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ABSTRACT 

Recent empirical studies have found widespread inaccuracies in traffic forecasts 

despite the fact that travel demand forecasting models have been significantly 

improved over the past few decades. We suspect that an intrinsic selection bias may 

exist in the competitive project appraisal process, in addition to the many other factors 

that contribute to inaccurate traffic forecasts. In this paper, we examine the potential 

for selection bias in the governmental process of build-operate-transfer (BOT) 

transportation project appraisals. Although the simultaneous consideration of multiple 

criteria is typically used in practice, traffic flow estimate is usually a key criterion in 

these appraisals. For the purposes of this paper, we focus on the selection bias 

associated with the highest flow estimate criterion. We develop two approaches to 

quantify the level and chance of inaccuracy caused by selection bias: the expected 

value approach and the probability approach. The expected value approach addresses 

the question “to what extent is inaccuracy caused by selection bias?” The probability 

approach addresses the question “what is the chance of inaccuracy due to selection 

bias?” The results of this analysis confirm the existence of selection bias when a 

government uses the highest traffic forecast estimate as the priority criterion for BOT 

project selection. In addition, we offer some insights into the relationship between the 

extent/chance of inaccuracy and other related factors. We do not argue that selection 

bias is the only reason for inaccurate traffic forecasts in BOT projects; however, it 

does appear that it could be an intrinsic factor worthy of further attention and 

investigation. 
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1 INTRODUCTION 

The Build-Operate-Transfer (BOT) scheme is increasingly used as an innovative way 

to finance the construction of major public transportation infrastructure projects in 

many developing countries, and even in some developed countries. In a BOT project 

bidding process, each consultant (or consortium) develops a proposed plan that 

includes factors related to highway pricing and capacity (Yang and Meng, 2000; 

Subprasom and Chen, 2007). Bidding consortiums design their pricing and capacity 

plans to maximize the profit from the project and the government then evaluates the 

social welfare benefits of the proposed plans. Generally, both the investor’s profits 

and the social welfare benefits of the project are dependent on the estimated forecast 

of the traffic demand of the project in the target year and the estimate of the 

construction and operation costs of the project. Therefore, the accuracy of the traffic 

forecasts directly affects the efficacy of the BOT decision-making process (e.g., the 

ranking of project tenderers and the selection of a successful tenderer).  

 

Beyond the significance of the forecast accuracy in the BOT project bidding process, 

traffic (or travel demand) forecasting is also a fundamental step in the planning and 

management of transportation systems. The resulting estimates of traffic flows in the 

network can be used to evaluate the performance of existing systems, to assess the 

results of the proposed planning and management strategies (e.g., new road 

construction, road pricing, and traffic rationing), and to study the financial feasibility 

of candidate projects (Chen and Subprasom, 2007). The accuracy of a traffic forecast 

substantially affects the quality of the system performance assessment and the 

resulting decision.  

 

It is well recognized that travel demand forecasting models have significantly 

improved in the past few decades. However, many recent empirical studies have 

demonstrated the inaccuracy of the traffic forecasts of various transportation projects. 

In other words, the traffic forecast estimate at the project design stage may be 
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significantly different from the true value at the operating stage. These recent 

empirical and statistical studies include those of Flyvbjerg et al. (2005), who used 

data from 183 road projects and 27 rail projects in 14 nations; Bain (2009), who used 

data from 104 international and privately financed toll road projects; Li and Hensher 

(2010), who used data from 14 toll roads in the three largest Australian cities; 

Parthasarathi and Levinson (2010), who used data from 108 projects in Minnesota, 

USA; Roxas and Chalermpong (2010), who used data from 89 road and 40 bridge 

projects in Thailand and Philippines; and Nicolaisen and Næss (2015), who used data 

from 35 road projects in Denmark and England to evaluate the accuracy of travel 

demand forecasts for do-nothing alternatives. 

 

Given the inaccuracy of many traffic forecasts, we suspect that an intrinsic selection 

bias may exist in the government’s competitive transportation project appraisal 

process, in addition to the many factors contributing to inaccurate traffic forecasts 

identified by previous empirical studies. This selection bias may occur because the 

observable traffic forecasts are generated by non-randomly selected samples in the 

transportation system, given that only winning projects will be built and observed and 

losing projects are never built or appear in the system (Heckman, 1979). Therefore, 

we hypothesize that the selection bias associated with the appraisal criterion is one of 

the factors contributing to the inaccuracy of traffic forecasts. This can be analytically 

derived by quantifying the level and chance of inaccuracy caused by selection bias. In 

particular, a BOT project bidding and appraisal process may involve a selection bias 

when some particular criterion (e.g., the highest flow estimate, the lowest cost 

estimate, or the highest financial benefit estimate) is set as the primary criterion for 

selecting the successful bid. Recently, Eliasson and Fosgerau (2013) also considered 

selection bias as a possible source of systematic cost overruns and demand shortfalls. 

However, these authors focused on a project selection scenario in which a subset of 

projects are selected to implement within the candidate projects pool according to the 

relationship between the predicted payoff and the specified threshold of individual 

projects. Our paper complements Eliasson and Fosgerau’s study in terms of both 
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selection scenario (i.e., the selection of which project from what pool of proposals) 

and justification methodology. This paper deals with a bidder selection scenario in 

which a single bidder is selected from the multiple bidders to win a single BOT 

project and the bias occurs between the benefit (or cost) predicted by the successful 

bidder and the actual project benefit (or cost) after implementation. In reference to the 

justification methodology, Eliasson and Fosgerau (2013) quantified the mean relative 

cost (or benefit) error of selected projects using simulation, whereas this paper 

analytically quantifies both the extent and chance of inaccuracy caused by the 

selection bias. 

 

As identified by many previous empirical studies, there are many factors and practical 

considerations other than selection bias that contribute to the inaccuracy of traffic 

forecasts. For example, Mackie and Preston (1998) identified 21 sources of error and 

bias in transport project appraisals. The errors they identified were related to the 

project objectives being unclear, incompletely specified, or inconsistent with the 

appraisal criteria, definitions of the study areas, and scheme options; multifarious 

sources of data and model errors; and evaluation errors, such as double counting, 

inappropriate values, and a failure to balance quantified and non-quantified items. 

Flyvbjerg et al. (2005) analyzed the stated causes of inaccuracies in traffic forecasts 

for 26 rail projects and 208 road projects. They found that the reasons for these 

inaccuracies are highly different for rail and road projects. For rail projects, 

uncertainty about trip distribution and deliberately slanted forecasts are the two most 

important stated causes; for road projects, uncertainties about trip generation and 

land-use development are the two most frequent stated causes of forecast inaccuracies. 

Bain (2009) used the Traffic Risk Index (TRI) to summarize the principal reasons for 

forecast inaccuracies and to offer investors and financial analysts a systematic way of 

evaluating forecasting risk. The project attributes in the TRI include tolling culture, 

tariff escalation, forecast horizon, toll facility details, data collection, 

private/commercial users, micro-economics, and traffic growth. Lemp and Kockelman 

(2009) reviewed the literature on the sources of risk and uncertainty in traffic 
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forecasts and how these relate to project financing. Parthasarathi and Levinson (2010) 

identified errors in model inputs (such as demographic forecasts, trip making 

characteristics, and network differences between the assumed network and the actual 

in-place network) as possible sources of inaccuracy in traffic forecasts. For more 

discussions of demand forecast inaccuracy, interested readers can refer to a literature 

review by Nicolaisen and Driscoll (2014). 

 

In this paper, we examine the potential influence of selection bias on the BOT 

transportation project appraisal process.  Although many criteria can be considered 

simultaneously in a realistic BOT project appraisal process, the evaluation usually 

depends on the traffic flow estimate. For the purposes of this paper, we consider that 

the bidding consortium with the highest traffic flow estimate will have the highest 

chance to win the contract because, everything else being equal, it offers a lower toll 

and a higher benefit for the BOT project. To quantify the selection bias associated 

with the highest flow estimate criterion, we develop two approaches (the expected 

value and probability approaches) to analytically derive the level and chance of 

inaccuracy. The expected value approach addresses the question “to what extent is 

inaccuracy caused by selection bias?” The probability approach addresses the 

question “what is the chance of inaccuracy due to selection bias?” Two representative 

symmetric and asymmetric distributions (i.e., normal and lognormal distributions) are 

adopted to characterize the traffic forecast variability in both the expected value and 

probability approaches. The quantification of the extent and probability of selection 

bias provided in this paper has the potential to assist in the transportation 

infrastructure financial planning process.  

 

The remainder of this paper is organized as follows. Section 2 quantifies the selection 

bias associated with the highest flow estimate criterion, including analyses using both 

the expected value and probability approaches. In Section 3, we summarize our 

concluding remarks and future research directions. 
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2 SELECTION BIAS QUANTIFICATION 

In a transportation BOT project bidding process, each consultant (or consortium) 

prepares an estimate of the traffic demand in the target year. However, these traffic 

forecast estimates may deviate significantly from the long-term, true value due to 

factors unforeseen during the construction of the models and the selection of the 

project participants. In this section, we consider the highest flow estimate criterion. In 

other words, we presume that the consortium offering the plan with the highest flow 

estimate will have a higher chance of winning the contract, because, everything else 

being equal, this plan offers a lower toll and a higher benefit for the BOT project. 

 

To construct a mathematical analysis of flow estimates, we consider N consultants 

(consortiums) in the project bidding process. We also assume that there is no 

systematic bias in the traffic forecast estimates Vi made by each consultant i. Given 

the assumption of no systematic bias, {V1, V2,…, VN} should be independently and 

identically distributed (or IID). We let V denote the true (random) traffic forecast 

estimate of the examined project. The traffic forecast estimate made by the winner is 

max{V1, V2,…, VN}, which is also a random variable. Based on this, we may then 

raise a straightforward question: “What is the relationship between the winner’s 

estimate max{V1, V2,…, VN} and the true value of V?” 

 

2.1 Expected Value Approach 

The expected value approach is the most widely used statistical method to evaluate 

random variables in probability theory. Hence, the deviation between the winners’ 

traffic forecast estimates and the true traffic flow value can be characterized by the 

difference in their expected values. In this paper, we use the following ratio to 

quantify the deviation: 

    1 2max , , , 1NE V V V E V    , (1)

where E[.] is the expectation operator. When the ratio is positive, the traffic forecast 
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estimate on the examined project is overestimated; otherwise, it is underestimated. 

 

Because the maximum function is convex, Jensen’s inequality (Jensen, 1906) gives 

       1 2max , , , maxN i
i

E V V V E V E V    , (2)

where the equality uses the identical assumption of Vi. Thus, Eq. (1) is always 

non-negative, indicating that the traffic forecast is overestimated. However, the exact 

extent of the overestimation is unknown from Jensen’s inequality. In the following 

series of calculations, we derive the level of this overestimation. 

 

We define U as max{V1, V2,…, VN}. The cumulative distribution function (CDF) of U 

is as follows: 

       1 2 1 2Pr max , , , Pr , , ,U N NF z V V V z V z V z V z       . (3)

Using the IID assumptions of Vi, we obtain: 

        Pr
N N

U VF z V z F z   , (4)

where  VF z  is the CDF of V. In this case, the expected value of U is:  

        N

U VE U zdF z zd F z
 

 
   . (5)

Let   N

Vt F z , so  1 1/ N
Vz F t , where  1

VF    is the inverse CDF of V. In this 

case, Eq. (5) can be rewritten as: 

    1 1 1/

0

N
VE U F t dt  . (6)

Note that E[U] depends on the inverse CDF of V. In the following analysis, we 

examine two representative symmetric and asymmetric distributions (i.e., normal and 

lognormal distributions) for the true traffic flow (V). A lognormal distribution is a 

non-negative and asymmetric distribution extensively used in general reliability 

applications to model failure times (e.g., Blischke and Murthy, 2000). In the field of 

transportation, it has been adopted to model travel demand uncertainty (Zhao and 

Kockelman, 2002; Zhou and Chen, 2008) and network performance uncertainty (Xu 

et al., 2014). Table 1 summarizes the level of overestimation (i.e., Eq. (1)) caused by 
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selection bias under the above distributions. 

 

Table 1 The selection bias quantification due to the highest flow estimate criterion 

Distribution Normal Lognormal 

Level of 
overestimation  1 1 1/

0
CoV Nt dt 

    
 

1 21 1/

0

2

exp ln 1 CoV
1

1 CoV

Nt dt     




Chance of 
overestimation 

1 0.5N    21
1 ln 1 CoV

2

N
        

 

Note: CoV = the coefficient of variation 

 

Figure 1 illustrates the level of overestimation shown in Table 1. The following 

observations can be drawn from this figure: 

(1) The level of overestimation is always non-negative for both normal and 

lognormal distributions, which is consistent with Eq. (2) (i.e., Jensen’s inequality). 

This means that, everything else being equal, using the expected value of the 

maximum flow estimate as the project selection criterion will always lead to 

overestimation compared to the true mean value. This confirms the existence of 

selection bias in the BOT project appraisal process when using the highest flow 

estimate criterion. 

(2) The level of overestimation increases with the number of consortiums in the BOT 

project bidding process. More consortium bids will result in a larger 

overestimation. 

(3) The level of overestimation in both normal and lognormal distribution cases also 

depends on the coefficient of variation (CoV) in the true traffic flow distribution. 

From Figure 1, we can see that the level of overestimation increases with respect 

to the CoV. When the true traffic flow is more randomly distributed (i.e., has a 

larger CoV), the overestimation due to the selection bias becomes more 

significant. 
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(a) Normal distribution 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N

O
ve

re
st

im
at

io
n 

L
ev

el

 

 
CoV=0.1
CoV=0.2
CoV=0.3
CoV=0.4
CoV=0.5

    
 

1 21 1/

0

2

exp ln 1 CoV
1

1 CoV

Nt dt     




 

(b) Lognormal distribution 

Figure 1 The level of overestimation due to the highest flow estimate criterion 

 

2.2 Probability Approach 

From Section 2.1, we see that E[U]/E[V]-1 in Eq. (1) quantifies the expected 

level/extent of overestimation. However, this does not tell us how often this 

overestimation occurs. Probability is another commonly used statistical method to 

evaluate a random variable. In this section, we provide a probability approach to 

estimate the chance of overestimation when the government uses the maximum traffic 

forecast estimate (i.e., U = max{V1, V2,…, VN}) as the BOT project selection criterion. 

The formula for this is as follows: 



 

 10

     1 2Pr max , , , NV V V E V . (7)
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 
 

1
E U

E V


  Pr U E V

 

Figure 2 A comparison of the expected value and probability approaches 

 

By substituting Eq. (4) into Eq. (7), the chance of overestimation due to selection bias 

can be expressed as follows: 

         Pr 1 1 Pr
N

UU E V F E V V E V        . (8)

Table 1 also shows the chance of overestimation caused by selection bias when using 

the highest flow estimate criterion. Figure 3 illustrates the chance of overestimation 

due to the highest flow estimate selection criterion for both the normal and lognormal 

distributions. Clearly, the chance of overestimation is always larger than 50% when 

N > 1. If there is no selection bias when using the maximum flow estimate as the 

project selection criterion, then the probability of overestimation should be equal to 

50%. Therefore, the calculated chance of overestimation confirms the existence of 

selection bias from the probability perspective. Similar to the level of overestimation 

presented in Section 2.1, the probability approach indicates that including more 

consortiums in the BOT project bidding process will result in a greater chance of 

overestimation. However, the chance of overestimation manifests in a different way 

than the level of overestimation does (as shown in Figure 1). For a normal distribution, 

the chance of overestimation is independent of the traffic flow characteristics (i.e., 
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CoV). However, for the lognormal distribution, the chance of overestimation depends 

on the CoV of traffic flows. A larger CoV corresponds to a more dispersed state of 

traffic flow, which may have a lesser chance of exceeding the expected value. 

Therefore, as the CoV increases the chance of overestimation decreases. 
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 

 

Figure 3 The chance of overestimation due to the highest flow estimate criterion 

 

3 DISCUSSIONS AND FUTURE RESEARCH 

In this paper, we examined the possible existence of selection bias in a government’s 

BOT transportation project appraisal process. This bias could be one of the factors 

contributing to the inaccuracy of traffic forecasts. For the purposes of this paper, we 

focused on the selection bias associated with the highest flow estimate criterion. The 

expected value approach and the probability approach were developed to quantify the 

level and chance of inaccuracy caused by selection bias, respectively. In addition, two 

representative symmetric and asymmetric distributions (i.e., the normal and lognormal 

distributions) were adopted to characterize traffic forecast variability in both 

approaches. The quantification of the extent and chance of selection bias provided in 

this paper has the potential to assist in transportation infrastructure financial planning. 
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In this paper, we use the highest flow estimate criterion to demonstrate the possible 

existence of selection bias. In addition to the highest flow estimate criterion, the 

lowest cost estimate (e.g., construction and operation costs) is another widely used 

criterion in BOT project appraisals. When using the lowest cost estimate criterion, we 

are also able to demonstrate the possible existence of selection bias by using the same 

approach outlined above. 

 

We found that, everything else being equal, using either the expected value of the 

maximum traffic forecast estimate (or the minimum cost estimate) as the primary 

BOT project selection criterion always led to overestimation (or underestimation), 

compared to the true mean value. Using the maximum flow estimate (or the minimum 

cost estimate) as the project selection criterion always had at least a 50% chance of 

overestimation (or underestimation). These results verified our hypothesis concerning 

the existence of selection bias in the BOT project appraisal process from both the 

expected value and probability perspectives. Both the level and chance of inaccuracy 

caused by selection bias increased with the number of consortiums in the BOT project 

bidding process. More bidders (i.e., a more competitive selection process) result in a 

greater extent and chance of selection bias. In addition, the selection bias coexists 

with uncertainty. A larger coefficient of variation (CoV) increased the level of 

inaccuracy caused by the selection bias.  

 

This does not mean that selection bias is the only reason for inaccurate traffic 

forecasts in BOT projects, but it does appear that it could be an intrinsic factor worthy 

of further attention and investigation. Additional considerations and investigations 

might include the following: 

(1) Forensic studies exploring empirical evidence concerning the existence of 

selection bias in existing BOT projects. 

(2) The relaxation of the assumption of an independent and identical distribution (IID) 

for all of the consultants to enhance the realism of the analyses. For example, the 

collaboration of multiple consultants on a single large BOT project or bidding for 
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multiple BOT projects as a bundle under the same consortium would typically 

violate the IID assumptions.   

(3) The consideration of more appraisal criteria for a more realistic evaluation of 

BOT project bids, which would rely on a more comprehensive analysis of 

existing selection biases.  

 

Given the existence of selection bias and its contribution to traffic forecast 

inaccuracies, it would be important to develop practical and meaningful ways to avoid 

or reduce the adverse effects of this bias. One possibility would be to carry out a 

two-stage tendering process. After receiving the first-stage bids, a shortlist of bidders 

would be created, based on all of the significant considerations in practice. At the 

same time, the traffic flow forecasts of all of the bidders (including the shortlisted 

ones) would be collected and an envelope of forecasts (e.g., low, average, and high) 

would be constructed. This envelope information would be provided to the shortlisted 

bidders for a second-stage of submissions. These submissions would not include any 

more traffic forecasts but would instead focus on other technical and financial aspects 

of the proposed project. To achieve a lower selection bias, it would be important to 

explore which criterion of selecting project/bidder (e.g., cost-benefit analysis or 

multi-criterion decision-making) can produce a lower selection bias, given that the 

highest flow estimate criterion leads to overestimation and the lowest cost estimate 

criterion leads to underestimation (Section 2). To this end, we need to explore which 

benefit metric (e.g., in terms of total travel time, total social welfare, total revenue, 

etc.) is more robust or less affected by selection bias. Section 2 showed that both the 

level and chance of inaccuracy caused by selection bias increase with the number of 

consortiums in the BOT project bidding process. A more competitive selection 

process with more bidders results in a greater extent and chance of selection bias. 

With this observation, it is also meaningful to impose a tighter requirement on the 

bidding consortiums admittance. Besides, with the information on the level and 

chance of inaccuracy caused by selection bias, correction/discount factors could be 

applied in the bidding selection process based on tendering inputs from various 
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consultants (e.g., discounting the level of overestimation). 

 

Although we use BOT projects to demonstrate the possible existence of selection bias 

in this paper, we believe that this discussion may also be useful in explaining the 

widespread traffic forecast inaccuracy of other types of transportation project. We 

hope that this short communication serves as a useful analytical tool for examining 

the issues related to inaccurate traffic forecasts and provides a different perspective to 

stimulate further discussions on this important topic. 
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