

___. ___. ______ ________________________________

Ammattikorkeakoulututkinto

Extending the Advanced Data
Extraction Infrastructure

Research on HTML5 usage, server monitoring tool, support for
multidimensional datasets

Riku Hytönen

Bachelor’s Thesis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38066613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS
 Abstract

Field of Study
Technology, Communication and Transport
 Degree Programme
Degree Programme in Information Technology

Author(s)
Riku Hytönen
 Title of Thesis

Extending the Advanced Data Extraction Infrastructure

Date 30 May 2012 Pages/Appendices 28/20

Supervisor(s)
Mr. Jussi Koistinen, Lecturer, Mr. Sami Lahti, Lecturer

Client Organisation/Partners
Dr. Suren Chilingaryan, Dr. Andreas Kopmann, Karlsruhe Institute of Technology

Abstract

The Advanced Data Extraction Infrastructure (ADEI) project functions as a bridge between the
control systems that collect the measurements of various subsystems controlling the flow of data
acquisition from experiments, and scientists analysing the flow of experiments and evaluating the
collected data. The project is still in development and new features are added constantly.

During the thesis the current version of the ADEI was extended by implementing a new data
reader module to deal with Round Robin Database files that are used to monitor the status of the
computers operating as part of control and data acquisition subsystems of the ADEI.

The future development of the ADEI was also researched. The current server-side graphing
approach has significant limitations in scalability and requires a rather high bandwidth between the
server and clients. The use of HTML5 markup language was investigated. The investigation
focused on the usage of canvas along the JavaScript drawing library RGraph to implement the
ADEI’s graph drawing features on the client side of the application to lessen the need for high
bandwidth. The test was successful and it is recommended to use the RGraph library as the
platform for a new ADEI frontend.

The current version of the ADEI can only present simple time series data while many experiments
generate multidimensional time series data. To achieve the visualization of multidimensional data,
a prototype module handling several new types of data that could not be presented with the
current ADEI was created to provide a foundation for the further development of these features.

Keywords
HTML, PHP, JavaScript, Round Robin Database, Multidimensional Data

SAVONIA-AMMATTIKORKEAKOULU OPINNÄYTETYÖ
 Tiivistelmä

Koulutusala
Tekniikan ja liikenteen ala

Koulutusohjelma
Tietotekniikan koulutusohjelma
 Työn tekijä(t)
Riku Hytönen
 Työn nimi

Web-sovelluksen laajentaminen

Päiväys 30.05.2012 Sivumäärä/Liitteet 28/20

Ohjaaja(t)

Lehtori Jussi Koistinen, Lehtori Sami Lahti,
 Toimeksiantaja/Yhteistyökumppani(t)

Tohtori Suren Chilingaryan, Tohtori Andreas Kopmann, Karlsruhe Institute of Technology
 Tiivistelmä

ADEI projektin kehittämä web-pohjainen sovellus toimii linkkinä erilaisten mittaustuloksia
keräävien laitteistojen ja tuloksia analysoivien tutkijoiden välillä. Projektia kehitetään ja uusia
ominaisuuksia lisätään jatkuvasti.

Osana opinnäytetyötä tutkittiin HTML5 merkkauskielen mahdollista käyttöä ADEIn
jatkokehittämisessä keskittyen tarkastelemaan uutta canvas elementtiä ja piirtämiseen tarkoitetun
RGraph JavaScript kirjaston käyttöä toteuttamaan ADEIn nykyiset kuvaajien piirto-ominaisuudet
asiakaslaitteen puolella. Näin pystytään vähentämään palvelimen ja asiakaslaitteiden välisen
korkean kaistanleveyden tarvetta. Testi onnistui ja suosittelen Rgraphia käytettäväksi ADEIn
uuden käyttöliittymän kehityksessä.

Lisäksi kehitettiin nykyiseen ADEI versioon uusi lukurajapinnan laajennus käsittelemään Round
Robin Database tiedostoja jota tultaisiin käyttämään ADEI palvelimien suorituskyvyn tarkkailuun.

Moniulotteisen datan, jota ei pystytä esittämään selkeästi nykyisten piirto-ominaisuuksien avulla,
esittämistä varten kehitettiin kokeellinen moduuli. joka muodostaa pohjan näiden ominaisuuksien
tulevalle jatkokehittämiselle.

Avainsanat
HTML, PHP, JavaScript, Round Robin Database, Moniulotteinen Data

TABLE OF CONTENTS

1 INTRODUCTION ... 7

2 ENVIRONMENT ... 10

2.1 Used Techniques .. 10

2.2 Tools ... 10

3 EXTENDING THE ADEI .. 11

3.1 HTML5 ... 11

3.1.1 Previous Research ... 11

3.1.2 Canvas Element .. 14

3.1.3 RGraph JavaScript Library .. 14

3.1.4 Conclusions .. 15

3.2 Performance Monitoring Tool for ADEI .. 16

3.2.1 Round Robin Database .. 16

3.2.2 Munin .. 16

3.2.3 Requirements ... 16

3.2.4 Implementation .. 17

3.2.5 Conclusions .. 21

3.3 Module for Visualizing Multidimensional Data .. 21

3.3.1 Requirements ... 21

3.3.2 Implementation .. 22

3.3.3 Conclusions .. 26

4 CONCLUSIONS ... 27

REFERENCES .. 28

APPENDICES

Appendix 1, Program code of the ADEI RRDREADER
extension’s iterator and reader classes 29

ABBREVIATIONS AND NOTIONS

KIT Karlsruhe Institute of Technology

IPE Institute for Data Processing and Electronics

ADEI Advanced Data Extraction Infrastructure

KATRIN Karlsruhe Tritium Neutrino Experiment

TOSKA Test Facility for Fusion Magnets

MySQL A widely used open source database engine

CSV Comma-separated values

XSL Extensible Stylesheet Language

HTML5 Hypertext Markup Language

AJAX Asynchronous JavaScript and XML

PHP A server-side HTML embedded scripting language

XSLT Extensible Stylesheet Language Transformations

API Application Programming Interface

WebGL An API that conforms closely to the OpenGL ES 2.0 API

for 3D rendering

OpenGL A cross-language, cross-platform API for the writing of

applications that produce 2D and 3D computer graphics

2D Two dimensional

3D Three dimensional

7

1 INTRODUCTION

Various scientific experiments generate a lot of data and researchers need a way to

investigate their experiment data. In fusion experiments the data can be stored at

rates exceeding several kHz. Meteorological data on the other hand needs to be

archived for over hundreds of years. The Advanced Data Extraction Infrastructure

(ADEI) project was started in the Institute for Data Processing and Electronics (IPE)

at the Karlsruhe Institute of Technology (KIT) to solve this problem. The ADEI stores

and displays data from various experiments with different timescales and rates.

The development of the ADEI project will be further continued during the thesis. The

possibilities of using HTML5 markup language in the future development of the ADEI

will be investigated, a new interface for reading and presenting the data generated by

the server performance monitoring tool Munin will be created and the ADEI will be

extended to support the visualization of multidimensional data measured by the

meteorological equipment operating at the KIT weather tower.

The ADEI has been developed to provide scientists with data exploration capabilities

to a broad range of physical experiments dealing with time series data. Examples of

such systems include slow control systems for maintaining archives of sensor

generated data for long periods of time, cosmic ray experiments evaluating fluxes of

cosmic rays incident on the detector surface, meteorological systems measuring

various aspects of the weather, etc. (Chilingaryan S., Beglarian A., Kopmann A. and

Vöcking S. 2010)

These systems have very different characteristics from each other: the amount of

data channels, the types of the channels and their sampling rates, etc. Different data

acquisition and control subsystems store their data in varying ways utilizing various

data formats and database engines. Furthermore, scientists require their data to be in

specific formats that are supported by the tools they use to analyze their experiment

data.

The ADEI project functions as a bridge between the acquisition and the analyzing of

experiment data. This is done by reading data from various different experiments and

storing it in its own MySQL databases from which the data can be exported in

different formats such as CSV and XSL for further analysis. The ADEI’s ability to

draw graphical representations of the experiment data also provides scientists with

8

the possibility to examine the validity and integrity of their measurements. The ADEI

also provides the required interfaces to enable the expanding of these reading and

exporting functions to support new types of data and new export formats for the data.

(The ADEI Project 2012)

The ADEI is complex web based software implementing multiple functions needed for

caching, aggregating, filtering and exporting of the experiment data. The software

consists of well over a hundred files containing approximately 40 000 lines of code.

Currently five different authors have contributed in the development of the code.

The architecture of the ADEI can be seen in Figure 1. There are three distinct parts to

the figure; the example data sources found at the bottom (red), the actual ADEI

classes in the middle (blue) and some clients that use the ADEI to access the data on

top (green).

The clients get data from the ADEI as JSON/XML encoded data by using HTTP GET

and POST requests. Some of the ADEI classes deal with exporting the data to the

clients from the ADEI databases in the format required by the client.

Other classes function close to the data sources, dealing with reading the data from

different sources, iterating it and storing it in ADEI’s MySQL databases while also

trying to ensure that the data being stored is valid and consistent.

There are also classes that handle searching through the chosen data and creating a

graphical representation of it for the user. This also includes the filtering, aggregation

and caching of the data is fetched for the user

9

FIGURE 1. The ADEI architecture (Chilingaryan S., Kopmann A. 2011)

The ADEI is licensed under GNU General Public License and only free open source

technologies are used in its development. It is currently used to support several

experiments at KIT, including the slow control systems of the Karlsruhe Tritium

Neutrino (KATRIN) experiment to measure the mass of the electron antineutrino and

the Test Facility for Fusion Magnets (TOSKA), a low-temperature test facility for

superconducting magnet coils and other technical components to be used in the

study and development of fusion technology.

10

2 ENVIRONMENT

2.1 Used Techniques

The techniques used in the extensions of the ADEI project code include PHP, HTML,

XML, XSLT and JavaScript. The server side functionality was implemented using

PHP while the client side functionality utilizes JavaScript and the user interface is

constructed from XML data returned by the server using XSLT templates.

2.2 Tools

The development work was done on a desktop computer running OpenSuse Linux.

The prototype and proof of concept code files were created with the KEdit text editor

and tested locally on an Apache2 server running on the development machine.

The extensions of an actual instance of the ADEI were done by using the Linux

terminal to connect to a server machine running the ADEI instance. The editor used

to write code while connected to the server machine was Midnight Commander

Editor.

11

3 EXTENDING THE ADEI

The thesis consisted of three distinct parts dealing with the extension of the ADEI.

These parts were the research work on using HTML5 in the future development of

the ADEI, the creation of a new RRDREADER interface to be used for monitoring the

performance of the ADEI servers and the creation of a new module to visualize

multidimensional datasets in the ADEI.

3.1 HTML5

As the first part of the thesis the new features of HTML5 and their possible usage in

the future development of the ADEI project were investigated.

HTML is a language used to structure the presentation of content on web pages. The

aim of HTML5, which is currently in development, is to improve the language with

new support features for the latest multimedia while keeping it easily readable by

humans and consistently understood by computers and devices. (W3C 2012)

3.1.1 Previous Research

The new features of HTML5 and their usage in the development of the ADEI had

already been researched by the IPE before this thesis. The future changes that were

suggested previously include the possible usage of the new web workers and web

sockets to update the graphs in ADEI in real time. This can be seen in Figure 3. The

currently implemented handling of graph updating using AJAX requests initiated by

the user can be seen in Figure 2.

The web worker and web socket APIs are new features of HTML5. The workers are

used to separate JavaScript tasks requiring heavy computations into different threads

to be executed independently to prevent the code from making a website

unresponsive for the remainder of its execution. The web socket API is used to create

two way communication channels between web servers and their client applications

thus enabling real-time bi-directional communication.

There would also be a possibility to present certain types of multidimensional data

e.g. weather maps as Moving Pictures by using the new video tag of HTML5. In

addition, some measurement data could be clarified by using the WebGL API to

12

present the object being measured and the locations of the sensors on the object.

The WebGL API, included in the HTML5 specification, offers 3D rendering in HTML

context and is designed to be used with the canvas tag to provide rendering

functionality similar to OpenGL.

FIGURE 2. The current implementation of graphing in the ADEI (Chilingaryan S.,

Kopmann A. 2011)

13

FIGURE 3. A suggested approach to graphing in the ADEI using HTML5

(Chilingaryan S., Kopmann A. 2011)

Most of the suggested changes, such as using the web worker and web socket APIs

to remodel the graphing of the ADEI, would require a lot of reworking on the software.

Thus, considering the time available for the research, the main focus was on the new

canvas tag and the possibility of replacing the current graphing system using the

RGraph JavaScript graphing library that had also been mentioned in the previous

research as a possible tool for the future graphing tools of the ADEI.

The relevant new functionality offered by the new attributes introduced in HTML5

includes e.g. the ‘hidden’ attribute that determines whether an element is visible or

not. However, these features have already been implemented in the current state of

the ADEI by utilizing the dynamic changing of style sheets to e.g. alter the visibility of

different objects in the interface. Still, if a future version of the ADEI will be developed

using HTML5 to a greater extent, the adjusting of the look and feel of the web page

could be made simpler by utilizing these new attributes.

14

3.1.2 Canvas Element

Out of the new tags provided by HTML5, the Canvas tag offers a promising way to

present the experiment data in the ADEI. The Canvas tag enables the creation of

images using JavaScript on the client side as opposed to the current version which

builds the graphical presentation of the data on the server side using PHP. This

would free up server and network capacity for other tasks such as filtering and sifting

through the requested data thus enabling the application to run faster. For this

reason, the usage of the RGraph JavaScript library to draw graphs from various types

of data was tested.

3.1.3 RGraph JavaScript Library

RGraph is an HTML5 JavaScript library for drawing charts on the new canvas

element of HTML5 (RGraph 2012). It has been previously proposed to be used in

graph drawing for the future HTML5 version of the ADEI.

To test the library, several small scale tests on creating graphs were conducted

locally using preset values for graph data. A simple example graph can be seen in

Figure 4.

FIGURE 4. An example graph generated with RGraph

The code used to generate the above example graph can be seen in Figure 5.

15

FIGURE 5. The JavaScript code of the RGraph example

The library supports a wide variety of different graphs and is simple and effective to

use in the creation of graphs. The ability to draw multiple line plots on a single graph

is supported by the library and thus it contains, in theory, all the features required by

the current stable version of the ADEI for drawing the graphs.

3.1.4 Conclusions

Regarding the previously done research on the new features of HTML5, discussed in

chapter 3.1.1, the new ideas suggested seem to be well thought out and worth

implementing in the future.

In conclusion for the research conducted for the thesis, the canvas tag seems to be a

valid way to replace the current way of creating graphs for the ADEI in future

versions. Based on the tests conducted on Firefox 3.6, Firefox 4 and Opera 11, the

RGraph library seems to be versatile and it seems to contain all the features needed

to implement the same functionality as the current ADEI graphing classes do.

16

3.2 Performance Monitoring Tool for ADEI

3.2.1 Round Robin Database

Round Robin Databases (RRD) created by the RRDTool open source logging tool

(Oetiker T. 2011) are traditionally used in the UNIX world to store time series data

produced by resource monitoring tools. This storage format is also used by the

resource monitoring tool Munin, which has been used to monitor the ADEI servers

and their performance.

3.2.2 Munin

Munin is a tool created with the Perl programming language for monitoring system

resources, storing the resource data in RRD-files and graphing the stored data so it

can be viewed in the Munin interface using a web browser (The Munin Project 2012).

Part of the interface can be seen in Figure 6.

FIGURE 6. Munin web interface

3.2.3 Requirements

The RRDREADER and several other classes were created to provide a way to view

the server performance data stored by Munin using the ADEI interface. The required

features of the system were to be able to read the data stored in RRD files by Munin

and to automatically create different log groups from the Munin created RRD files as

specified in the Munin’s configuration file so that for example, all the files storing CPU

17

usage percentage data could be drawn in the same graph. Also, since some of the

data stored by Munin assumes that the graph would be drawn as stacked filled line

plots, this mode of drawing graphs also needed to be implemented to enable

accurate graphing of the Munin data using the ADEI web interface. The reader was

also required to be able to handle the reading of generic RRD files not associated

with Munin to enable the use of other RRD files as data sources for the ADEI in the

future.

3.2.4 Implementation

The new RRDREADER class extends the ADEI’s reader interface by implementing

the basic methods GetGroupInfo, GetItemList, GetRawData and HaveData that are

found in its parent class READER. As can be seen in Figure 7, the reader class

utilizes its inherited variables and methods such as the CreateGroup method and the

$flags variable among many others. The class also contains several methods used to

acquire the information required by the base class methods to extract data out of the

Munin created RRD files and their configuration file. Some of the class methods can

be seen in Figure 8.

FIGURE 7. The beginning of the RRDREADER’s GetGroupInfo function

18

FIGURE 8. A few methods of the RRDREADER class

In order to get the data from the Munin generated RRD files, the reader uses

RRDTool and its PHP extension to read the files. Because the PHP extension did not

implement all the functions required to get the necessary information from the files, in

some cases, the RRDTool was used with the PHP shell_exec() method to get the

information.

In addition to the RRDREADER class, several other additions and changes were

made in the ADEI. For the iteration of the data returned by the reader classes, two

new classes were created. One of the classes, RRDDATA is to be used when no

Munin configuration file is specified in the ADEI server configuration. This class exists

for the purposes of future development, enabling the reading of data stored in other

systems that use RRD files as their data storage. The other class, MUNINDATA is

used with the data that is read from Munin created RRD files. By using the additional

information read from the Munin configuration file, this class is able to handle the data

so that it can be presented exactly as Munin’s own web interface does it. Both of

these classes implement the PHP Iterator interface and are modeled after the

iterating classes used by other ADEI readers. A part of the MUNINDATA class code

can be seen in Figure 9.

19

FIGURE 9. The beginning of MUNINDATA class declaration

A new MUNINAXES class was created by extending the existing GRAPHAXES class,

one of the several classes used by the ADEI to generate the complete graphical

presentation of data, to handle the y-axis name information when dealing with Munin

generated data.

The classes that were created and modified when implementing the RRDREADER

functionality can be seen in Figure 10. The red colored boxes represent the new

classes created specifically for the RRDREADER. The orange DRAW class was

slightly modified to accommodate for the drawing of filled line plots when specified in

the data read from Munin RRD files.

20

FIGURE 10. The classes created and modified while implementing the RRDReader

An addition to the user interface in the form of a new control module called Plot was

also made to enable the switching between the standard graphing mode and the

newly added Munin mode. This module could be easily expanded in the future if

additional modifiers are needed for the drawing system.

For the purposes of drawing graphs from the Munin generated files, changes needed

to be made to the main DRAW class of the ADEI to account for a new parameter

from the user interface control module mentioned in the previous paragraph. This

parameter changes the drawing mode so that it takes into account the type of the plot

needed to be drawn for each data source. This also caused the removal of the

vertical zooming option in the JavaScript code of the image cropping system used to

zoom in on the presented data in the ADEI.

21

3.2.5 Conclusions

The extension of the ADEI reader interface to include RRD files was successful and

the new extension is already in use on KIT’s ADEI servers supporting the KATRIN

and the KITCube experiments. A graph made using the data provided by the

RRDREADER can be seen in Figure 11.

FIGURE 11. Munin generated data on system memory usage graphed using ADEI

3.3 Module for Visualizing Multidimensional Data

The presentation of multidimensional data is not possible in the current version of the

ADEI since the drawing modes used to present the data only account for one variable

on every specific moment in time. Many forms of data cannot be accurately

presented with this type of graphing. The new module for visualizing multidimensional

data was created to address this problem.

3.3.1 Requirements

Since the data to be presented with the module may vary greatly, the aim of its

development was to make a foundation for multidimensional data presentation that

could be easily extended to support the handling of new data types that need a

different approach than those already implemented in the services used by the

module.

22

There were three different types of multidimensional data that needed to be

considered when developing the module. The wide angle pictures taken by a cloud

camera at the KIT weather tower, the two-dimensional array of data provided by a

ceilometer used to determine the heights of cloud layers and a dataset from

temperature sensors at different heights of the KIT weather tower.

3.3.2 Implementation

At first a prototype of the new module was created using HTML and JavaScript to test

different approaches to visualize multidimensional data. This way the early

development could focus on handling the data and how to present it efficiently without

having to be concerned with the specific workings of the ADEI. The services that

dealt with creating images for the prototype from the data provided were done using

PHP. These services utilize the same JPGraph PHP graphing library as the ADEI’s

DRAW class. This library is used to set the axes that the generated image is then

fitted to.

The prototype’s aim was to create a template that had a place to generate a graph

displaying the multidimensional data and provided the necessary user controls to

move through the data. The layout of the prototype showing temperature data can be

seen in Figure 12. The sliders on the side and below of the upper graph are used to

adjust the zoom level of the graph and scroll through measurement times. The user

can switch between different modes of visualization with the buttons found between

the two graphs and the bottom graph changes represent the data selected by the

user by mouse clicking the upper graph.

23

FIGURE 12. The layout of the prototype module

24

The first type of multidimensional data to be visualized using the module were images

taken by the KIT weather tower cloud camera. These wide angle shots display the

whole sky above the tower, with the horizon displayed as a circle on the edge of the

image. The approach taken to visualizing these images over time was to go through

the images stored on the server by the camera and crop a small slice from the middle

of each image and then generate an image from the slices to display the changes in

cloud density and daylight over time.

While the primary image created this way provides the user with a general idea on

the look of the sky on a given time, a secondary image displaying the complete image

from a time chosen by the user is shown below the primary image.

Another type of data needed to be dealt with was a two-dimensional array of figures

describing the amount of laser light backscatter from clouds as measured by the

weather tower ceilometer. The array contains the time of a measurement as a UNIX

timestamp as the key and an array of backscatter values as the value for each key.

These arrays can be found stored in a MySQL database as BLOB data.

The approach taken to visualize this data was to create an image in which every pixel

describes a time/height pair and the color of the pixel describes the thickness of the

cloud layers based on the backscatter values. Using this approach to create the

image enables the user to get the general idea on how high and how thick the cloud

layers are on a specific time. This can be seen in Figure 13. Once again, the

secondary image of the module is used to show a more accurate display of the

backscatter values from a time selected by the user as seen in Figure 14.

25

FIGURE 13. Ceilometer main graph

FIGURE 14. Ceilometer secondary graph

26

The third and final type of data required to be visualized by the new module was the

air temperatures measured by sensors on different heights of the KIT weather tower.

However, since the at the time, only one of the sensors was online and outputting

real data, the modules feature used randomized data for the temperatures as can be

seen on Figure 12. For simplicity the simulated values assume a linear relation

between height and temperature.

The module was integrated into the ADEI by using the standard way of adding a

module described in the ADEI Project’s website (The ADEI Project 2012). This

included the creation of an XSL template to create the base of the module page, the

creation of the PHP services returning the XML for the template and the JavaScript

code to handle user interaction with the module.

3.3.3 Conclusions

All three of the ways of displaying multidimensional data were successful and

achieved a reasonable efficiency and representation accuracy. The display of cloud

camera images was successfully integrated into the ADEI running on the test server

and it offers a solid foundation to further develop the visualization of multidimensional

data in the ADEI. A UML model describing the module and its current services can be

seen in Figure 15.

FIGURE 15. UML showing the module and the currently implemented services

However, the module is still a rough draft of what it could be and will likely require

further development and polishing before it can be considered a stable part of the

existing system.

27

4 CONCLUSIONS

While I was working on my thesis the ADEI was expanded to include features for

resource monitoring and the ability to present multidimensional data. The usage of

HTML5 in the future development of the ADEI was also researched.

The performance monitoring features implemented are already in use to track

resources on KIT’s Linux servers supporting the KATRIN and KITCube experiments.

The work on integrating multidimensional data visualization on the KITCube ADEI is

also in progress. The research on HTML5 has shown promise in upgrading the ADEI

to HTML5 and it has been planned that this work will be continued.

Working on the thesis went smoothly after getting familiar with the system, which of

course took its time considering the size and complexity of the ADEI system

compared to what I had worked with before. Regarding this, some sort of a tutorial on

adding new modules to the ADEI system would have been a good way to start

examining the system as, for example, the XSLT approach of creating views was not

familiar to me beforehand and so it took a rather long time to sink in.

Overall working on my thesis at the IPE was a pleasant experience that widened my

own views of the world and developed both my professional and language skills. It

would not be far off to say that my time in Germany was the most entertaining half a

year of my life so far.

28

REFERENCES

The ADEI Project 2012 A publically visible implementation of the ADEI supporting the
KATRIN project at KIT [online] [Accessed 21 March 2012] Available from:
http://katrin.kit.edu/adei/

The ADEI Project 2012 The Advanced Data Extraction Infrastructure project’s Trac
page [online] [Accessed 20 March 2012] Available from: http://adei.info

Chilingaryan S., Beglarian A., Kopmann A. and Vöcking S. 2010 Advanced data
extraction infrastructure: Web based system for management of time series data
[online] [Accessed 21 March 2012] Available from: http://iopscience.iop.org/1742-
6596/219/4/042034

Chilingaryan S., Kopmann A. 2011 The future of the ADEI, PowerPoint Presentation

The Munin Project 2012 Documentation for the resource monitoring tool Munin
[online] [Accessed 21 March 2012] Available from: http://munin-monitoring.org/

Oetiker T. 2011 Documentation for the RRDTool used to read data from RRD-files
[online] [Accessed 21 March 2012] Available from: http://oss.oetiker.ch/rrdtool/

RGraph 2012 Documentation for the RGraph HTML5 JavaScript graphing library
[online] [Accessed 20 March 2012] Available from: http://www.rgraph.net

W3C 2012 World Wide Web Consortium’s specifications on HTML5 [online]
[Accessed 21 March 2012] Available from: http://dev.w3.org/html5/spec/spec.html

29

APPENDICES

Appendix 1, Program code of the ADEI RRDREADER extension’s iterator and reader
classes

<?php

//this class is used to iterate Munin data
class MUNINData implements Iterator {

 var $period;//the time difference of two datapoints in seconds
 var $from, $to;//timestamps for start and end of iterated data
 var $resample, $nextsample;
 var $pos;//current x-position (timestamp)
 var $opts;// a handle to readers configuration options

 var $items;//rrds in the data (mask)

 var $start;

 const DEFAULT_START = "May 18, 2011";

 public function __construct(RRDReader &$reader, OPTIONS &$opts, &$items, INTERVAL
&$ivl, $resample) {

 $this->opts = $opts;

 $start = NULL;
 $end = NULL;
 $step = NULL;

 //fetch to find out the start, end and step of the rrds(they should all have the
same ones)
 //if not, then the start end will be the values that every rrd has data at
 //if steps are different this throws an exception
 for($i = 0 ; $i < count($items) ; $i++)
 {
 $file = $this->opts->Get('rrd_folder') . $this->opts->Get('rrd_prefix')
. $items[$i]['uid'] . ".rrd";

 $fetch_opts = array("AVERAGE");
 $fetch = rrd_fetch($file, $fetch_opts, count($fetch_opts));
 if($start === NULL) $start = $fetch['start'];
 if($end === NULL) $end = $fetch['end'];

 if($start < $fetch['start'])
 {
 $start = $fetch['start'];
 }
 if($end > $fetch['end'])
 {
 $end = $fetch['end'];
 }
 if($step === NULL)
 {
 $step = $fetch['step'];
 }
 else if($step !== $fetch['step'])
 {
 throw new ADEIException(translate("File %s has an irregular data
interval!", $file));
 }
 }

 $this->period = $step;

 $this->resample = $resample;

30

 $from = $ivl->GetWindowStart();

 $ifrom = ceil($from);//get start point as integer
 $rem = $ifrom % $this->period;//checks whether start point as integer is a
multiple of period
 if ($rem) $this->from = $ifrom + ($this->period - $rem);//if not, add to start
period - the remnants of the division
 else $this->from = $ifrom;//if yes, from is ifrom

 $this->to = $ivl->GetWindowEnd();

 if($this->from < $start)
 {
 $this->from = $start;
 }

 $this->pos = $this->from;

 $limit = $ivl->GetItemLimit();//get interval's item limit, if any (defines how
many datapoints to show and adjusts to or from based on that?)

 if ($limit) {
 if ($limit > 0) {
 $to = $this->from + $this->period * $limit;
 if ($to < $this->to) $this->to = $to;
 } else {
 $from = $this->to + $this->period * $limit;
 if ($from > $this->from) $this->from = $from;
 }
 }

 $this->items = &$items;//items to show (rra:s in this case)

 $limit = $opts->GetDateLimit($this::DEFAULT_START, time());//gets the window
limits (as in, the first and last possible timestamp values)

 $this->start = $limit[0];
 }

 function doResample() {
 for ($next = $this->pos + $this->period;(($next < $this->to)&&($next < $this-
>nextsample));$next += $this->period)
 $this->pos = $next;

 $this->nextsample += $this->resample;
 if ($this->nextsample < $this->pos) {
 $add = ceil(($this->pos - $this->nextsample) / $this->resample);
 $this->nextsample += $add * $this->resample;
 }
 }

 function rewind() {
 $this->pos = $this->from;

 if ($this->resample) {
 $this->nextsample = $this->resample*ceil($this->pos / $this->resample);
 $this->doResample();
 }
 }

 function current() {

 $values = array();

 foreach($this->items as $item)

31

 {
 $file = $this->opts->Get('rrd_folder') . $this->opts->Get('rrd_prefix')
. $item['uid'] . ".rrd";//construct filename

 $fetch_opts = array("AVERAGE", "--start", ($this->pos - $this->period),
"--end", ($this->pos));

 $fetch = rrd_fetch($file, $fetch_opts, count($fetch_opts));//fetch data
from file

 foreach($fetch['data'] as $index => $data)
 {
 if(($fetch['start'] + ($index + 1) * $fetch['step']) ===
intval($this->pos))//check if the data is from current time
 {
 if(strval($data) == "NAN") $data = NULL;//if the data
value is NAN, convert it to NULL
 array_push($values, $data);
 }
 }
 }

 return $values;
 }

 function key() {//this returns a timestamp for the current position
 $res = $this->pos;
 if (is_float($res)) return sprintf("%.8f", $res);
 return $res;
 }

 function next() {//moves position to next timestamp
 $this->pos += $this->period;

 if ($this->resample) $this->doResample();
 }

 function valid() {//checks whether this datapoint is valid (timestamp is smaller
than the last one)
 return ($this->pos <= $this->to);
 }
}

//this class is used to iterate general RRD data (not Munin)
class RRDData implements Iterator {

 var $file; //filename of the rrd-file that is iterated
 var $period;//the time difference of two datapoints in seconds
 var $from, $to;//timestamps for start and end of iterated data
 var $resample, $nextsample;
 var $pos;//current x-position (timestamp)

 var $items;//items in the data (mask)

 var $start;//what's this for?
 var $info;//contains information about the rrd

 const DEFAULT_START = "May 18, 2011";

 public function __construct(RRDReader &$reader, OPTIONS &$opts, &$items, INTERVAL
&$ivl, $resample) {

 $data_start = $opts->Get('data_start');
 $data_start = date("F j, Y", $data_start);

 $this->period = $opts->Get('step');

32

 $this->file = $opts->Get('rrd_folder') . $opts->Get('rrd_prefix') . $opts-
>Get('file') . ".rrd";

 $this->info = $reader::GetRRDInfo($opts->Get('file'), $reader); //get
information on the rrd and its archives

 $this->resample = $resample;

 $from = $ivl->GetWindowStart();

 $ifrom = ceil($from);//get start point as integer
 $rem = $ifrom % $this->period;//checks whether start point as integer is a
multiple of period
 if ($rem) $this->from = $ifrom + ($this->period - $rem);//if not, add to start
period - the remnants of the division
 else $this->from = $ifrom;//if yes, from is ifrom

 $this->pos = ($this->from);

 $this->to = $ivl->GetWindowEnd();

 $limit = $ivl->GetItemLimit();//get interval's item limit, if any (defines how
many datapoints to show and adjusts to or from based on that?)

 if ($limit) {
 if ($limit > 0) {
 $to = $this->from + $this->period * $limit;
 if ($to < $this->to) $this->to = $to;
 } else {
 $from = $this->to + $this->period * $limit;
 if ($from > $this->from) $this->from = $from;
 }
 }

 $this->items = &$items;//items to show (rra:s in this case)

 //this sets the caching starting point based on the longest rra:s datapoints
 $limit = $opts->GetDateLimit($data_start, time());
 //$limit = $opts->GetDateLimit($this::DEFAULT_START, time());//gets the window
limits (as in, the first and last possible timestamp values)

 $this->start = $limit[0];
 }

 function doResample() {
 for ($next = $this->pos + $this->period;(($next < $this->to)&&($next < $this-
>nextsample));$next += $this->period)
 $this->pos = $next;

 $this->nextsample += $this->resample;
 if ($this->nextsample < $this->pos) {
 $add = ceil(($this->pos - $this->nextsample) / $this->resample);
 $this->nextsample += $add * $this->resample;
 }
 }

 function rewind() {
 $this->pos = $this->from;

 if ($this->resample) {
 $this->nextsample = $this->resample*ceil($this->pos / $this->resample);
 $this->doResample();
 }
 }

 function current() {

33

 $current_timestamp = $this->pos;

 $info = $this->info;//info about the rrd-file
 $items = $this->items;//rra:s to show
 $from = $this->from;
 $to = $this->to;
 $file = $this->file;
 $period = $this->period;

 $values = array();//return array

 $item_keys = array();

 //get an array of item ids that should be in the return array
 foreach($items as $array)
 {
 foreach($array as $key => $value)
 {
 if($key == "id")
 {
 array_push($item_keys, $value);
 }
 }
 }

 foreach($info["rra"] as $key => $rra)//go through all rra:s
 {

 $datafound = false; //flag set to true if valid data is found on
current timestamp

 if(array_search($key, $item_keys) === false)//if current rra is not in
the iterators item list, it is skipped
 {
 continue;
 }

 $step = $info["info"]["step"] * $rra["pdp_per_row"]; //time difference
of the current rra's datapoints in seconds
 $span = $step * $rra["rows"]; //time difference of first and last
datapoint of the current rra

 //fetch options set in a way that it only returns data close to the
current timestamp
 $fetch_opts = array($rra["cf"], "-r", $step, "--start", ($this->pos -
($step)), "--end", ($this->pos + ($step)));

 $fetch = rrd_fetch($file, $fetch_opts, count($fetch_opts));//fetch rra
data

 if($fetch["step"] > $step)//sometimes the fetch returns data at bigger
intervals than the current rra should, this fixes that
 {
 $fetch_opts = array($rra["cf"], "-r", $step, "--end", ("N - " .
($span - 2 * $step)), "--start", ("N - " . $span));
 $fetch = rrd_fetch($file, $fetch_opts, count($fetch_opts));
 }

 $count = count($fetch["data"]);//number of datapoints returned by fetch

 //this keeps track of that no rra returns values from before its
beginning, needs a bit more work
 $first_timestamp = $to - ($info["info"]["step"] * $rra["pdp_per_row"] *
$rra["rows"]);

 if($first_timestamp > $current_timestamp)//if the current timestamp is
not valid for the current rra we skip it

34

 {
 array_push($values, NULL);
 continue;
 }
 //go through all the data returned by fetch
 foreach($fetch["data"] as $index => $data)
 {

 if(strval($data) == "NAN") $data = NULL; //if there's no data, data
is a float type with value NAN,
 //this makes no sense so we convert it to NULL

 //construct timestamp for the datapoint based on the datapoint
index and the end timestamp returned by fetch
 $timestamp = ($fetch["end"] - (($count-($index + 2)) *
$fetch["step"]));//+2 because rrd

 //if the current datapoints timestamp is valid
 if($timestamp >= $first_timestamp && $timestamp <= $to)
 {
 //if the current datapoint is the one we are interested
in
 if($timestamp == $current_timestamp)
 {
 $value = $data;
 $datafound = true;//data found for current timestamp,
 //this makes the $value stay the same while going
through the rest of the rra:s
 }
 }
 else if(!$datafound)//if no data is found, $value is NULL
 {
 $value = NULL;
 }

 }
 if(!$datafound && $value !== NULL)//in some cases if no data was found
the value still wasn't NULL, this fixes that
 {
 $value = NULL;
 }

 if($value !== NULL)//if there is a valid value, insert it into return
array
 {
 array_push($values, $value);
 }
 else
 {
 //if there was no valid value for this timestamp in the rra,
 //(eg. if the rra data interval is 30 mins it only has values on
every sixth period if the iterator period is 5 min)
 //this will fetch the previous valid value from the current rra
 $fetch_opts = array($rra["cf"], "-r", $step, "--start",
((floor($this->pos / $step) * $step) - ($step)), "--end", ((floor($this->pos /
$step) * $step) + ($step)));

 $fetch = rrd_fetch($file, $fetch_opts, count($fetch_opts));

 foreach($fetch["data"] as $index => $data)
 {
 if(strval($data) == "NAN") $data = NULL;
 $stamp = ($fetch["end"] - (($count-($index + 2)) *
$fetch["step"]));

 if($stamp == (floor($this->pos / $step)) * $step)
 {
 $value = $data;

35

 }
 }
 array_push($values, $value);
 }
 }

 return $values;
 }

 function key() {//this returns a timestamp for the current position
 $res = $this->pos;
 if (is_float($res)) return sprintf("%.8f", $res);
 return $res;
 }

 function next() {//moves position to next timestamp
 $this->pos += $this->period;

 if ($this->resample) $this->doResample();
 }

 function valid() {//checks whether this datapoint is valid (timestamp is smaller
than the last one)
 return ($this->pos <= $this->to);
 }

}

class RRDReader extends READER {
 var $cache;

 var $items;//RRDs
 var $groups;//RRD-groups for Munin or RRDs for non Munin
 var $munin_datafile;
 var $axes;

 function __construct(&$props) {
 parent::__construct($props);

 if ($this->dbname) {
 $folder = $this->req->GetGroupOptions()->Get('rrd_folder');
 if($folder)//check if there's a specified folder for RRDs in config
 {
 $this->items = $this::ReadRRDs();//items holds all the RRD files

 if(!empty($this->items))
 {
 if($this->req->GetGroupOptions()-
>Get('munin_datafile'))//check if datafile is specified
 {
 $this->munin_datafile = $this->req-
>GetGroupOptions()->Get('munin_datafile');
 $this->groups = $this::GetMuninGroups();//read Munin
file groups from the specified Munin datafile
 $this->axes = $this::CreateAxes();
 }
 else
 {
 $this->munin_datafile = false;

 if($this->items)//if rrd-files were found
 {
 $this->groups = array();

 foreach ($this->items as $gid)//go through
the files
 {

36

 if($names[$gid])//if the file had a
human readable name, give the loggroup a name
 {
 $name = $names[$gid];
 }
 else//else the loggroups name will be
it's group identifier (filename)
 {
 $name = false;
 }
 $this->groups[$gid] = array(
 'name' => $name
);
 }
 }
 }
 }
 else
 {
 throw new ADEIException(translate("No files found in the
specified folder %s", $folder));
 }
 }
 else
 {
 throw new ADEIException(translate("No RRD folder specified in
config."));
 }
 }

 }

 function GidToFilename($gid, $reader)//change to change item id to filename
 {
 $opts = $reader->req->GetGroupOptions();

 $return = $opts->Get('rrd_folder') . $opts->Get('rrd_prefix') . $gid . ".rrd";

 return $return;
 }

//this function reads the RRD filenames from the folder specified in the rrd server
configuration
//and returns them in an array
 function ReadRRDs()
 {
 $opts = $this->req->GetGroupOptions();

 $folder = $opts->Get('rrd_folder');//get the RRD folder specified in the options
 $prefix = $opts->Get('rrd_prefix');//same for RRD files prefix
 if($opts->Get('rrd_file_mask'))//check if a regexp is defined for filtering the
RRD files
 {
 $filemask = $opts->Get('rrd_file_mask');
 }

 if($folder)
 {
 $rrd_array = array();//return array

 if(chdir($folder))//change dir to specified folder
 {
 if($filehandle = opendir($folder))//open folder
 {
 while(($filename = readdir($filehandle)) !== false)//read
files in folder
 {

37

 if(preg_match("/\.rrd$/", $filename) != 0)//if file
is .rrd file
 {
 $filename = str_replace(".rrd", "",
$filename);//strip the rrd suffix from the filename
 $filename = str_replace($prefix, "",
$filename);//strip the rrd prefix from the filename
 if($filemask)
 {
 if(preg_match($filemask, $filename) !=
0)//if regexp is defined in config, only matching RRDs will be shown
 {
 array_push($rrd_array,
$filename);
 }
 }
 else
 {
 array_push($rrd_array, $filename);
 }
 }
 }
 closedir($filehandle);//close folder
 }
 }

 asort($rrd_array);//sort the array by filename

 return $rrd_array;
 }
 else//if there's no folder specified in config, throw an error
 {
 throw new ADEIException(translate("No RRD folder specified in
config."));
 }
 }

//this function gets information about an rrd-file
 function GetRRDInfo($gid, RRDReader $reader)//reader is passed here because
apparently the call to this function from RRDDATA's constructor prevents the use of
$this pointer here
 {
 $file = $reader::GidToFilename($gid, $reader);//construct the complete filename
out of the group id

 $info = shell_exec("rrdtool info ". $file);//get info of the rrd into a string

 $array = explode("\n", $info);//make the string into an array
 $ds_array = array();//array with info about the rrd:s data source
 $rra_array = array();//array with info about the rrd:s archives(rra)
 $info_array = array();//general info about the rrd
 $return_array = array();//an array that will contain the other arrays

 foreach($array as $data)//go through the data returned by rrdtool info and sort
the rows into correct arrays
 {
 $key = substr($data, 0, strpos($data , " = "));
 $value = str_replace("\"", "", (substr($data, strpos($data, " = ") +
3)));
 if(preg_match("/^ds\[/", $key))
 {
 $ds_key = substr($key, (strpos($key, "[") + 1), (strpos($key, "]")
- 3));
 $ds_array_key = substr($key, (strpos($key, ".") + 1));
 $ds_array_value = $value;
 $ds_array[$ds_key][$ds_array_key] = $ds_array_value;
 }
 else if(preg_match("/^rra\[/", $key))

38

 {
 $rra_key = substr($key, (strpos($key, "[") + 1), (strpos($key, "]")
- 4));
 $rra_array_key = substr($key, strpos($key, ".") + 1);
 $rra_array_value = $value;
 $rra_array[$rra_key][$rra_array_key] = $rra_array_value;
 }
 else if($key != "0")
 {
 $info_array[$key] = $value;
 }
 }
 $info_array["start"] = "";//start and end are left empty here and filled in with
rrd_fetch in GetGroupInfo()
 $info_array["end"] = "";//they are only filled in GetGroupInfo() if
REQUEST::NEED_INFO flag is given in the function call

 $return_array["info"] = $info_array;
 $return_array["ds"] = $ds_array;
 $return_array["rra"] = $rra_array;

 return $return_array;
 }

 //this function reads the Munin groups from the specified datafile and returns
them in an array containing their id and name
 function GetMuninGroups()
 {

 $opts = $this->req->GetGroupOptions();
 $datafile = $opts->Get('munin_datafile');//get the specified datafile name

 $info = file_get_contents($datafile);//read datafile content to string

 $info = explode("\n", $info);//make the string into an array of rows

 //this strips the setup dependant prefix from the datafile rows
 //(first row has version number and no prefix so we skip that)
 foreach($info as $key => &$line)
 {
 if($key !== 0)
 {
 $line = str_replace(substr($line, 0, strpos($line, ":") + 1), "",
$line);
 }
 }

 //find all datafile rows that define a graph title and get the group ids and
names and axis info from those rows
 foreach($info as $row)
 {

 if(substr_count($row, ".graph_title") !== 0)
 {
 $group_key = substr($row, 0, strpos($row, ".graph"));
 $group_value = str_replace(substr($row, 0, (strpos($row, " ") +
1)), "", $row);

 $group_array[$group_key] = array(
 "gid" =>
$group_key,
 "name" =>
$group_value
);

 }

39

 if(substr_count($row, ".graph_args") !== 0 && strstr($row, $group_key))
 {
 $args = explode(" ", substr($row, strpos($row, " ")));

 $log = NULL;
 $min = NULL;
 $max = NULL;

 if(array_search("--logarithmic", $args)) $log = true;
 if(array_search("--lower_limit", $args)) $min =
$args[array_search("--lower_limit", $args) + 1];
 if(array_search("--upper_limit", $args)) $max =
$args[array_search("--upper_limit", $args) + 1];
 }

 if(substr_count($row, ".graph_vlabel") !== 0 && strstr($row,
$group_key))
 {
 $label = str_replace(substr($row, 0, (strpos($row, " ") + 1)), "",
$row);

 $label = str_replace("\${graph_period}", "second", $label);

 if($log)
 {
 $mode = "LOGARITHMIC";
 }
 else
 {
 $mode = "STANDARD";
 }
 if($min||$max)
 {
 $range = array($min, $max);
 }
 else
 {
 $range = false;
 }

 $opts->options['axes_table'][$group_key] = array(
 "axis_units" => false,
 "axis_name" => $label,
 "axis_mode" => $mode,
 "axis_range" => $range
);
 }
 }

 return $group_array;
 }

 function ParseSeconds($seconds)//parses seconds into more readable formats (because
no one knows how much eg. 3338000 seconds is)
 {
 if((($seconds % (3600 * 24)) == 0) && (($seconds / (3600 / 24) >= 1)))
 {
 $return = ($seconds / (3600 * 24)) . "d";
 }
 else if((($seconds % 3600) == 0) && (($seconds / 3600) >= 1))
 {
 $return = ($seconds / 3600) . "h";
 }
 else if((($seconds % 60) == 0) && (($seconds / 60) >= 1))
 {
 $return = ($seconds / 60) . "min";
 }
 else

40

 {
 $return = $seconds . "s";
 }
 return $return;
 }

 //function to simplify calling rrd_fetch, mainly because the complete file need to
be constructed every time fetch is called
 function Fetch($gid, $fetch_opts)
 {
 $file = $this::GidToFilename($gid, $this);

 $return = rrd_fetch($file, $fetch_opts, count($fetch_opts));

 return $return;
 }

 function CreateAxes($flags = 0) {
 if ($this->axes) return $this->axes;

 $axes_table = $this->req->GetGroupOptions()->options['axes_table'];

 if ($axes_table) {

 $this->axes = new MUNINAxes($this->req, $axes_table);//try to change
this to GRAPHAxes and then something...

 return $this->axes;
 } else {
 return parent::CreateAxes($flags);
 }
 }

 function GetGroupInfo(LOGGROUP $grp = NULL, $flags = 0) {

 $groups = array();//array for the groups to be returned

 if($this->munin_datafile)//Munin datafile specified
 {
 foreach ($this->groups as $gid => &$group)//if there are groups, go
through them
 {
 if (($grp)&&(strcmp($grp->gid, $gid))) continue;//if a group is
specified and existing group

 //has same group id then skip this group

 if ($group['name']) $name = $group['name'];//if this group has a
name, name = group name
 else $name = false;//else name = false

 if ((!$name)||($flags&REQUEST::NEED_INFO)) {//if there was no name
and there's a NEED_INFO flag
 if ($grp) {//if group is specified
 $grtest = $grp;
 $opts = $this->opts;
 } else {//no group is specified (easier to just throw
error here since there can't really be a default .rrd-file)?
 $ginfo = array("db_group" => $gid);//create new
groupinfo array
 $grtest = $this->CreateGroup($ginfo);//create new
group
 $opts = $this->req->GetGroupOptions($grtest);//create
new options for group
 }

41

 if (!$name) {//if name = false
 $name = $opts->Get('name', $gid);//get name from
options, if there's no name use group id
 }
 }

 $groups[$gid] = array(//set values into group array at index group
id
 'gid' => $gid,
 'name' => $name
);

 if($flags&REQUEST::NEED_COUNT)//if there's a NEED_COUNT flag
 {
 $items = $this::GetItemList($grp);//change to getitemlist
 $rrd_fetch_opts = array("AVERAGE");
 $fetch = $this::Fetch($items[0]['uid'], $rrd_fetch_opts);

 $record_num = (($fetch['end'] - $fetch['start']) /
$fetch['step']);

 $groups[$gid]['records'] = $record_num;
 }

 if ($flags&REQUEST::NEED_INFO) {//if there's a NEED_INFO flag

 $items = $this::GetItemList($grp);//change to getitemlist
 $rrd_fetch_opts = array("AVERAGE");
 $fetch = $this::Fetch($items[0]['uid'], $rrd_fetch_opts);
 $groups[$gid]['first'] = $fetch['start'];
 $groups[$gid]['last'] = $fetch['end'];

 if ($flags&REQUEST::NEED_COUNT) {//if there's a
NEED_COUNT flag
 $record_num = (($fetch['end'] - $fetch['start']) /
$fetch['step']);//calculate number of records

 $groups[$gid]['records'] = $record_num;
 }

 if ($flags&REQUEST::NEED_ITEMINFO) {//if there's a
NEED_ITEMINFO flag
 $groups[$gid]['items'] = $this-
>GetItemList($grp);//get itemlist for specified group
 }
 }
 }//went through existing groups
 }
 else//no Munin datafile
 {
 foreach ($this->groups as $gid => &$group)//if there are groups, go
through them
 {
 if (($grp)&&(strcmp($grp->gid, $gid))) continue;//if a group is
specified and existing group has same group id then skip this group

 if ($group['name']) $name = $group['name'];//if this group has a
name, name = group name
 else $name = false;//else name = false

 if ((!$name)||($flags&REQUEST::NEED_INFO)) {//if there was no name
and there's a NEED_INFO flag
 if ($grp) {//if group is specified
 $grtest = $grp;
 $opts = $this->opts;
 } else {//no group is specified (easier to just throw
error here since there can't really be a default .rrd-file)?

42

 $ginfo = array("db_group" => $gid);//create new
groupinfo array
 $grtest = $this->CreateGroup($ginfo);//create new
group
 $opts = $this->req->GetGroupOptions($grtest);//create
new options for group
 }

 if (!$name) {//if name = false
 $name = $opts->Get('name', $gid);//get name from
options, if there's no name use group id
 }
 }

 $groups[$gid] = array(//set values into group array at index group
id
 'gid' => $gid,
 'name' => $name
);

 if($flags&REQUEST::NEED_COUNT)//if there's a NEED_COUNT flag
 {
 $rrd_fetch_opts = array("AVERAGE");
 $fetch = $this::Fetch($gid, $rrd_fetch_opts);

 $record_num = (($fetch['end'] - $fetch['start']) /
$fetch['step']);

 $groups[$gid]['records'] = $record_num;
 }

 if ($flags&REQUEST::NEED_INFO) {//if there's a NEED_INFO flag

 $rrd_fetch_opts = array("AVERAGE");
 $fetch = $this::Fetch($gid, $rrd_fetch_opts);
 $groups[$gid]['first'] = $fetch['start'];
 $groups[$gid]['last'] = $fetch['end'];

 if ($flags&REQUEST::NEED_COUNT) {//if there's a
NEED_COUNT flag
 $record_num = (($fetch['end'] - $fetch['start']) /
$fetch['step']);//calculate number of records

 $groups[$gid]['records'] = $record_num;
 }

 if ($flags&REQUEST::NEED_ITEMINFO) {//if there's a
NEED_ITEMINFO flag
 $groups[$gid]['items'] = $this-
>GetItemList($grtest);//get itemlist for specified group
 }
 }
 }//went through existing groups
 }
 if (($grp)&&(!$groups)) {//if group is specified and there are no defined groups
 throw new ADEIException(translate("Invalid group (%s) is specified",
$grp->gid));
 }

 return $grp?$groups[$grp->gid]:$groups;//if group was specified, return group in
groups table at index group id, else return groups table
 }

 function GetItemList(LOGGROUP $grp = NULL, MASK $mask = NULL, $flags = 0) {//gets
list of specified items in the specified group, returns an array containing item id,
uid and name(here maybe rra index,

 $grp = $this->CheckGroup($grp, $flags);//check if the group is valid

43

 if (!$mask) $mask = $this->CreateMask($grp, $info=NULL, $flags);//if
there's no mask, create a new mask with default settings
 $opts = $this->req->GetGroupOptions();

 $gid = $grp->gid;

 $res = array();//return array

 if($this->munin_datafile)//if there's Munin datafile
 {
 $groups = $this->items;//contains all RRDs in the specified RRD
folder

 $datafile = $this->munin_datafile;//get the specified datafile name

 $info = file_get_contents($datafile);//read datafile content to
string

 $info = explode("\n", $info);//divide the string into an array of
rows

 //this strips the setup dependant prefix from the datafile rows
 //(first row has version number and no prefix so we skip that)
 foreach($info as $key => &$line)
 {
 if($key !== 0)
 {
 $line = str_replace(substr($line, 0, strpos($line,
":") + 1), "", $line);
 }
 }

 $items = array();//array for the items of this Munin group

 $item_ids = array();//array for identifiers of this groups items

 foreach($info as $row)
 {
 if(strstr($row, ($gid . ".")) && strstr($row, ($gid .
".graph_order")))//find the datafile row that defines the RRDs in this group
 {
 $array = explode(" ", substr($row, (strpos($row, " ")
+ 1)));

 foreach($array as $index => $value)//go through the
RRDs of this group
 {
 if($mask)
 {
 if(!$mask->Check($index))
 {
 continue;
 }
 }//if item key wasn't in the mask, skip it
 if(!empty($value))
 {
 array_push($item_ids, $value);
 }
 }
 }
 $tmp = substr($row, strpos($row, ".")+1);

 $string = substr($tmp, 0, strpos($tmp, "."));

 if(strstr($row, ($gid . ".")) && !strstr($row ,
"graph_"))
 {
 if(array_search($string, $item_ids) === false)

44

 {
 array_push($item_ids, $string);
 }
 }
 }

 foreach($item_ids as $index => $value)
 {
 $string = (str_replace(".", "-", $gid) . "-" . $value);
//create a string to find the correct RRD for this item

 foreach($groups as $rrd)
 {
 if(substr_count($rrd, $string) !== 0)
 {
 $items[$index]['id'] = $index;
 $items[$index]['name'] = $rrd;//this is
replaced by info from datafile if info is found
 $items[$index]['uid'] = $rrd;//the
identifier used to contruct the filename of the RRD
 $items[$index]['axis'] = $gid;
 }
 }
 }

 //go through all the items of the group and set their names as the
info row of the datafile if it's available
 foreach($item_ids as $index => $value)
 {
 $draw_mode = NULL;
 $string = "";
 foreach($info as $row)
 {
 //for groups that list values per device we need to
separate the devices info values by using the devices id
 if(strstr($row, ($gid . ".")) && strstr($row, "per
device"))
 {
 $string = " (" . $value . ") ";
 }
 //if info is found, use it as the items name,
otherwise the RRD identifier is used as the name
 if(strstr($row, ($gid . "." . $value . ".")) &&
substr_count($row, ".info") !== 0)
 {
 $items[$index]['name'] = substr($row,
(strpos($row, " ") + 1)) . $string;//if a name was found, it replaces the previously
set RRD identifier value
 }
 if(strstr($row, ($gid . "." . $value . ".")) &&
substr_count($row, ".draw") !== 0)
 {
 $draw_mode = substr($row, (strpos($row, " ")
+ 1));
 }

 }

 if($draw_mode && array_key_exists('id', $items[$index]))
 {
 if(strstr($draw_mode, "LINE"))
 {
 $draw_mode = "LINE";
 }
 $items[$index]['draw_mode'] = $draw_mode;
 }
 else if(array_key_exists('id', $items[$index]))
 {

45

 $items[$index]['draw_mode'] = "LINE";
 }

 }
 $res = $items;
 }
 else//no Munin file
 {
 $info = $this::GetRRDInfo($gid, $this);

 foreach($info["rra"] as $key => $rra)//go through all af the
archive info on current rrd-file and construct names for the archives
 {
 if($mask)
 {
 if(!$mask->Check($key)) continue;
 }//if rra key wasn't in the mask, skip it

 $step = $info["info"]["step"];
 $filename = $info["info"]["filename"] . "_";
 $string = "RRA" . $key;
 $string .= "_" . $rra["cf"];
 $string .= "_SPAN";
 $span = (($step) * $rra["pdp_per_row"] * $rra["rows"]);
 $string .= $this::ParseSeconds($span);
 $string .= "_INTERVAL";
 $interval = ($step) * $rra["pdp_per_row"];
 $string .= $this::ParseSeconds($interval);
 $uid = str_replace("\"", "", ($filename . $string));
 $res[$key]["id"] = $key;
 $res[$key]["name"] = str_replace("\"", "", $string);
 $res[$key]["uid"] = $uid;

 $string = "";
 }
 }

 return $res;//returns an array containing uid, id and name of the item
 }

 function GetRawData(LOGGROUP $grp = NULL, $from = 0, $to = 0, DATAFilter $filter =
NULL, &$filter_data = NULL) {//get iterator for raw data of rrd:s archives

 $grp = $this->CheckGroup($grp);//checks if the group is valid

 $ivl = $this->CreateInterval($grp);//creates a data interval for the
group

 if($filter)//if there is a filter, set filter options for the current
data
 {
 $mask = $filter->GetItemMask();
 $resample = $filter->GetSamplingRate();
 $limit = $filter->GetVectorsLimit();
 if ($limit) $ivl->SetItemLimit($limit);//if item limit was
specified for the filter, then set item limit for interval

 if (isset($filter_data)) {
 if ($mask) $filter_data['masked'] = true;
 if ($resample) $filter_data['resampled'] = true;
 if ($limit) $filter_data['limited'] = true;
 }
 }
 else//if there's no filter
 {
 $mask = NULL;
 $resample = 0;
 $limit = 0;

46

 }

 $ivl->Limit($from, $to);//set interval timelimit

 $opts = $this->req->GetGroupOptions($grp);//get options for group

 $items = $this::GetItemList($grp);//get list of items for current group

 if (($mask)&&(is_array($ids = $mask->GetIDs())))//if there's a mask and
you can get an array of ids from that mask
 {
 $tmp = array();
 foreach ($ids as $id)//go through all ids of the mask
 {
 if ($id >= sizeof($items))//if id goes out of bounds of
items array, throw an error
 {
 throw new ADEIException(translate("Invalid item mask
is supplied. The ID:%d refers non-existing item.", $id));
 }
 array_push($tmp, $items[$id]);// create a new items array
that contains just the items specified by the mask
 }
 $items = $tmp;

 }

 if($this->munin_datafile)//if Munin datafile is specified
 {
 return new MUNINData($this, $opts, $items, $ivl, $resample);// return
raw data
 }
 else//if no Munin datafile is specified
 {
 $gid = $grp->gid;

 $info = $this::GetRRDInfo($gid, $this);//get rrd info for the current
rrd-file

 $step = $info["info"]["step"];

 //get the minimum and maximum interval between two archive datapoints
in seconds
 $min_itv = 0;
 $max_itv = 0;
 $max_itv_index = -1;
 foreach($info["rra"] as $key => $rra)
 {
 if($mask)
 {
 if(!$mask->Check($key)) continue;
 }

 $itv = $info["info"]["step"] * $rra["pdp_per_row"];

 if($itv > $max_itv)
 {
 $max_itv = $itv;
 $max_itv_index = $key;
 }
 if($min_itv === 0)
 {
 $min_itv = $itv;
 }
 else if($itv < $min_itv)
 {
 $min_itv = $itv;

47

 }
 }

 //passing a few parameters in options to RRDData
 $opts->options[count($opts->options)]['step'] = $min_itv;
 $opts->options[count($opts->options)]['file'] = $gid;
 $opts->options[count($opts->options)]['data_start'] = (time() - ($max_itv *
$info["rra"][$max_itv_index]["rows"]));

 return new RRDData($this, $opts, $items, $ivl, $resample);// return raw
data
 }
 }

 function HaveData(LOGGROUP $grp = NULL, $from = 0, $to = 0) {//checks whether file
has data or not
 $grp = $this->CheckGroup($grp);//checks if group is valid

 $ivl = $this->CreateInterval($grp);//creates interval
 $ivl->Limit($from, $to);//set limits for interval

 $period = $this->req->GetGroupOption('period', $grp);//gets period of the
records

 $from = $ivl->GetWindowStart();
 $to = $ivl->GetWindowEnd();

 if (($from - $to) > 2 * $period)
 {
 $return = true;
 }
 else
 {
 $return = false;
 }
 return $return;
 }
}

?>

