

Mohammad Milon

Communication over Internet with Instant
Messaging

Subtitle

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering
Information Technology

Thesis
25 April 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38066543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract

Author
Title

Number of Pages
Date

Mohammad Milon
Communication over Internet with instant messaging

45 pages + 3 appendices
25 April 2012

Degree

Bachelor of Engineering

Degree Programme

Information Technology

Specialisation option

Software

Instructor

Dr. Mahbubur Rahman, Lecturer

The goals of this project were to explain briefly all methods of the Java platform that
allow networking communication and to design and implement a multi-client chat
application for desktop computers and mobile devices which support instant messages.
The chat application that was created is based on a client-server model which means
all clients communicate with each other with the help of a server. The server is
responsible for sending and receiving messages.

The application was developed on Eclipse IDE with the Remote Method Invocation
(RMI) plugin since the RMI method was used for a desktop chat application. The
EclipseME plugin was also installed on Eclipse IDE to implement the mobile client side
application.

The results of this project demonstrated that it is possible for multiple clients
connected on the internet to communicate in real-time manner and share information
with one another. Since the chat application was object-oriented programming, it
provides the application with a high level of reusability and also makes it possible to
employ only certain parts of the software.

Keywords

VOIP, IRC, RMI chat, JSP, TCP

Contents

1 Introduction 1

2 Internet-based Communication 3

 2.1 Instant Messaging (IM) 3
 2.2 Email 4
 2.3 Internet Telephony and VOIP 5
 2.4 Internet Relay Chat (IRC) 5
 2.5 Videoconferencing 6

3 Common Technologies in Chat Systems 7

 3.1 Client-Server Model 7

 3.2 Multi-threading 8

4 Existing Methods 10

 4.1 Sockets and Server Sockets 10

 4.2 Remote Method Invocation (RMI) 15
 4.3 Java Server Pages (JSPs) 21

5 Development Environments 26

 5.1 Eclipse Installation 26

 5.2 Installing Plugin 26

6 Implementation of a Chat Application 27

 6.1 Overview 27

 6.2 Graphical User Interface (GUI) 28
 6.3 Class Diagram 32
 6.4 RMI Registry 35
 6.5 GUI for Mobile Client 36

7 Analysis of Results 40

 7.1 Desktop Chat 40

 7.2 Mobile Chat 41

8 Conclusion 43

References 44

Appendices

 Appendix 1: Server Implementation

 Appendix 2: GUI for Client
 Appendix 3: Client Implementation

1

1 Introduction

Communication is a process by which information is exchanged between individuals or

devices through a common system. Information can be transmitted using various

communication methods. For successful completion of transmitting information, all

communication methods have four common elements: information source or sender,

message or information, media that provides the pathway by which the message can

be transmitted from source to destination, and receiver. Nowadays, the internet has

become the most popular communication system for sharing information.

The internet consists of globally interconnected computer networks that serve millions

of users worldwide. This network connects many independent networks such as

millions of private, public, academic, business, and government networks that are tied

by an extensive array of electronic, wireless and optical networking technology. The

internet makes it possible to communicate in various ways. Email is a momentous

communication service available on the internet. Internet chat, such as Internet Relay

Chat (IRC) that uses an instant messaging system or a social networking site, is another

important communication service that allows colleagues to stay in touch in a very

convenient way during their working time. Internet telephony, voice over internet

protocol (VOIP), and videoconferencing are other important examples of

communication services.

The objectives of this thesis are to clarify and discuss all possible ways the Java

platform supports networking communication, and to design and implement a multi-

client chat application for desktop computers and mobile devices which allows instant

messaging. With this chat application users can communicate from a PC or from a

mobile device in a uniform way. This chat application is based on a client-server model.

The client is a program that runs on the computer and sends and receives messages to

and from a chat server. The chat server is responsible for making sure that all

messages are broadcast to everyone or a particular user. Once users join a chat room,

they can type messages in the public chat room where all the participants can see

2

them, or users can send private messages to single participants. J2SE/J2EE was used

for desktop computers and J2ME technology was used for mobile devices.

3

2 Internet-based Communication

2.1 Instant Messaging (IM)

Instant messaging (IM) is a tool used by the vast majority internet users. IM functions

as a text-based computer conference between two or more people. An IM

communication service creates a kind of private chat room with another individual in

order to communicate in real-time over the internet. This form of messaging, in

comparison to e-mail, allows for quick and easy responses to satisfy one´s need for

instant and constant communication.

IM is used by millions of internet users to contact family and friends. It is also growing

in popularity in the business world. Employees of a company can have instant access to

managers and co-workers in a different office and can eliminate the need to place

phone calls when information is required immediately. Overall, IM can save time for

employees and help decrease the amount of money a business spends on

communication.

Different IM clients offer slightly different features and benefits, but the main concept

of an IM client is basically the same. Public IM clients and services available

include ICQ, AOL Instant Messenger (AIM), Microsoft MSN Messenger, and Yahoo!

Messenger. For businesses and enterprises looking for a more secure method of IM,

there are enterprise IM packages available such as Microsoft Live Communication

Server 2005 and IBM Lotus Instant Messaging.

There are some drawbacks and issues associated with IM spim and virus protection.

Spim is the equivalent of spam and is perpetuated by bots that harvest an IM screen

name off of the internet and simulate a human user by sending spim to the screen

name via an instant message. Additionally, viruses and trojans can be spread through

IM channels. These malicious programs are usually spread when an IM user receives a

message that is linked to a Web site where the malicious code is downloaded. [14]

4

2.2 Email

Electronic mail, shortened as e-mail, is the transmission of a message over a

communication network. It is a method of transferring messages from one person to

one or more recipients. Nowadays email systems are based on a store-and-forward

model. A server called Email server is responsible for accepting, forwarding, delivering

and storing messages. A modern email system does not required either the users or

their computers to be online simultaneously.

However, some email systems are limited to a single computer or network. Others

have gateways to other computer systems enabling to send email anywhere in the

world. An email consists of three elements: the message envelop, the message header,

and the message body. The message header contains control information including

the author’s email address and one or more recipient addresses. Usually descriptive

information is also added such as a subject header field and message submission

date/time stamp.

Since email is the first broad electronic communication medium, it is widely accepted

by the business community. Nowadays face to face meetings are no longer the

essential way to communicate as one can use computer mediated communication

such as email. Email like postal mail solves logistics and synchronization problems in

business communication. [1]

One of the biggest drawbacks over email is spam. Spam is unsolicited commercial

email. Spammers can send millions of email messages each day due to very low cost of

sending email. Spamming causes information overload for many users who receive

unsolicited email each day. Attachment size limitation is another drawback over email.

5

2.3 Internet Telephony and VoIP

Internet telephony integrates telephone services into computer networks. This

technology is the association of hardware and software that enables to use the

internet as the transmission medium for telephone calls. When making an internet

telephone call, an internet telephony system converts an analogue voice signal into a

digital signal, transmits it and converts it back again. Internet telephony software

essentially provides free telephone calls anywhere in the world.

Voice over IP (VoIP) is a common internet telephony service which is growing the

popularity. VoIP hardware and software work together to transmit telephone calls by

sending voice data in packets using IP rather than traditional circuit switches, called

PSTN (Public Switched Telephone Network). The voice traffic is converted into a data

packet, then routed over the internet or any IP network. When the data packets reach

their destination, they are converted back to voice data again for the recipient. [2]

2.4 Internet Relay Chat (IRC)

IRC is a multi-user, multi-channel internet text messaging system that enables people

to gather on a channel to talk in groups or privately. An IRC application is a

client/server application. Joining an IRC discussion, a user needs an IRC client which is a

program that runs on a computer and exchanges messages between IRC servers. The

IRC server broadcasts all messages to every participating user in a discussion. An IRC

server also connects to other IRC servers to expand the IRC network. There can be

many discussions going on simultaneously and each one is an unique channel. [1]

6

2.5 Videoconferencing

Videoconferencing is a process of communication and interaction between two or

more participants at different sites by using the internet. This process can transmit

audio and video data simultaneously. In order to do videoconferencing, users need a

video camera, microphone and speaker connected to his or her computer. For the time

being, videoconferencing, voice data packets and images are transmitted over the

network and delivered to the destination. In recent years, this process has become a

popular way of distance communication in classroom to provide distance learning,

multi-school collaboration projects, and guest speakers because of its cost efficiency.

Videoconferencing also provides a visual connection and interaction that cannot be

achieved with standard IM or email. [1]

7

3 Common Technologies in Chat System

3.1 Client-Server Model

In the modern IT world, client-server architecture is a popular model for computer

networking because of its versatility and flexibility. A server is a computer or software

program that has some shared resource to provide a specific kind of service to client

software which runs on another computer. There are many kinds of servers such as file

servers, which store all kinds of files; print servers, which manage a collection of

printers; and database servers, which process database queries. A client is any entity

that has access to the server, requests the server for some kind of tasks and displays

the result. The client-server model is composed of three components: user interface

(client), processing management (server), and database management (data server).

The user interface provides a user friendly layer to make requests to the server and

proposes multiple forms of input and output. Processing management is responsible

for process development, process implementation, and process resource service.

Database management supports database and file service. Figure 1 illustrates a simple

client-server model.

Figure 1. Client-Server Architecture. [15]

8

In the client-server model, resources and data security are controlled through the

server. All data are stored in the server for backing up files and searching files and data

easily. New technology can easily be integrated in this model according to different

users and different system requirements. Hardware or software can be replaced

individually to meet user requests. The client network and server function together

with other systems without requiring human intervention. [3]

The client-server network model has some limitations. Since this model relies on a

centralized server, the entire system cannot work if the server goes down due to any

kind of problem. The server is responsible for the majority of the network traffic, as all

queries for resources are directed towards the server. This can cause network overload

and slow down the whole system. A single network administrator with a high level of

IT skills is required to manage and maintain the equipment and the whole network

while other network systems, such as peer-to-peer network systems, do not require an

administrator. This causes high expenses for the client-server architecture. [4]

3.2 Multi-threading

The necessity of threading has grown because a graphical interface has become the

standard for desktop computers. Multi-threading systems enable the user to

understand program performance better. A multi-threaded program consists of two or

more parts that are capable to run concurrently. Each part of a program is called

thread, and each thread explains accurately a separate path of execution. As a result,

multithreading is a specialized form of multitasking. [5]

Multithreading is supported by virtually all modern operating systems. There are two

separate types of multitasking: process-based and thread-based. A process is an

execution of a program. Thus, process-based multitasking enables computers to run

two or more programs concurrently. For example, it allows downloading a file at the

same time that a user can compile a program or sort a database. In a thread-based

multitasking environment, a single program is able to perform two or more tasks

9

simultaneously. For instance, a word processing program can check the spelling of a

word in a document while the user can write the document. [5]

Multithreading is so deeply rooted in Java that it is impossible to write even the

simplest programs in Java without using threads. Java programmers have to use

multithreading techniques because Java has no concept of asynchronous behaviour.

Another reason to use multithreading is its lightweight behaviour. Threads share the

same address space and share the same process. As a result multithreading

communication is inexpensive and the advantage of context switching from one thread

to another is low cost. Furthermore, multithreading allows writing very efficient

programs that make maximum use of the CPU. [6]

10

4 Existing Methods

4.1 Sockets and Server Sockets

The internet and WWW (World Wide Web) have come into view as global

omnipresence media for communication, and changing the way of conducting science,

engineering, and commerce. Java APIs provide Socket and ServerSocket classes as an

abstraction of standard Transmission Control Protocol (TCP) socket programming

techniques for networking application. A socket is an end-point of bidirectional

communication link between two programs running on the network. The Socket class

provides a client-side socket interface similar to UNIX sockets. The java.net package

contains a collection of two classes and interfaces, and Socket and ServerSocket that

implement client side and server side connection, respectively. [7]

Computers communicate with each other in a very simple way. For sharing data,

computers need to stream a few millions of bits and bytes back and forth agreeing on

speed, sequence, and timing. In low-level networking, a set of packaged protocols do

this job every time. These sets of protocols are called stacks. Nowadays the most

common stack is TCP/IP. According to OSIRM (Open Systems Interconnect Reference

Model), there are seven logical layers in a reliable framework for computer

networking. TCP/IP maps the Transport Layer and Network Layer in the OSI

(International Standards Organization) model, as shown in the following figure.

11

 Figure 2. OSI model

Roughly, sockets stay at the Session Layer of the OSI model. The Session Layer is the

interface between the application-oriented upper layers and the real-time data

communication lower layers. This layer is responsible for managing and controlling

data flow between two computers. In Session Layer, the socket allows an abstraction

that hides the complexities of getting the bits and bytes on the wire for transmission.

The code for sockets works at the Presentation Layer which provides a common

representation of information that the Application Layer can use. [8]

The java.net package provides two communication protocols for socket programming.

 Datagram communication

 Stream communication

12

Datagram communication: The datagram communication protocol, named as UDP

(User Datagram Protocol), is an OSI transport layer protocol for client/server network

applications. It is a connectionless protocol because each time the socket descriptor

and the receiving socket´s address are needed to send datagram. In UDP, there is a size

limit of 65,535 bytes for sending a datagram to a distinct location. A datagram consists

of one message unit where the first eight bytes of the datagram contain header

information and the remaining bytes contain message data. There is no guarantee in

UDP that sending the datagram will be received in the same order by the receiving

socket.

Stream communication: The stream communication protocol is known as TCP

(Transfer Control Protocol) which corresponds to the transport layer in OSI. A TCP is a

connection-oriented protocol because before communication between the pair of

sockets takes place, a connection must be established first. When the pair of sockets

have been connected, they can transmit data in one or both directions. In a TCP, there

is no size limit and two sockets behave like streams. A TCP is a reliable protocol

because TCP ensures that sending packets will be received in the same order in which

they are sent.

The java.net package provides a ServerSocket class to create servers. When a

ServerSocket is created, it will register itself with the system for client connection. A

server socket´s job is to run on the server and listen to either local or remote client

programs. Each ServerSocket listens to a port on the server. When a client socket

attempts to connect to the port, the server wakes up, negotiates the connection

between the client and the server, and opens a regular socket. Data always travel over

the regular socket. The ServerSocket class has a constructor that creates a

ServerSocket object, methods that listen to the connection and methods that return a

Socket object to send and receive data.

13

Figure 3. Life cycle of ServerSockets

Figure 3 demonstrates the basic life cycle of a server:

1. A new ServerSocket is created on a particular port using a ServerSocket(

) constructor.

2. The ServerSocket listens for an incoming connection on that port using

its accept() method. Accept() blocks until a client attempts to make a

connection, at which point accept() returns a Socket object connecting the

client and the server.

3. Depending on the type of server, either the Socket´s getInputStream() method,

get OutputStream method, or both are called to get input and output streams

that communicate with the client.

4. The server and the client interact according to an agreed-upon protocol until it

is time to close the connection.

5. The server, the client, or both close the connection.

14

6. The server returns to step 2 and waits for the next connection.

The advantages and disadvantages of the Sockets and ServerSockets are the following:

Advantages

 Sockets are powerful, flexible and sufficient.

 Sockets are easy to implement for networking communications.

 If efficiently used, sockets cause low network traffic.

 It is different from the HTML form and CGI script that generate and transfer the

whole web page for each new request.

 Only updated information can be sent.

Disadvantages

 Security restrictions are sometimes overbearing.

 Socket based communication enables only to send packets of raw data

between the client and server.

 Both the client and server have to provide mechanism to make data useful in

any way.

15

4.2 Remote Method Invocation (RMI)

Remote Method Invocation (RMI) is a Java provided mechanism that a Java

programmer can use to write code for object-oriented programming in which objects

on different computers can interact in a distributed network. It allows a Java object

that is executed on one Java Virtual Machine (JVM) to invoke a method of a Java object

located in another JVM. The RMI mechanism, introduced by Sun, facilitates the

programmers to invoke distributed components across a network environment which

is an easy alternative to the complex coding involved in server-socket programming.

This mechanism interoperates between a remote object and local object. [5]

RMI uses Java Remote Method Protocol (JRMP) and Internet Inter-ORB Protocol (IIOP)

to create a connection from a client to a server. This method sends a command to a

server and receives back the results of the execution of that program. Java Object

Serialization Protocol and Hypertext Transfer Protocol (HTTP) are responsible for the

message format of RMI. The HTTP protocol uses the POST command to get its

instructions executed on the server.

RMI Procedure

RMI applications consist of two separate programs, a server and a client. At the server

side, the server program creates the RMI service which is for remote objects, binds it

into the RMI registry with references to these objects accessible, and waits for clients

to invoke methods on these objects. The client program obtains a remote reference to

remote objects on the server and calls methods on them. The server and the client

exchange information back and forth by using the RMI mechanism. The RMI

application needs to handle the following:

 Locate remote object: The RMI mechanism needs to obtain references to

remote objects by using RMI´s naming facility, the RMI registry, or by passing

and returning remote objects.

 Communicate with remote objects: The RMI mechanism handles the details of

communication between remote objects.

16

 Load class definitions for objects that are passed around: The RMI system

provides all mechanisms for loading an object´s class definition and

transmitting data. [9]

 Figure 4 illustrates the RMI application that uses the RMI registry for getting reference

to a remote object.

Figure 4. RMI mechanism

RMI Architecture

The RMI architecture follows one important principle: the definition of behaviour and

the implementation of that behaviour are separate concepts and they run on separate

JVMs. In RMI, the definition of a remote service is coded using a Java interface which

does not have executable code and the implementation of that remote service is

coded in a class. The RMI architecture supports two classes that implement the same

interface. The implementation of the behaviour is the first class which runs on the

server and the second class acts as a proxy which runs on the client. [10]

The RMI architecture consists of three abstraction layers.

 Stub and Skeleton Layer

 Remote Reference Layer

 Transport Layer

17

Stub and Skeleton Layer: When the client requests for a remote object, the stub and

skeleton layer attend to the remote method calls and redirect these to the remote

service on the server. The stub is a client-side object. The client´s request starts with

the stub for invoking methods of a remote object. The stub plays the role of the proxy

to the skeleton. When a client calls a server method, the JVM looks at the stub first for

type checking, and then the request is routed to the skeleton on the server. The stub

does the following things to invoke a remote method:

 Establishes a connection with the remote JVM

 Marshals (prepares and transmits) the parameters to the server

 Waits for the result of the methods

 Un-marshals (reads) the return value or exception

 Returns the value to the client

The skeleton is a server side proxy and it resides on the server machine. The skeleton

knows how to communicate with the stub across the RMI link. The Skeleton performs

the following operations for each received call:

 Un-marshals the parameters for the remote method

 Calls the method in the actual object implementation

 Marshals the result to the caller

 Dispatch the client call to the actual object implementation. [11]

18

Figure 5 shows the RMI runtime architecture with a different layer.

Figure 5. The RMI runtime architecture

 Remote Reference Layer (RRL): The RRL is the middleware between the stub and

skeleton layer and the underlying transport layer. This layer interprets and manages

the references of the client´s request to the remote object on the server. The RRL

resides on the client and the server. The client-side RRL receives the request for the

methods from the stub and transfers them as a marshalled stream of data to the RRL

of the server. [11]

Transport Layer: The transport layer is a binary data protocol. This layer links the RRL

on the server side and the RRL on the client side. The transport layer is responsible for

making a connection between JVMs and handling remote objects that are presented in

its address space. [11]

19

The advantages and disadvantages of the RMI mechanism are the following:

Advantages:

 RMI is a simple and clean implementation that leads to more maintainable,

robust and flexible application. It removes a great deal of terrestrial tasks like

parsing and switch logic. A more complex system can be built easily using RMI.

 RMI allows establishing a distributed system while decoupling the client and

server objects simultaneously.

 RMI is a pure Java solution that allows creating a zero-install client for users.

 RMI passes objects by their actual classes, so the behaviour of the objects is not

changed when they are sent to another JVM. Thus, dynamic loading of classes

is available in RMI.

 If the database is changed, recompilation is needed only in server, while the

server interface and client remain the same.

 RMI extends the internal garbage-collection mechanisms of the Java virtual

machine to provide distributed garbage collection of remotely exported

objects.

 It is simpler than Common Object Request Broker Architecture (COBRA). RMI

can migrate entire objects to a remote host. This is not possible in COBRA. [12]

Disadvantages:

 RMI requires Java installed for the client and server. It does not work with

other languages the way COBRA does.

20

 RMI applications are tightly coupled because of the connection-oriented

nature. It is a big challenge to achieve high scalability in such an application

model.

 RMI does not support any specific session management support. In a typical

client-server implementation, the server has to maintain the session and give

information of the multiple clients who access it.

 In an RMI application, both the client and server need access to the latest

identical class definition of the objects that a traditional transaction processing

or CGI environment does not require.

 RMI mechanism is higher over headed than other techniques. [12]

Comparing RMI to Socket

RMI is a higher level of abstraction while socket is a lower level programming.

Developing distributed object-based applications in RMI is much simpler than using

sockets. RMI allows a hidden multithreading system, but in socket programming,

multithreading has to be implemented in a socket layer. The RMI client can invoke a

server method directly while socket level programming only allows data to be passed

that must be decoded. An RMI server can be modified or moved to another host

without changing the client application. In the server socket mechanism, a client sends

a message to the server and waits for the result. A server cannot invoke the method

for client. However, the RMI mechanism supports the idea of a call back in which the

server invokes methods on the client.

21

4.3 Java Server Pages (JSPs)

A JSP page is a programming technology that provides a simplified way to create web

pages and web applications. It is consists of two types of text: static data and a JSP

element. Static data can be expressed in any text-based format such as Hypertext

Mark-up Language (HTML), or Extensible Mark-up Language (XML) or other document

types. On the other hand, JSP elements construct dynamic content. JSP pages are

components in a web or Java EE application which deliver dynamic content to a client

in a portable, secure and well-defined way. The code in a JSP page runs on the server

that can access data across the whole web application and can use server-side

resources such as databases, directories and other application components. When a

client such as a user makes a request to the Java application container such as a server,

the static page is converted behind the scenes and displayed as dynamic content to the

user. JSP technology, created by Sun Microsystems, enables Java code and selects

predefined actions to be inserted into static web page content. This code is compiled

at runtime for each request made to the page. [13]

Development of JSP

The process of developing a JSP page that can respond to a client request requires

three main steps:

 Creation: The Java developer builds a JSP source file that consists of HTML and

embedded Java code.

 Deployment: The JSP is installed into a server using web archives that contain

the JSP code, a supporting class, and other necessary files such as HTML and

XML files. This can be a full Java server or a stand-alone JSP server.

 Translation and compilation: The server requires a JSP container for processing

JSP pages. To process all JSP elements in the page, the JSP container first turns

the JSP pages into servlet class that runs within a web server and translates the

HTML and Java code into a Java code source file that implements the

22

corresponding dynamic behaviour. The JSP container then compiles the source

file into a Java class that is executed by the server. The JSP container initiates

the translation and compilation step for a page automatically when it receives a

request for the page. Figure 6 illustrates the JSP page translation and

processing phases. [13]

Figure 6. JSP page translation and processing phases

Basic JSP Lifecycle

After completing translation and the compilation step of a JSP page, the JSP lifecycle

has the following phases:

Loading and instantiation: The JSP implementation class is created by the server and is

loaded into the JVM (Java Virtual Machine) before being used. The default class loader

of the JSP container loads this class. Once the class is loaded, the JVM creates an

instance of the class. The instantiation of the class can occur immediately after loading

or when the first request is made.

Initialization: The JSP container uses the JspPage interface which contains the jspInit ()

method to initialize the newly created instance before serving any requests. Typically

initialization is performed only once during the entire life cycle of JSP.

23

Request processing: This phase represents all interactions with a request. After

initialization of the new instance, the JSP container invokes the _jspService () method

to handle the request and returns a response to the client. Each request normally is

executed in a separate thread of execution. The_jspService () method is called once per

request, and it takes HttpServletRequest and HttpServletResponse as its parameters.

Figure 7 describes the life cycle of a JSP.

Figure 7: JSP life cycle

End of life: In this phase, the server restrains sending requests to the JSP. After

finishing all current requests, any instances of the class are released. The jspDestroy ()

method is called before the JSP container releases the JSP instance. The server uses

this method for several reasons such as shutting down the server, conserving

resources, updating the JSP source file, or terminating the instance for other reasons.

After executing the jspDestroy () method, the JSP instance is marked for garbage

collection. [12]

24

The advantages and disadvantages of the JSP page are the following:

Advantages

 JSP pages can be swiftly developed and easily maintained because they are

based on HTML and XML. HTML is easy to understand, and there are many

automated tools for dealing with HTML and XML document.

 The dynamic part of JSP is written in Java, so it is more powerful and better

suitable for complex applications that require reusable components.

 JSP is portable to other operating systems and servers, and it has an extensive

API (Application Programing Interface) for networking, database access, and

distributed objects.

 JSP pages are automatically translated and compiled in the Java servlet but are

easier to develop than the Java servlet.

 JSP is better because it has a richer set of tools for building external pieces and

more options for HTTP responses at which the pieces actually get inserted.

 JSP pages use simplified scripting language based syntax for embedding HTML

into JSP. [13]

Disadvantage

 JSP pages are translated to a .java file, and then compiled into Java servlets.

Due to the transformation, some errors are very difficult to diagnose.

 JSP pages are translated into .java class files, and the server has to keep those

files with JSP pages. This essentially doubles the disk space requirements

needed to store JSP pages.

25

 JSP requires a compiler to compile JSP pages on the server when first accessed.

This initial compilation produces a delay when accessing the JSP page for the

first time.

 JSP technology locks into a fixed language. Java technology is the only language

for JSP. There are no language-independent solutions in JSP technology.

 Database connectivity is not such an easy task in JSP technology. A Java

developer has to write a lot of custom code to do the job.

Comparing JSP to RMI

JSPs extend the server side functionality of a web application. JSP pages are converted

into servlets. Servlets communicate with other applications on the server and perform

tasks above and beyond the normal static data. They can receive a request to get some

information from one or more databases, and then convert this data into a static HTML

page for the client. RMI is just a way to invoke methods. Using RMI technology, an

application can talk to another remote machine and execute different methods. The

action performs like a local machine. JSPs are mainly used for any web related activity.

Using JSPs, the client only needs to know the web address to display the page and

perform some action. In RMI, the client must bind the RMI server to an IP and port

number and the client must know this IP and port to communicate with the remote

server.

26

5 Development environments

5.1 Eclipse installation

Eclipse is a popular integrated development environment (IDEs) for developing open

platforms and products because of its flexible environment. The Eclipse software

development kit (SDK) consists of the Eclipse platform, Java development tools and

plug-in development environment. Eclipse IDE was downloaded from the download

page of www.eclipse.org. It was a freeware and open source product. The downloaded

zip file was unzipped in a known directory and then installed according to integrated

instructions. The Java development kit (JDK) 6 and Java runtime environment (JRE)

were also installed for good performance of the project.

5.2 Installing Plug-in

Java developers can extend Eclipse abilities by installing plug-ins written for the Eclipse

platform and can write and contribute their own plug-in modules. The RMI plug-in is

the most comprehensive solution for developing an RMI system. The RMI plug-in was

used to create the RMI chat system in this project. The RMI plug-in helped getting

started with the Java RMI technology and provided advanced configuration, analysis

and debugging tools. RMI plug-in was downloaded from http://www.genady.net

/rmi/v20/downloads.html link and was installed with the help of the update manager

of Eclipse. The RMI Registry Inspector, a component of the RMI plug-in, displayed and

examined the class structure, even invoking remote methods directly from within

Eclipse. Figure 8 shows a screenshot of the basic registry inspector interface.

Figure 8. RMI Registry inspector interface

27

6 Implementation of a Chat Application

6.1 Overview

A chat system is a client-server application on the internet in which users can

communicate with each other in real time. The system offers an instantaneous

transmission of text-based messages from sender to receiver. It may address point-to-

point communications as well as multicast communication from one sender to many

receivers. Basically, a client-server application needs the server and client. The server

always listens to the client and waits for a task from the client. In my project I used the

RMI mechanism to build a simple multicast chat system. A number of message queues

were created for the number of users in the server side program. The server always

checked queues for tasks that came from users and performed those tasks

immediately. Figure 9 illustrates the basic idea of the chat system.

Figure 9: Basic idea of chat system.

28

6.2 Graphical User Interface (GUI)

A software developer should always keep in mind the user interface when creating an

application. In general, the Java platform enables application developers to create GUI

applications using Applets and Swing. In this project, the swing application was used to

create a user interface for the chat system because it describes both the appearance of

the interface and how its components function when they are used. This chat system

was designed to have a screen where a user is able to connect to the server via the

internet and can send messages to other users who are connected to the server.

When the application starts, the main screen pops up for the user´s viewing. This

window consists of four buttons, one list box, three text fields, and one text pane. The

four buttons are named Log in, Broadcast, Send, and Clear. The list box is User List, and

the three text fields are Server, User name, and Message. Before connecting to the

server, Log in, Server and User name components are active and other components are

disabled. Figure 10 illustrates the window that appears when the application is

launched.

Figure 10. Window before connecting to server

29

After writing in the text fields Server and User name, a user clicks on the “Log in”

button to connect to the server. If the server name is correct and the user name does

not match with existing users, the client can log in successfully and the user name will

be shown in the list box. In this window, the text field, list box, text pane and all other

buttons are active and the colour of text pane is changed automatically. Figure 11

shows the window after it has successfully been connected to the server.

 Figure 11. Window after connecting to server

In this stage, the user can write a message in the text field Message and click on the

“Send” button to send a message to other users. After clicking on the “Send” button, a

message is sent to the server message queue box, and the server checks to whom to

send the message, and it performs the task. Technically, the Log in and Send buttons

were implemented in the following way:

private class ButtonCallBack implements ActionListener{

 public void actionPerformed(ActionEvent arg0) {
 JButton button = (JButton)arg0.getSource();

30

 if (button == btnLogin){
 if (!logged){
 String host = txtServer.getText();
 String userName = txtUserName.getText();
 if (host.equals("")){

 JOptionPane.showMessageDialog(button.getParent(),
 "Please input server address");
 return;
 }
 if (userName.equals("")){

 JOptionPane.showMessageDialog(button.getParent(),
 "Please input user name");
 return;
 }
 login(host, userName);
 }else{
 logout();
 }
 }
 if (button == btnSend){
 post();
 }
 if (button == btnClear){
 txtConsole.setText("");
 }
 if (button == btnBroadcust){
 name = null;
 }
 }
 }

The message can be sent to a particular user by double clicking on the name of the

user listed in the list box. The user can continue sending messages to that user until

the sender clicks on the Broadcast button. The Clear button clears the conversation

text on the screen which is shown in the text pane. In this chat system, a maximum of

one hundred users are able to chat at the same time. Figure 12 illustrates the multi

user chatting system.

31

Figure 12. Multi user chat

When a user wants to log off the system, he or she clicks the “Log out” button in the

window. All other users are notified and they get a message about that the another

user logging off in the text pane area.

32

6.3 Class Diagram

The prototype and the implementation of the system consist of several classes and

functions which perform different tasks independently or sometimes in collaboration.

The classes of the system, their interrelationship and the methods and attributes of

the classes are described in the following figures.

Figure 13. Class diagram 1

33

Figure 13 describes the attributes and methods of four classes called ServerImpl,

MainDispatcher, DispatchUserListThread, and DispatchMessageThread and their

interaction with other classes.

Figure 14. Class diagram 2

Figure 14 illustrates the methods and attributes of two classes called Result and

Message as part of the server side program.

Figure 15. Class diagrams 3

34

Figure 15 explains the methods of two interfaces called Client and Server as they are

common interfaces for the server side and client side.

Figure 16. Class diagram 4

Figure 16 describes the methods and attributes of two classes called ClientImpl and

ClientGUI on the client side application.

35

6.4 RMI Registry

The RMI registry acts as a negotiator between the RMI server and the client. Essentially

the RMI registry is a place for the server to register the services it offers and a place for

the client to query for those services. The RMI Registry is being implemented as a giant

hash-table that maps names to remote objects which are always hidden. Each and

every remote object has to register with the RMI registry with a unique name. Thus,

when a client sends a request, the registry reads the request, looks up the hash table,

gets the name of the remote object requested, and returns the stub for the remote

object to the client. In a machine, there can be two or more RMI registries, but only

one registry can be used per JVM. The RMI registry listens to a specific port. By default,

the RMI registry attempts to use 1099 as its service port, but a particular port can be

assigned by passing the appropriate argument. The RMI Registry can be launched in

two ways: with a stand-alone program or a Java program by accessing the

java.rmi.Registry class. Figure 17 shows how to start the RMI registry.

Figure 17. RMI registry

36

6.5 GUI for Mobile client

The Java platform enables the application developer to create a GUI easily using Java 2

Platform Micro Edition (J2ME). J2ME is a technology that allows software developers

to use Java language and related tools to create programs for mobile devices such as a

cellular phone. J2ME consists of a programming specification and a special K virtual

machine (KVM) that allows a small program to run in mobile devices. The 'K' in KVM

stands for kilobyte, signifying that the KVM runs in kilobytes of memory as opposed to

megabytes. Two programming specifications for a cellular phone are the Connected

Limited Device Configuration (CLDC) and the Mobile Information Device Profile (MIDP).

[16] Figure 18 shows the relations between CLDC, MIDP and native software.

Figure 18. Relations among different layers in J2ME

CLDC lays out the application program interface and virtual machine features needed

to support mobile devices. MIDP adds the user interface, networking, and messaging

details to the CLDC. MIDP supports the idea of MIDlet which is a small program similar

to an applet but one that conforms to CLDC and MIDP and that is intended for mobile

devices.

An MIDP application, MIDlet, must extend the abstract MIDlet class, which consists of

the abstract methods startApp(), pauseApp() and destroyApp(). These methods also

37

have to be written into our MIDlet. The application management software (AMS) can

create, start, pause, and destroy a MIDlet using a Midlet derived class.

Application management software (AMS) creates the MIDlet object by allocating

memory for it. The MIDlet instance is the first in the paused state. If an exception

occurs during the creation phase of the MIDlet object, the application enters the

destroyed state immediately. After the exceptionless return from constructor, AMS

calls the startApp() method of the MIDlet. The application enters just before the

startApp() method calls the active state. The application has most of the initialization

tasks in the startApp() method. Figure 19 illustrates MIDlet state of the AMS.

Figure 19. Midlet state

38

The simple mobile chat client is designed to have several screens where a user can

switch from one screen to another according to tasks.

Figure 20. Chat configuration screen

Figure 20 illustrates how the client can setup the variable that will help to connect to

the server. The configuration screen consists of three text fields where the client can

input the configuration variable and two buttons named Exit and Go Online.

Figure 21. Online presence screen

39

Figure 21 shows which clients are connected to the server. This screen consists of a list

where all user´s names can be displayed. On devices that have a dedicated hardware

“Select” or “Go” key, the select operation is implemented with the key. The user can

choose other users for chatting by pressing that key.

Figure 22. Chat screen

In figure 22, the chat screen allows the user to input a message to be sent to another

user. This screen consists of a text box. The text box allows the user to enter and edit

text for sending messages to other users by selecting “Send” key.

40

7 Analysis of Results

7.1 Desktop chat

I designed and implemented a chat application based on RMI technology which allows

sending and receiving instant messaging in a network. The application client side and

server side were implemented using Java language and Eclipse IDE. The RMI is a full

grown mechanism for distributed computing, and is it scalable to more complex tasks

than request response style of programming. When a client calls on an object that

resides on a remote machine, it must have a reference to it. The client has to know

more about the object to retrieve and use it. The only way to do this is to embed that

lookup information in the client code. I coded this lookup information into the client as

follows:

 String url = "rmi://" + host + "/JSPaceChating";

 Server server = (Server)Naming.lookup(url);

When the lookup succeeds, the RMI server returns the remote object´s stub for the

remote object´s class and methods. Then the stub sends the request to the skeleton

which is on the server side. The skeleton retrieves the operations of the client´s

interested object and maintains a dispatch() method to coordinate the object´s

response back through the stub. This process occurs internally in the RMI mechanism.

At the beginning, it was difficult for me to look up the server and I got an exception

called java.security.AccessControlException, but after difficulties, I succeeded in

binding client and server. Initially, I could not bind the client and server because of a

security restriction. RMI applications have no permission to the internet by default.

Therefore, I added the following code in the security policy file.

 grant codeBase {

 permission java.security.AllPermission;

 };

It is possible to generate skeleton and stub classes that are used to manage the

communication endpoints between the client and server. The tool named rmic takes

the implementing class and produces class files using the same name. The server code

that sponsors the request object is responsible for binding it to an RMI server. This

41

service is launched through a tool bundle with JDK called rmiregistry. I started the RMI

registry by calling the following code in command prompt.

 Start rmiregistry

 The client was able to write a message in the message text field from the client GUI.

After clicking on the send button, the message was successfully sent through the

unicast pipe. The message has four elements: the name of the sender, the message

content, the style of the message, and the name of the recipient. This part was first

tested on the emulator and the message was sent successfully through the socket.

I used a Windows server machine as a test server provided by Amazon EC2. I made an

account and created a Windows server in this service provider. Then I started the

server in its own window and telneted to it through my computer. I configured all

TCP/IP stacks and activated derivers among the list of network. All the processes went

smoothly but when I tried to connect the client to the remote server, unfortunately I

got the following exception:

 java.net.ConnectExceptionjava.net.ConnectException: Connection timed out

Finally, it was discovered that the client did not find the right hostname. Therefore, I edited

the ../etc/hosts file and added a line, <107.21.222.137 hostname>, to that file. After that the

client was able to connect to the server and the application worked well.

7.2 Mobile Chat

I also designed and implemented a very simple chat client application which allows

sending and receiving messages by using mobiles. The objective of implementing this

chat client was to demonstrate how easily users can communicate with other users on

the network by using a mobile device. The chat client application was developed with

the help of J2ME technology. The operation of sending and receiving messages was

straightforward. The client connects to the server directly. It does not need to connect

RMI registry such as RMI technology.

42

The client connects to the server using a Hypertext Transfer Protocol (HTTP) URL. HTTP

is an application protocol for a distributed, hypermedia information system. HTTP

contains the rules by which clients and servers exchange information. When a client

initiates a request to a server by opening a TCP/IP connection, the request consists of a

request line, a set of request headers and an entity. Then the server sends a response

that consists of a status line, a set of response headers, and an entity. When I sent a

request to the test server, the actual HTTP request was the following:

 GET / HTTP/1.1
Connection: Keep-Alive

User-Agent: Mozilla/5.0 (compatible; Opera/3.0; Windows 95/NT4

)

 Accept: text/*, image/jpeg, image/png, image/*, */*

Accept-Encoding: x-gzip, gzip, identity

Accept-Charset: Any, utf-8, *

Accept-Language: en, en_US

Host: ec2-107-21-222-137.compute-1.amazonaws.com

I got the following response from the server.

HTTP/1.1 200 OK

Date: Thu, 24 Jan 2012 17:33:52 GMT

Server: Apache/1.3.14

Last-Modified: Mon, 21 Jan 2012 22:08:33 GMT

Etag: “47bc6-25e0-3c4c9161”

Accept-Ranges: bytes

Content-Length: 9696

Connection: close

Content-Type: text/html

43

8 Conclusion

The objectives of this project were to clarify and briefly discuss all methods of the Java

platform that support networking communication and to design and implement a

multi-client chat application for desktop computers and mobile systems which allows

instant messaging by using the internet. Java was developed initially as a language that

would control a network of interactive consumer devices. Connecting devices was the

main purpose when the application was designed.

The Java package makes it possible to communicate over a network, providing cross-

platform abstraction to make connections using common protocols. Java provides

various methods for communicating over the internet such as socket and server

socket, RMI, JSP and servlet. The socket class provides a client-sided socket interface

similar to a standard UNIX socket and this opens the connection. A server socket works

similarly to a client socket, with the exception of the accept() method. The RMI

mechanism binds the client and server together and invokes methods from the client

to the server or the server to the client. The process of making JSP on the internet for

communication is very simple and it enables to mix regular, static HTML with

dynamically generated content from the servlet.

The RMI mechanism was used to design and implement a desktop chat application.

Further J2ME MIDlet technology was used to create for a mobile chat client. This

application did not have many features such as being secure which in real case would

be one of the top priorities. To extend this application in the future, security features

would need to be implemented. In this project it was assumed that it is hard to debug

a RMI distributed application, particularly when the client and server are

multithreaded. In general, the RMI mechanism cannot guarantee that a client can

always use the same thread in consecutive calls. The RMI application needs deep

knowledge and better understanding for design and implementation. Peer-to-peer

technology and its mobile counterpart have a very big potential in changing this.

44

References

1 Beal V. Internet-based communications [online]. Webopedia; 9 January 2009.
 URL: http://www.webopedia.com/DidYouKnow/Internet/2009/
 internet_communications.asp. Accessed 6 August 2011.

2 Dylan B. E-mail, instant messaging and chat rooms: The new letter? [online]. 6
 March 2008.
 URL: http://www.123helpme.com/view.asp?id=25790. Accessed 6 August
 2011.

3 Karthikeyan M. Client server architecture [online]. Exforsys Inc; 30 June 2008.
 URL: http://www.exforsys.com/tutorials/client-server/client-server-
 architecture.html. Accessed 8 August 2011.

4 Stephanie D. Disadvantage of client server architecture [online]. Demand
 Media; 16 July 2010.
 URL: http://www.ehow.com/list_6498527_disadvantages-client-server-
 architecture.html. Accessed 8 August 2011.

5 Schildt H. The complete reference. 7th ed. New York, NY: McGraw-Hill; 2006.

6 Oaks S, Wong H. Java threads. 3rd ed. Sebastopol, CA: O´Reilly Media; 2004.

7 Cadenhead R, Lemay L. JavaTM 6. 5th ed. Indianapolis, Indiana: Sams Publishing;
 2007.

8 Miller R, Williams A. Java sockets 101 [online]. IBM; 30 August 2009.
 URL: http://www.ibm.com/developerworks/java/tutorials/j-
 sockets/section2.html. Accessed 10 October 2011.

9 An overview of RMI applications [online]. Oracle.
 URL: http://download.oracle.com/javase/tutorial/rmi/overview.html. Accessed
 11 October 2011.

10 jGuru: remote method invocation (RMI) [online]. Oracle.
 URL: http://java.sun.com/developer/onlineTraining/rmi/RMI.html#IntroRMI.
 Accessed 11 October 2011.

11 Venjaramoodu M. Online crimefile management [online]. Scribd Inc; 15 March
 2011.
 URL: http://www.scribd.com/doc/50787543/42/RMI-Architecture. Accessed 11
 October 2011.

12 Mukhar K, Zelenak C, Weaver J, Crume J. Beginning Java EE 5 platform.

 Berkeley, CA: Apress Inc; 2006.

13 Hall M, Brown L. Core servlets and Java server pages. 2nd ed. Santa Clara, CA:

 Sun Microsystem Inc; 2004.

http://www.ibm.com/developerworks/java/tutorials/j-
http://www.ibm.com/developerworks/java/tutorials/j-

45

14 Raymond B, Erich M. A study of Internet messing [online]. IEEE Network;

 August 2006.

 URL:https://www.gprt.ufpe.br/~rafael.antonello/articles/analysis. Accessed 6

 August 2011.

15 Merritt E. Client server relationship [online]. SDGIS; 15 September 2011.

 URL: http://evarigisconsulting.wordpress.com/. Accessed 4 November 2011.

16 Mobile game development [online]. KidsOnMobile.

 URL: http://library.thinkquest.org/06aug/01303/english/glossary.html.

 Accessed 7 February 2012.

https://www.gprt.ufpe.br/~rafael.antonello/articles/analysis.%20Accessed%206
http://evarigisconsulting.wordpress.com/
http://library.thinkquest.org/06aug/01303/english/glossary.html

 Appendix 1

 1(4)

Server Implementation

package chat_server;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.util.*;
import java.util.concurrent.*;

public class ServerImpl extends UnicastRemoteObject implements Server {

 /**
 *
 */
 private static final long serialVersionUID = 1L;
 private HashMap<String, Client> clientList;
 private ArrayBlockingQueue<Message> messageQueue;
 private ThreadPoolExecutor threadPool;
 private String[] userList;
 private boolean status;
 private final int maxClient = 100;
 private static ServerImpl instance = null;

 private ServerImpl() throws RemoteException {
 super();
 Registry registry = LocateRegistry.getRegistry();
 registry.rebind("JSPaceChating", this);
 System.out.println("server is ready");
 clientList = new HashMap<String, Client>();
 messageQueue = new ArrayBlockingQueue<Message>(100);
 threadPool = new ThreadPoolExecutor(maxClient / 2, maxClient, 10,

TimeUnit.SECONDS,
 new ArrayBlockingQueue<Runnable>(10), new

ThreadPoolExecutor.DiscardOldestPolicy());
 status = true;
 new Thread(new MainDispatcher()).start();
 }

 public static ServerImpl getInstance(){
 try{
 if (instance == null){
 instance = new ServerImpl();
 }
 return instance;
 }catch(RemoteException re){
 re.printStackTrace();
 return null;
 }
 }

 Appendix 1

 2(4)

 public Result login(String ID, Client client){

 if (clientList.size() >= maxClient){
 return new Result(false, "Log in failed, this chating room is already

full");
 }

 if (clientList.get(ID) == null && !ID.equalsIgnoreCase("system")){
 clientList.put(ID, client);
 updateIDList();
 post(new Message("SYSTEM", null, ID + " has joined in.",

"SYSTEM"));
 return new Result(true, "Log in successfully");
 }
 else{
 return new Result(false, "Log in failed, this user name already

exists");
 }
 }

 public Result logout(String ID){
 clientList.remove(ID);
 updateIDList();
 post(new Message("SYSTEM", null, ID + " has left.", "SYSTEM"));
 return new Result(true, "Log out successfully");
 }

 public Result post(Message message) {
 if (message.getTo() != null){
 if (clientList.get(message.getTo()) == null){
 return new Result(false, "User \"" + message.getTo() + "\"

was not found");
 }
 if (message.getTo().equals(message.getFrom())){
 return new Result(false, "Not to talk to yourself");
 }
 }
 // Block if the message queue is full
 try{
 while(messageQueue.remainingCapacity() == 0){
 Thread.sleep(100);
 }
 // Enqueue the message
 messageQueue.put(message);
 }catch(InterruptedException ie){
 ie.printStackTrace();
 }
 return new Result(true, "Post successfully");
 }

 private void rebuildUserList(){
 Set<String> ID = clientList.keySet();
 userList = new String[ID.size()];

 Appendix 1

 3(4)

 int i = 0;
 for (Iterator it = ID.iterator(); it.hasNext(); i++){
 userList[i] = (String)it.next();
 }

 }

 private void updateIDList(){
 rebuildUserList();
 Set<String> IDs = clientList.keySet();
 for (Iterator it = IDs.iterator(); it.hasNext();){
 String ID = (String)it.next();
 threadPool.execute(new DispatchUserListThread(ID,

clientList.get(ID)));
 }
 }

 public static void main(String[] args) {
 ServerImpl.getInstance();
 }

 private class MainDispatcher implements Runnable{
 public void run(){
 try{
 while(status){
 if (messageQueue.isEmpty()){
 Thread.sleep(100);
 }

 Message message = messageQueue.take();
 if (message.getTo() != null){// A whisper
 threadPool.execute(new

DispatchMessageThread(message.getTo(), clientList.get(message.getTo()), message));
 threadPool.execute(new

DispatchMessageThread(message.getFrom(), clientList.get(message.getFrom()), message));
 }else{// A broadcast
 for(Iterator i = clientList.keySet().iterator();

i.hasNext();){
 String to = (String)i.next();
 threadPool.execute(new

DispatchMessageThread(to, clientList.get(to), message));

 }
 }
 }
 }catch(InterruptedException ie){
 ie.printStackTrace();
 }
 }
 }

 Appendix 1

 4(4)

 private class DispatchMessageThread implements Runnable{
 private String ID;
 private Client client;
 private Message message;

 public DispatchMessageThread(String ID, Client client, Message message){
 this.ID = ID;
 this.client = client;
 this.message = message;
 }

 public void run(){
 try{
 client.echoMessage(message);
 }catch(RemoteException re){
 // Assuming the client is shut
 //re.printStackTrace();
 logout(ID);
 }
 }
 }
 private class DispatchUserListThread implements Runnable{
 private String ID;
 private Client client;

 public DispatchUserListThread(String ID, Client client){
 this.ID = ID;
 this.client = client;
 }

 public void run(){
 try{
 client.echoIDList(userList);
 }catch(RemoteException re){
 // Assuming the client is shut
 //re.printStackTrace();
 logout(ID);
 }
 }
 }
}

 Appendix 2

 1(4)

Graphical User Interface for Client

package chat_client;

import java.awt.*;
import java.awt.event.*;
import java.rmi.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.text.*;

import chat_server.Message;
import chat_server.Result;
import chat_server.Server;

public class ClientGUI extends JFrame{

 private JLabel lblBoard, lblServer, lblUserName, lblMessage, lblUserList;
 private JTextField txtServer, txtUserName, txtMessage;
 private JButton btnLogin, btnSend, btnClear, btnBroadcust;
 private JList lstUserList;
 private JTextPane txtConsole;
 private JScrollPane sclConsole, sclUserList;
 private ClientImpl client;
 private boolean logged;
 private String name ;

 public ClientGUI() throws RemoteException{
 super("JSPace Chating Room");

 lblBoard = new JLabel("Board");
 lblServer = new JLabel("Server");
 lblUserName = new JLabel("User name");
 lblMessage = new JLabel("Message");
 lblUserList = new JLabel("User list");
 txtServer = new JTextField();
 txtUserName = new JTextField();
 txtMessage = new JTextField();
 btnLogin = new JButton("Log in");
 btnSend = new JButton("Send");
 lstUserList = new JList();
 btnClear = new JButton("Clear");
 btnBroadcust = new JButton ("Broadcast");
 txtConsole = new JTextPane();
 sclConsole = new JScrollPane(txtConsole);

 sclUserList = new JScrollPane(lstUserList);
 client = new

ClientImpl((StyledDocument)txtConsole.getDocument(), lstUserList);
 logged = false;

 Appendix 2

 2(4)

 ButtonCallBack btnCallBack = new ButtonCallBack();
 btnLogin.addActionListener(btnCallBack);
 btnSend.addActionListener(btnCallBack);
 btnClear.addActionListener(btnCallBack);
 btnBroadcust.addActionListener(btnCallBack);
 KeyboardCallBack keyboardCallBack = new KeyboardCallBack();
 txtServer.addKeyListener(keyboardCallBack);
 txtUserName.addKeyListener(keyboardCallBack);
 txtMessage.addKeyListener(keyboardCallBack);
 txtMessage.getDocument().addDocumentListener(new DocumentCallBack());

 lstUserList.addMouseListener(new MouseCallBack());

 setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);
 addComponentListener(new ComponentCallBack());
 addWindowListener(new WindowCallBack());

 txtMessage.setEnabled(false);
 btnSend.setEnabled(false);
 btnSend.setBackground(Color.RED);
 lblBoard.setBackground(Color.GREEN);

 txtConsole.setEditable(false);
 txtConsole.setBackground(Color.GREEN);

 txtConsole.setFont(new Font("å®‹ä½“", Font.PLAIN, 24));
 txtConsole.setText("Welcome to chat");
 StyledDocument doc = txtConsole.getStyledDocument();
 createStyle(doc, "SYSTEM", 12, false, false, new Color(0x00, 0x88, 0xFF),

"å®‹ä½“");
 createStyle(doc, "SPEACH", 12, false, false, Color.BLACK, "å®‹ä½“");
 createStyle(doc, "WHISPER", 12, false, false, new Color(0xCC, 0x00, 0x00),

"å®‹ä½“");
 createStyle(doc, "INFO", 12, true, false, new Color(0x88, 0xCC, 0x88),

"å®‹ä½“");

 setLayout(null);
 add(lblBoard);
 add(lblServer);
 add(lblUserName);
 add(lblMessage);
 add(lblUserList);
 add(txtServer);
 add(txtUserName);
 add(txtMessage);
 add(btnLogin);
 add(btnSend);
 add(btnClear);
 add(btnBroadcust);
 add(sclUserList);

 Appendix 2

 3(4)

 add(sclConsole);
 setPreferredSize(new Dimension(560, 380));
 pack();

 txtServer.requestFocus();

 setVisible(true);
 }

 private void login(String host, String ID){
 try{
 System.setSecurityManager(new RMISecurityManager());
 String url = "rmi://" + host + "/JSPaceChating";
 Server server = (Server)Naming.lookup(url);
 System.out.println("server name: " + url);
 client.setParam(server, ID);
 Result rs = server.login(ID, client);
 if (rs.getState()){
 txtServer.setEnabled(false);
 txtUserName.setEnabled(false);
 btnLogin.setText("Log out");
 txtMessage.setEnabled(true);
 txtMessage.requestFocus();
 txtConsole.setBackground(Color.WHITE);
 txtConsole.setText(" ");
 logged = true;
 }
 client.appendInfo(rs.getDescription() + "\n");
 }catch(Exception e){
 e.printStackTrace();
 JOptionPane.showMessageDialog(this, "Connection to server failed");
 }
 }

 private void logout(){
 if (!logged){
 return;
 }
 try{
 Result rs = client.getServer().logout(client.getID());
 if (rs.getState()){
 txtServer.setEnabled(true);
 txtUserName.setEnabled(true);
 btnLogin.setText("Log in");
 txtMessage.setEnabled(false);
 lstUserList.removeAll();
 txtServer.requestFocus();
 logged = false;
 }
 }catch(Exception e){

 Appendix 2

 4(4)

 e.printStackTrace();
 JOptionPane.showMessageDialog(this, "Log out failed");
 }
 }

 private void post(){
 try{
 String[] txtMsg = txtMessage.getText().split(" ");
 String from = client.getID();
 String to = null;
 String msg = "";
 String style = null;
 int msgIndex = 0;
 if (txtMsg[0].equals("/to")){
 to = txtMsg[1];
 msgIndex = 2;
 style = "WHISPER";
 }
 else{
 style = "SPEACH";
 to = name;
 }

 for (int i = msgIndex; i < txtMsg.length; i++){
 msg += txtMsg[i] + " ";
 }

 Message message = new Message(from, to, msg, style);
 Result rs = client.getServer().post(message);
 if (!rs.getState()){
 client.appendInfo(rs.getDescription() + "\n");
 }else{
 txtMessage.setText("");
 btnSend.setEnabled(false);
 }

 //client.echoMessage(message);
 }catch(RemoteException re){
 re.printStackTrace();
 }
 }

 public static void main(String args[]){
 try{

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 new ClientGUI();
 }catch(Exception e){}

 Appendix 3

 1(2)

Client Implementation

package chat_client;
import java.rmi.*;
import java.rmi.server.*;

import javax.swing.*;
import javax.swing.text.*;

import chat_server.Client;
import chat_server.Message;
import chat_server.Result;
import chat_server.Server;

public class ClientImpl extends UnicastRemoteObject implements Client{

 private StyledDocument doc;
 private JList lstUserList;
 private Server server;
 private String ID;

 public ClientImpl(StyledDocument doc, JList lstUserList) throws RemoteException {
 super();
 this.doc = doc;
 this.lstUserList = lstUserList;
 }

 public void setParam(Server server, String ID){
 this.server = server;
 this.ID = ID;
 }

 public String getID(){
 return ID;
 }

 public Server getServer(){
 return server;
 }

 public Result echoIDList(String[] userList) throws RemoteException {
 lstUserList.setListData(userList);
 return null;
 }

 public Result echoMessage(Message message) throws RemoteException {
 try {
 doc.insertString(doc.getLength(), message.toString(),

doc.getStyle(message.getStyle()));
 } catch (BadLocationException e) {
 e.printStackTrace();

 Appendix 3

 2(2)

 }
 return null;
 }

 public void appendInfo(String info){
 try {
 doc.insertString(doc.getLength(), info, doc.getStyle("INFO"));
 } catch (BadLocationException e) {
 e.printStackTrace();
 }
 }

}

