S3D), indicating that KDELR knockdown had no

effect on early stages of the viral life cycle.

prM/KDELR Interaction Occurs in the ER
Because KDELR are shuttling between ER and Golgi apparatus

(Lewis and Pelham, 1992a; Raykhel et al., 2007), we designed

experiments to ascertain in which compartment the prM/KDELR

interaction occurred. We found that, in cells treated with Arf4+5

siRNA-, almost all KDELR signal was co-localized with GM130,

whereas in controls only a small fraction exhibited co-staining

with the cis-Golgi marker (Figure 4A). Therefore, we took
s



Figure 4. prM/KDELR Interaction Occurs in

the ER

(A) Depletion of Arf4+5 by siRNA blocked retrieval

of KDELR from Golgi. HeLa cells expressing

KDELR1-RFP (red) were transfected with Arf4+5

siRNA and stained with anti-GM130 antibody

(green). Non-targeting (NT) siRNA was used as

control. Scale bar represents 10 mm.

(B) KDELR sequestered in Golgi were not precipi-

tated by dengue patient serum (DPS). HeLa-prME-

DENV1 cells transfected with Arf4+5 or NT siRNAs

were subjected to coIP using DPS or normal human

serum (NHS). Cell lysates (CL) and pellets from

immunoprecipitation (IP) were analyzed by WB.

Results are representative of three independent

experiments.
advantage of this observation, which identifies the cis-Golgi as

the peri-nuclear region where KDELRwas sequestered following

Arf4+5 depletion (Volpicelli-Daley et al., 2005), to perform coIP in

Arf4+5 knockdown cells. Despite similar expression levels in all

experimental conditions, KDELR could be precipitated only

from control, but not Arf4+5 depleted cells (Figure 4B), indicating

that prM/KDELR interaction occurred in the ER.

H2, R19, and K21 Are Key Residues for prM/KDELR
Interaction
To identify the putative region of prM interacting with KDELR, we

analyzed theN-terminal sequence of the pr fragment and noted a

high proportion (seven of 26 residues) of positively charged

amino acids (Figure 5A) that were conserved in DENV1–3,

whereas substitutions at residues H2 and H11 were present in

DENV4 (Figure S4A). To test the role of this cluster of basic res-

idues we generated prME-DENV1 constructs with neutral amino

acids substitutions (Figure 5A). Mutations did not affect expres-

sion of KDELR, prM, and E, with the exception of R6S, which

reduced the levels of both viral proteins when compared to

wild-type prME (Figure 5B, upper; and Figure S4B). Cell lysates

were subjected to coIP and the ability of mutant prM to interact

with KDELR was determined by calculating the ratio between

precipitated KDELR and prM, which was then normalized to

that measured for wild-type prM (Figure 5B, middle). H2L, R6S,

R19S, and K21T significantly reduced prM binding to KDELR

(Figure 5B, lower) and release of RSP (Figure 5C), demonstrating

a positive correlation between prM/KDELR interaction and RSP

secretion.

prM/E interaction is critical for the formation of DENV (Coura-

geot et al., 2000): prM functions as the chaperone of E and its R6

residue is predicted to be important for both interaction and viral

assembly (Li et al., 2008). To test the effect of the mutated con-

structs on prM/E interaction, we performed coIP assays on ly-

sates of 293T cells and found that similar levels of prM protein

could be precipitated for all mutants with the exception of R6S

(Figure S4B). These observations, while confirming the predicted

involvement of R6 (Li et al., 2008), demonstrate that none of the

other mutated residues was involved in the interaction between

prM and E.

Based on the results of coIP (Figure 5B) and RSP secretion

(Figure 5C), we generated a triple mutant (H2L/R19S/K21T)

designated hereinafter as ‘‘Triple.’’ The Triple mutation did not
Cell
alter the ability to bind Arf4 and Arf5 (Figure S5), but abrogated

interaction with KDELRs (Figure 5D) and blocked the secretion

of RSP by 90% (Figure 5E), demonstrating the crucial role of

H2, R19, and K21 residues for prM interaction with KDELR and

DENV1 secretion.

Triple Mutant prME Forms RSP and Is Translocated
within the ER
To exclude the possibility that disruption of prM/KDELR inter-

action had compromised the assembly and formation of viral

particles, we performed freeze-and-thaw (F&T) experiments,

which have been shown to release intracellular viruses from

host cells (Burleson et al., 1992). Upon repeated cycles of F&T,

cells expressing R6S released barely detectable levels of RSP

(Figure 6A), confirming that disruption of prM/E interaction

inhibited RSP formation. In contrast, similar amounts of RSP

were released from cells expressing either wild-type or Triple

prME (Figure 6A), indicating that prM/KDELR interaction was

dispensable for the formation of viral particles and further sug-

gesting that inhibition of DENV1 and RSP release was the conse-

quence of a trafficking defect.

Next, we studied the role of prM/KDELR interaction in RSP

traffic within the ER by immunofluorescence microscopy of cells

co-stained with anti-E as well as antibodies labeling ER, cis-

Golgi and TGN. It has been observed that newly assembled

DENV translocate within the ER to accumulate in dilated

cisternae oriented toward the cis-Golgi (Welsch et al., 2009)

and, therefore, we used E protein aggregation as an index of

RSP trafficking within the ER. Aggregates were found next to

the Golgi apparatus in 50% of cells expressing either wild-type

or Triple mutant prME, but were hardly observed in cells stably

transfected with R6S (Figures 6B and 6C), suggesting that trans-

port of newly assembled RSP inside ER lumen did not require

interaction with KDELR. Similar aggregates were observed in

DENV1-infected Vero E6 cells using either a polyclonal antibody

against prME or the anti-E monoclonal antibody 4G2 (Figure S6).

Triple Mutant RSP Cannot Exit from ER
To investigate whether interaction with KDELR was required

for DENV1 exit from ER, translocation of RSP to the cis-Golgi

was determined by measuring the percentage of total E protein

co-localized with GM130. We found that in cells expressing

wild-type prME there was a significantly higher percentage of
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Figure 5. prM/KDELR Interaction Is Depen-

dent on Three Key Residues

(A) Diagram highlighting positively charged amino

acids (aa) clustered at theN terminus of prM-DENV1.

(B) Substitutions at H2, R6, R19, and K21 signifi-

cantly reduced the ability of prM to bind KDELR in

transfected 293T cells; wild-type (WT) and empty

vector (ev) served as positive and negative controls,

respectively. Cell lysates (CL) were subjected to

coIP using dengue patient serum (DPS). prM and

KDELR were detected by WB in CL or IP pellets

(upper). Densitometric ratios of precipitated KDELR/

prM are shown as means ± SD (n = 3; lower).

(C) Substitutions at H2, R6, R19, and K21 of prM-

DENV1 reduced RSP secretion from 293T cells.

E protein in supernatants (SN) and CL was depicted

by WB, quantified by densitometry and RSPs

secretion was expressed as the percentage of

E protein detected in SN relative to total content

(SN+CL). Results are means ± SD of triplicate mea-

surements from three independent experiments.

(D) A triple prME mutant (H2L-R19S-K21T; Triple)

was completely devoid of interaction with KDELR

(no coIP with DPS).

(E) RSP were not secreted from cells transfected

with Triple mutant. RSPs release in the SN was

assessed by visualizing dengue E protein by WB

(left). Blots were quantified by densitometry and

RSPs secretion was expressed as the percentage

of E protein detected in the supernatant relative to

the total amount (SN+CL). Results are means ± SD

(n = 3, right). *p < 0.05; **p < 0.001 versus WT.
E protein co-localized with GM-130 with respect to R6S, which

does not formRSP and served as the negative control, and Triple

mutant, which behaved indistinguishably from R6S (Figures 6B

and 6D). Furthermore, similar results were obtained when co-

localization of E protein with a TGN marker was measured,

with R6S and Triple mutant exhibiting a 50% reduction with

respect to wild-type prME (Figures 6B and 6E). These results

indicate that RSP of Triple prMEwere not efficiently translocated

from the ER to the Golgi apparatus.

The involvement of KDELR in DENV1 exit from ER was further

studied by monitoring intracellular dimerization of E protein. It

has been reported that DENV glycoprotein prME undergoes a

conformational change in the Golgi apparatus, possibly caused

by luminal acidification, which leads to the formation of E homo-

dimers (Li et al., 2008; Yu et al., 2008). RSP released by F&T

showed that the percentage of E/E homodimers was 3- to

4-fold higher in cells expressing wild-type prME in compa-

rison to Triple prME, which behaved in similar fashion to R6S

(Figure 6F), corroborating immunofluorescence observations

(Figures 6B–6D).

Finally, because translocation from ER to Golgi is known to be

mediated by vesicular transport (Antonny and Schekman, 2001),

we investigated whether KDELR/prME interaction also affected

the formation of RSP-containing vesicles. Expression of the

different prME constructs did not change the distribution of ER-

GIC53 (Figure 7A), which cycles between ER and Golgi (Schin-

dler et al., 1993) and was used as marker of trafficking between

these two organelles. RSP-containing vesicles (puncta co-

stained with anti-E and anti-ERGIC53) were rarely detected in
1502 Cell Reports 10, 1496–1507, March 10, 2015 ª2015 The Author
cells expressing Triplemutant or R6S prME, but readily observed

with wild-type prME (Figure 7B).

DISCUSSION

We provide here several lines of evidence to propose a role for

KDELR in supporting the early steps of intracellular trafficking

of both DENV1 and DENV1/RSP, namely their translocation

from the ER to the cis-Golgi compartment. KDELR interact

with DENV1 through three positive charged amino acids at the

N terminus of prM protein and DENV1/RSP egress is inhibited

either by downregulation of KDELR, sequestration of KDELR in

the Golgi, or by disruption of prM/KDELR interaction. Our results

further indicate that interaction with KDELR is important for

DENV1/RSP to be licensed as cargo of trafficking vesicles leav-

ing the ER. Because KDELR were not required for constitutive

secretion of soluble proteins, these findings demonstrate that

intracellular transport of DENV/RSP is regulated by interaction

with specific cellular factors and identify KDELR as an essential

component of this process.

The term receptor in virology refers to host plasma membrane

proteins that recognize viral structural components, triggering

receptor-mediated endocytosis of the bound pathogen (Mercer

et al., 2010). The process of DENV transportation from ER to

Golgi apparatus shares several similarities to viral entry. In

both processes viruses can be viewed as cargo that is translo-

cated from a neutral environment (extracellular milieu or ER) to

an acidic compartment (endosome or Golgi), needs to overcome

a lipid membrane barrier to reach its final destination (cytoplasm
s



Figure 6. RSP Formed by the Triple Mutant Do Not Exit the ER

(A) Triple prME mutant (Triple), but not R6S-prME (R6S), assembled RSP. Cells were subjected to cycles of freeze-and-thaw (F&T) and E protein detected in cell

lysates (CL) or in supernatants after F&T was analyzed by WB (upper). The percentage of E released by F&T relative to the total amount (CL+F&T) was used as

index of RSP formation. Results are means ± SD (n = 3, lower).

(B) E protein localization in cells expressing wild-type (WT), Triple or R6S prME. Cells were co-stained with anti-E (4G2, green) and markers for various com-

partments (red): anti-calnexin (ER), anti-GM130 (cis-Golgi), anti-TGN46 (trans-Golgi network, TGN). Arrowheads indicate aggregates of E protein. Scale bar

represents 10 mm.

(C) The percentage of cells containing aggregates was quantified from at least three independent experiments. Results are means ± SD of the indicated number

of cells (WT, n = 3152; R6S, n = 2901; Triple, n = 2842).

(D and E) Quantification of E staining within Golgi apparatus. The region labeled with either anti-GM130 or anti-TGN46 was assigned to cis-Golgi and TGN,

respectively. The percentage of E protein in each Golgi sub-compartment was calculated as described in the Experimental Procedures. Results are means ± SD

from at least three independent experiments of the specified number of cells (for cis-Golgi: WT = 1238; R6S = 1159; Triple = 1188; for TGN: WT = 1268, R6S =

1209, Triple = 1214).

(F) Reduced dimerization of E protein in Triple mutant. RSP released after F&T were subjected to WB using anti-E antibody (left). The percentage of dimeric form

relative to total (dimeric + monomeric) E protein released by F&T is presented as means ± SD (n = 3, right). *p < 0.01; **p < 0.005 versus WT.
for replication or extracellular milieu for another infection round),

and is delivered in the form of trafficking vesicles (Humphries and

Way, 2013; Modis, 2013; Rothman and Orci, 1992; Sun et al.,

2013). Therefore, KDELR can be considered as intracellular re-

ceptors for DENV/RSP trafficking, whose function is akin to the

role played by cell surface proteins in mediating viral entry.
Cell
Many cellular factors have been shown to be crucial for DENV

life cycle (Sessions et al., 2009), but viral-host interactions that

assist in secretion of newly formed virions are still unclear and

no host receptors mediating secretion of progeny virus are

known. Thus, although one study suggested an indirect role

of KDELR in early vaccinia virus biogenesis, by recruiting
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Figure 7. prM/KDELR Interaction Assists

Vesicular Transport of DENV from ER to

Golgi

(A) Cells expressing wild-type (WT), Triple or R6S

prME were co-stained with anti-E (green) and anti-

ERGIC53 (red). Puncta labeled with anti-E and

anti-ERGIC53 (arrows) were rarely detected in

cells expressing Triple and R6S. Scale bar repre-

sents 10 mm.

(B) Quantification of puncta co-stained with anti-E

and anti-ERGIC53. Results are means ± SD of

the specified number of cells from at least three

independent experiments (WT, n = 1203; R6S, n =

1184; Triple, n = 1231). *p < 0.005 versus WT.

(C) Working model depicting the role of KDELR in

DENV transport. Newly formed virions assembled

in the ER exploit KDELR as luminal receptor to be

sorted as cargo of vesicles that reach the Golgi,

where they dissociate to allow KDELR to retrieve

ER resident proteins and become available for

more rounds of transport. The precise molecular

events regulating interactions of DENVwith Arf4+5

and their final trafficking remain to be elucidated.
coatomer, their impact on intracellular transport was not investi-

gated (Zhang et al., 2009). Similarly, the reduction of DENV2

replication associated with KDELR downregulation had been

ascribed to decreased cell surface expression of protein disul-

phide isomerase, which has been proposed to function as an

additional DENV receptor (Wan et al., 2012). Our data define a re-

ceptor role for KDELR in DENV egress, although it has to be

acknowledged that depletion of KDELR in Vero E6 cells reduced

viral titer by less than one order of magnitude. Clearly, additional,

compensatory factors may assist trafficking of DENV from ER to

Golgi, as indicated also by the lack of interaction between

DENV4 and KDELRs. Further studies will be needed to identify

intracellular receptors for DENV4 as well as for other flaviviruses.

It has been demonstrated that, on immature DENV, prM sits on

top of E protein to protect it from the acidic environment along

the secretory pathway (Zhang et al., 2003). This topology makes

prM more accessible to interactions with host cellular proteins.

However, the location of the key amino acid residues mutated

in our experiments is different, with R6 facing E protein, while

H2, R19, and K21 are positioned on the outside face (Li et al.,

2008). This is consistent with our observation that mutation of
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R6 disrupted interaction with E and pre-

vented assembly of RSP, whereas substi-

tutions of H2, R19, and K21 abolished

interaction with KDELR and perturbed

RSP trafficking. Sequence alignment

shows that a similar cluster of positi-

vely charged amino acid is present in

DENV1–3 serotypes, whereas DENV4 ex-

hibits non-basic substitutions at residues

H2 and H11. This difference correlates

with the inability of DENV4 to pull down

KDELRs and be affected by KDELR

depletion. In keeping with our working

model, we found that secretion of WNV,
which lacks a high proportion of positively charged amino acids

at the N terminus of prM protein, was also unaffected by treat-

ment with siRNAs targeting KDELR. As the acidic pH in the Golgi

is closer to the pI of positively charged amino acids, it is tempting

to speculate that this environment may facilitate dissociation of

prM/KDELR complexes by reducing their binding affinity. In

contrast, the canonical KDEL motif is more negatively charged

(Wilson et al., 1993) and this difference may underlie the cargo

switching that allows retrieving of resident ER proteins from

Golgi.

The finding that DENV4 was unaffected by KDELR depletion

was surprising. We had previously shown that release of

DENV4 was inhibited by knocking down Arf4+5 (Kudelko et al.,

2012), which would result in sequestration of KDELR in the cis-

Golgi and, therefore, reduce their availability for DENV4 traf-

ficking. It is logical to postulate that DENV4 may interact in the

ER with an additional intracellular receptor in an Arf4+5-depen-

dent manner and be able to translocate along the secretory

pathway even when KDELRs were downregulated. Thus, traf-

ficking of flaviviruses may require a specific complement of fac-

tors for different viruses and/or strains. It should be pointed out



that, although the Triple mutant was mainly localized in the ER, it

was still able to pull down both Arf4 and Arf5, confirming that

binding to Arf4+5 and KDELR in the ER are independent events.

Arf4+5 are localized at both Golgi and ER (Duijsings et al., 2009)

and may play two crucial roles for DENV secretion, by being

involved in KDELR recycling and interacting with prM protein.

Further experiments will be required to ascertain the precise

location and role of class II Arf/prM interaction in DENV

trafficking.

The function of prM in DENV biology is attracting more atten-

tion. Thus, prM has been recently shown to interact with the light

chain Tctex-1 of dynein and play a role in late stages of virus

replication (Brault et al., 2011). We demonstrate here that prM

interacts with KDELR during virus secretion. Our working hy-

pothesis is that DENV1–3 use unoccupied KDELR, which are

recognized by a binding motif in the N terminus of prM, to exit

the ER as cargo of vesicles en route to the Golgi apparatus (Fig-

ure 7C). We had previously characterized the function of class II

Arf proteins in DENV/RSP egress (Kudelko et al., 2012). Simulta-

neous depletion of Arf4+5 efficiently sequester intracellular

KDELR in the Golgi and, therefore, it is logical to postulate that

both factors converge on the same pathway to inhibit DENV/

RSP secretion (Figure 7C). However, results with DENV4 and

WNV suggest that additional host proteins are specifically

involved in sorting flaviviruses through late secretory compart-

ments and assisting their release from infected cells. In recent

years, evidence has accumulated to suggest that, besides their

well-established function in retrieving chaperones, KDELR can

be activated by cargo to trigger signaling pathways that regulate

anterograde and retrograde traffic (Giannotta et al., 2012; Pulvir-

enti et al., 2008). Specifically, it has been proposed that KDELRs

recognize chaperones that are carried by ER vesicles en route to

Golgi (Cancino et al., 2013). It is tempting to speculate, therefore,

that during DENV1–3 biogenesis, newly formed virions bind to

KDELR to activate cell signaling pathways that facilitate their

translocation to the Golgi.

EXPERIMENTAL PROCEDURES

Cells, viruses, antibodies, and siRNA experiments are described in the Supple-

mental Experimental Procedures. Primers used for RT-PCR, GST pull-down,

and site-directed mutagenesis are shown in Tables S1, S2, and S3,

respectively.

Protein Analysis and RSP Quantification

Gel electrophoresis and WB analysis were carried out as previously described

(Kudelko et al., 2012) To quantify RSP secretion, the area and mean lumines-

cence signals detected by WB in supernatants (SN) and cellular lysates (CL)

were measured by densitometry using Image Quant TL (Thermo Fisher). For

each condition, the relative amount of secreted RSP (E signal in SN) was calcu-

lated as the percentage of total signal (ESN/ESN+ECL).

Virus Infection Experiments

Viral stocks of DENV1-4 andWNV were titrated by determining the tissue cul-

ture infective dose 50% (TCID50/ml) in Vero E6 cells challenged with 10-fold

serial dilutions of infectious supernatants for 90 min at 37�C. Cells were

subsequently incubated in DMEM with 2.5% fetal calf serum. At 5–7 days

postinfection for DENV1–3 and 3–5 days postinfection for DENV4 and

WNV, culture supernatant was removed and cell monolayers were fixed in

4% formaldehyde. The percentage of cytopathic effects was used to calcu-

late the viral titer.
Cell
For measurements of progeny virus production, viral RNA was extracted

from culture supernatants and quantified by real-time RT-PCR (see the Sup-

plemental Experimental Procedures). The amount of viral RNA transcripts

was then calculated by generating a standard curve with 10-fold dilutions of

RNA isolated from a known amount of DENV1 stock and expressed as

TCID50/ml, as described above.

GST Pull-Down Assay

Fragments of the prM sequence of DENV1 were amplified by PCR (Table S2).

Ampliconswere subcloned in frame into the bacterial expression vector pGEX-

4T-1 to produce N-terminal tagged GST constructs (see the Supplemental

Experimental Procedures). Twenty micrograms of each purified protein bound

to sepharose 4B-glutathione beads was mixed with lysates of HeLa cells sta-

bly expressing cMyc-KDELR, incubated overnight at 4�C, and extensively

washed before eluting bound proteins, according to the manufacturer’s in-

structions, for WB analysis.

Coimmunoprecipitation

Sub-confluent monolayers of HeLa-prME-DENV1 or 293T cells transfected

with the specified constructs were lysed on ice for 30min with 1ml RIPA buffer,

supplemented with freshly added 1 mM PMSF and protease inhibitors cock-

tail. Cell debris were removed by centrifugation at 13,000 rpm for 15 min at

4�C and lysates were pre-cleared by incubation with 30 ml of 50% protein G

sepharose beads (Amersham Pharmacia) for 1 hr. Pre-cleared lysates

(400 ul) were then incubated for 2 hr at 4�Cwith additional 30 ml of 50% protein

G sepharose beads previously treatedwith either specific antibodies or control

IgGs. Beads were then pelleted by centrifugation at 13,000 rpm for 30 s at 4�C
and bound proteins were eluted by boiling in gel loading buffer, separated by

electrophoresis and analyzed with WB.

Freeze-and-Thaw Assay

For subcellular fractionation (Xu et al., 1997), sub-confluent HeLa cells stably

expressing either wild-type prME-DENV1 or the specified mutants were first

detached in PBS plus 5 mM EDTA at 37�C for 5 min and washed three times

on icewith PBS supplementedwith 1mMEGTA. Cells were then re-suspended

in a buffer containing 10% wieght/vol sucrose, 20 mM Tris HCl, 150 mM NaCl,

10 mM magnesium acetate, 1 mM EGTA (pH 7.6) supplemented with freshly

added 1 mM PMSF and protease inhibitors cocktail, and then subjected to

eight cycles of freeze (dry ice) and thaw (37�C water bath), 1 min each step.

Nuclei and cellular debris were removed by a short (5 s) spin atmaximumspeed

in a bench-top centrifuge at 4�C. Supernatants were collected and centrifuged

for 30 min at maximum speed at 4�C to pellet the membrane fraction. The final

supernatants, containing newly formed RSP, were analyzed with WB.

Fluorescence Microscopy

For fluorescence microscopy, cells grown on glass coverslips were fixed, per-

meabilized, and incubated with primary antibodies (see the Supplemental

Experimental Procedures). Samples were then probed with appropriate sec-

ondary antibodies conjugated with fluorescein isothiocyanate or Texas Red

(both from Life Technologies). Nuclei were stained with DAPI and coverslips

were mounted on glass slides for image acquisition using either an Axio

Observer Z1 inverted microscope or an LSM 700 confocal microscope (Carl

Zeiss).

Quantitative Analysis of Fluorescent Images

To extract and quantify cells stained with the viral E protein, we developed

a specific protocol, ‘‘Stained cells,’’ in the ICY software (http://icy.

bioimageanalysis.org) (de Chaumont et al., 2012). To extract and quantify cells

that containedRSP aggregates, we developed a separate protocol, ‘‘Cells with

aggregates,’’ in the ICY software. Details of these protocols are provided in the

Supplemental Experimental Procedures.

To determine RSP localization in the Golgi apparatus, weighted co-localiza-

tion coefficients of E with Golgi markers were computed using the ZEN2011

co-localization coefficient software (Carl Zeiss). The sums of intensities of

pixels corresponding to anti-E (So) and to co-staining with anti-E and either

cis-Golgi or TGN marker (Sc) were computed and then weighted co-localiza-

tion coefficients, which are equal to the ratio of Sc to So, were used to
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represent the percentage of RSP translocated to either cis-Golgi or TGN.

To determine the number of RSP-containing vesicles, we manually counted

(in blind) puncta co-labeled with anti-E and anti-ERGIC that were adjacent to

perinuclear E-staining. The total number of double-labeled puncta per field

was then calculated, divided by the number of cells expressing E protein

and displayed as the number of puncta per cell. Data sets for quantitative anal-

ysis were acquired from an average of 40–50 fields from four to five indepen-

dent experiments for each condition.

Statistical Analysis

Results are shown asmeans ±SD. Statistical significancewas analyzed by the

Student’s unpaired t test, with a confidence limit for significance set at 0.05 or

less.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.02.021.
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