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Self-Configurable Current-Mirror Circuit With
Short-Circuit and Open-Circuit Fault Tolerance for

Balancing Parallel Light-Emitting Diode (LED)
String Currents

Sinan Li and S. Y. Ron Hui, Fellow, IEEE

Abstract—Current imbalance among parallel light-emitting
diode (LED) strings could put excessive current and thermal stress
on some of the LEDs in the systems, resulting in reduction in
system lifetime. For LED road lighting systems, reliability is the
paramount factor. This paper first explains how existing current-
mirror (CM) circuits cannot cope with LED open-circuit faults and
then describes a self-configurable CM circuit that can withstand
open-circuit faults in LED systems with parallel LED strings. The
ability to withstand open-circuit faults means that the LED systems
can still function with reduced luminous output even if one LED
string is cut off. The proposed circuit, which retains the feature of
not requiring an auxiliary dc power supply, has been practically
implemented and successfully tested in a 70-W LED system with
three parallel strings.

Index Terms—Current mirror circuits, current sharing meth-
ods, light-emitting diode technology.

I. INTRODUCTION

L IGHT-EMITTING diode (LED) technology has success-
fully penetrated into decorative, signaling, signage, and

display applications [1], [2]. For public lighting applications,
particularly road lighting, reliability is of paramount impor-
tance [3], [4]. To achieve high reliability, various factors of the
LED systems must be considered. These factors include at least
LED device structure and packaging with minimized thermal
resistance [5], [6], thermal management for reducing thermal
stress [7]–[9], power control and driver technology for long life-
time [10]–[14], and good current-balancing techniques to avoid
overstress in LEDs (for systems with parallel LED strings).

Regarding current-balancing techniques, various passive and
active techniques have been reported. Passive methods include
the use of the coupled reactors for balancing currents in parallel
power electronic devices as described in the first edition of a
textbook in 1987 [15]. Coupled reactors were used again and
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named as current-balancing transformers for current sharing in
parallel LED strings in [16]. The coupled-reactors concept was
extended to the daisy-chain configuration for balancing currents
in multiple parallel power devices in the second edition of the
textbook [17] in 1992, and was recently used again and named
as daisy-chained transformers in [18], [19], and [20] for current
sharing in parallel LED strings.

Active methods include active/switched mode current control
[21]–[24] and current-mirror (CM) circuits [25]–[28]. Among
them, the self-reconfigurable CM circuit without using a sepa-
rate power supply [27], [28] is particularly suitable for use with
a passive LED driver for road lighting systems [4]. Contrary to
a misconception [18] that CM-based current-balancing circuits
suffer high power loss, Li et al. [27] report that for a 64-W LED
system with three parallel strings, the total power loss in the CM
circuit is only 1.18 W under normal operation. The low power
loss in the CM circuits benefits from the facts that the current
ratings of modern high-brightness white LED devices are much
less than 1 A (typically about 0.3 A) and that the collector–
emitter voltages of the transistors in the CM circuit are used to
compensate the small voltage differences of the parallel LED
strings under normal situation.

In order to meet the industrial reliability requirements for
LED public lighting systems, it is necessary to ensure that the
current-balancing circuit can withstand both short-circuit and
open-circuit faults in any of the LEDs in the parallel strings.
In general, a short-circuit fault in an LED will only increase
the current imbalance among the parallel strings. As long as
the current imbalance is within the capability of the current-
balancing circuit, a short-circuit fault in an LED does not pose
any serious problem to the current-balancing circuit. However,
if an open-circuit fault occurs in an LED, the whole LED string
to which the faulty LED is connected should be isolated from
the rest of the system so that the LED system can still function
even though with reduced luminous output.

In this paper, an improved self-reconfigurable CM circuit for
reducing current imbalance in parallel LED strings is proposed.
This circuit can cope with both short-circuit and open-circuit
faults in any of the LEDs in the system. It is particularly suit-
able for use with the passive LED driver [4] which does not use
any auxiliary power supply. In this paper, the failure modes of
the existing CM circuit for open-circuit fault are highlighted.
Then an improved circuit with new measures in isolating the
faulty LED string is introduced and its operating principles are
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Fig. 1. Self-configurable CM circuit with three strings using op-amp feedback
[27] (Bold line highlights the current path to automatically select the smallest
current as the reference for the CM circuit under the condition of ILED1 ILED2
ILED3 ).

Fig. 2. Schematic of the self-configurable current-mirror principle using self-
driven transistors (S1 − SN ) and linear Q-transistors [27].

explained. The proposed circuit has been successfully imple-
mented and its tolerance against short-circuit and open-circuit
faults has been practically verified.

II. OPERATION MODES OF EXISTING CM CIRCUIT UNDER

FAULTY CONDITIONS IN PARALLEL LED STRINGS

Fig. 1 shows an existing feedback-assisted CM circuit with
self-reconfigurable function [22]. Self-reconfiguration refers to
the ability to automatically select the current branch with the
minimum current magnitude as the current reference for CM
action. For each LED string, two transistors connected as Dar-
lington pair are included as the basic unit of the CM circuit. The
lower transistor (Q-transistor) normally operates in the linear
mode for balancing the current with respect to a chosen cur-
rent reference. A simplified structure of the self-reconfigurable
CM concept is illustrated in Fig. 2. The upper transistors (S-
transistors) are used as the selection switches S (S1 − SN ). One
of these S-transistors will be closed to select the current string
with the minimum current magnitude as the current reference.
The Q-transistors in the nonreference strings are operated in
the linear mode in order to provide the voltage compensation
in the strings to keep the string currents to follow the current
reference.

Assuming that the string currents are under the situation of
ILED1 > ILED2 > ILED3 , the collector–emitter voltages of the

Fig. 3. Parallel current strings and their current–voltage characteristic without
the CM circuit.

Fig. 4. Parallel current strings and their current–voltage characteristic with
the CM circuit.

transistors Q1 , Q2 , and Q3 will be VCE1 > VCE2 > VCE3 . The
part of the circuit that selects the current reference with the
lowest string current consists of D1 ,D2 ,D3 , and Rz . Under this
condition, the relatively high voltage of VCE1 will drive a current
through the diode D1 and the resistor RZ to turn ON the transistor
Q3 of the LED3 string with the smallest string current. The bold
line in Fig. 1 highlights this current path. In this way, the LED
string with the smallest current will be automatically selected as
the current reference of the CM circuit. Based on this principle,
the self-configurable CM circuit [27] always selects the smallest
current as the current reference, which is the requirement for the
CM circuit operation. The resistors RE of low resistance values
(typically about 1 Ω) are used for two purposes. First, they
are included to avoid the thermal runaway of the transistors
Q1 − Q3 . Second, they are used as the current sensors for the
op-amp feedback circuit.

A. Short-Circuit Faults

Under normal condition, the CM circuit provides voltage
adjustment among the parallel strings so that the string currents
will follow the current reference string. If a short-circuit fault
occurs in one of the LEDs, the voltage imbalance among the
LED strings can increase the tendency for increased current
imbalance. This phenomenon can be explained with the aid
of the string current–voltage curves of LEDs for two parallel
strings as shown in Figs. 3 and 4.

Due to the nonideal LED devices, the LED strings do not have
identical characteristics. Fig. 3 highlights the situation for two
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(a) (b)

Fig. 5. Equivalent circuit of Fig. 1 when the LED3 string suffers an open-circuit fault. (a) With the two PN junctions of S3 shown as diodes. (b) With current
paths in S3 highlighted.

Fig. 6. Improved CM circuit for parallel LED strings with measures of isolat-
ing the open-circuited string and the effects of its associated control electronics.

(a) (b)

Fig. 7. Proposed open-circuit fault detection logic circuits.

Fig. 8. Equivalent circuit of Fig. 6 when the proposed switches A, B, and C
are turned ON under normal conditions (same as the original circuit in Fig. 1).

parallel strings with slight differences in the I–V characteristics.
Assuming that String-2 is the one on the right in Fig. 3, if the
same voltage is applied across the two strings without using the
CM circuit, the String-1 current is higher than that of String-2 by
ΔI. If one of the LEDs in String-1 has a short-circuit fault, the
total on-state voltage of String-1 will be reduced. The I–V curve
of String-1 will shift slightly to the left as shown in the dotted
curve labeled by 1sc in Fig. 3(b). Consequently, a short-circuit
fault in one LED device could increase the current imbalance to
ΔIsc .

Fig. 4 shows the circuit and the corresponding I–V curve if the
CM circuit is used to balance the string currents. Under normal
situation, the voltage balance equation can be used to evaluate
the circuit operation as follows:

Vd1 + VCE1 = Vd2 + VCE2 (1)

Vd2 − Vd1 = VCE1 − VCE2 = ΔV. (2)
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(a) (b)

Fig. 9. Switch states and the equivalent circuit when an open-circuit fault occurs in a slave (LED3) string. (a) Status of switches A, B, and C highlighted.
(b) Equivalent circuit of (a).

(a) (b)

Fig. 10. Equivalent circuit under an open-circuit fault in the master (LED2) string.

Equation (2) shows that the collector-emitting voltage values
of the CM circuit can adjust themselves so as to satisfy (2) in
order to balance the string currents.

When one LED has a short-circuit fault in String-1, the I–V
curve of Sting-1will shift slightly to the left as shown in the
dotted curve

Vd2 − Vd1 = VCE1 − VCE2 = ΔVSC . (3)

Equation (3) indicates that the CM circuit action remains the
same, except that the voltage difference of VCE1 and VCE2 has
to increase from ΔV to ΔVSC . This means that short-circuit
fault in one LED in the system does not pose serious problem
to the CM circuit as long as the Q-transistors of the CM circuit
can provide the voltage difference for current-balancing action.
CM circuits are linear regulators. When the voltage across the
Q-transistor increases, the power consumed in this transistor-
will increase accordingly. Therefore, it is recommended that
Q-transistors should have enough power capacity and tempera-
ture tolerance.

Fig. 11. Simplified form of the equivalent circuit for open-circuit faults in the
master (LED2) string.

B. Open-Circuit Faults

Fig. 5 highlights the problem of the circuit of Fig. 1 when
the LED3 string suffers an open-circuit fault. Under this
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(a) (b)

Fig. 12. Generalization from (a) a two-string system to (b) a multiple-string system.

Fig. 13. Experimental setup of the original self-reconfigurable CM circuit.

open-circuit fault, the electric potential Vin3 at point A of the cir-
cuit is not floating, because the transistor S3 is still conducting.
The voltage at point A will fall into a very low value because
the base-collector of the bipolar junction transistor (BJT) of Q3
conducts through the diode action of the base-collector of S3 .
The low current through this base-collector of S3 is small and
so is the voltage drop across the resistor RE of the faulty current
string. Consequently, the voltage at point A will be very low.
It will be equal to the sum of voltage of the collector–emitter
voltage of transistor Q3 and the voltage across RE of the faulty
string. Because RE is a resistor with low resistance value (typ-
ically less than a few ohms) and the current coming from the
base-collector diode of S3 is small, the voltage across RE of the
faulty string is also very small. Such low voltage at point A will
mislead the CM detection circuit to wrongly select this faulty
string as the current reference. The open-circuit fault problem
will be practically demonstrated Section 4.

III. IMPROVED SELF-RECONFIGURABLE CM CIRCUIT WITH

SHORT-CIRCUIT AND OPEN-CIRCUIT TOLERANCE

In order to improve the reconfigurable CM circuit to cope with
an open-circuit fault without using an auxiliary power supply
for a separate predetermined current reference, new measures
are introduced into the original CM circuit [27] to isolate the
open-circuited current string and the effects of its associated
control electronics. Fig. 6 shows the improved CM circuit for
an LED system with three LED strings.

Before the use of the circuitry is explained, it should be noted
that the LED strings can be classified into two groups when
the op-amp circuits are used for feedback assistance. Only one
LED string will provide a signal to the “noninverting inputs” of
the op-amp circuits. This LED string is labeled as the master
string. (Note: It should be noted that the master string is not
necessarily the string chosen as the current reference in the self-
reconfigurable CM circuit.) The remaining LED strings provide
their respective signals to the “inverting inputs” of the op-amps.
They are called slave strings. Note that even if the master string
has an open-circuit fault and has to be isolated, current balancing
can still be achieved among the slave strings. The new circuitry
has several components for different functions. Its operations
are summarized in Table I.

1) Switch C is used for isolating the faulty LED string from
the rest of the power circuit. It is turned OFF when an
open-circuit fault occurs in the LED string to which it is
connected.

2) Switches A and B are used for isolating the control cir-
cuit of the master LED string, which is connected to the
“noninverting inputs” of the op-amp circuits. (Note: The
control circuit of the LED2 string in Fig. 6 is connected
to the noninverting input of the two op-amp circuits.)
Switches A and B are turned OFF when the master LED
string providing signal to the “noninverting input” to the
op-amp circuits has an open-circuit fault. When the open-
circuit detection logic (O/C-DL) circuit of the master LED
string (O/C-DL-2) has a logic output “0” (i.e., an open-
circuit fault occurring in the master LED string), both
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TABLE I
OPERATING MODES OF THE O/C-DL CIRCUIT

TABLE II
COMPARISON OF THE STRING CURRENTS AND MAXIMUM CURRENT

DIFFERENCE WITH AND WITHOUT THE ORIGINAL CURRENT-MIRROR CIRCUIT

(INCLUDING POWER CONSUMPTION MEASUREMENT DATA)

Fig. 14. Measured transient string current waveforms of the original circuit
with one LED device in the LED2 string shorted [Ch1: String-1, Ch3: String-2,
Ch4: String-3; 50 mA/div, 4 ms/div].

Switches A and B will be turned OFF. Turning OFF Switch
A will isolate the connection of the op-amp connecting
to the base of Q1 . Turning OFF Switch B will isolate the
sensing current signal across RE of the master string (i.e.,
LED2) from the noninverting inputs of the two op-amp
circuits. The equivalent circuit is shown in Fig. 10.

3) Resistor Rk is used to ensure that the “noninverting inputs”
of the op-amp circuits to which it is connected, so that these
noninverting inputs will not be floating when Switchs A
and B are turned OFF. Resistor Rk (typically 1 kΩ) is

TABLE III
STRING CURRENTS AND OTHER MEASUREMENT DATA AFTER A

SHORT-CIRCUIT FAULT OCCURS IN ONE LED DEVICE IN STRING 2 IN THE

ORIGINAL SELF-CONFIGURABLE CM CIRCUIT

chosen to be much larger than RE (typically less than a
few ohms) and much less than the input impedance of the
op-amp inputs (typically higher than MΩ).

4) O/C-DL circuits that detect the open-circuit faults in their
respective LED strings: Two versions of this logic circuit
are shown in Fig. 7. Under normal operation, the logic
circuit in each LED string provides a logic “1” to close
Switch C for the slave string, and to close Switchs A, B,
and C for the master string. Otherwise, it will provide a
logic “0” to turn OFF the respective switch or switches.

The O/C-DL circuit highlighted in Fig. 7 is used to isolate
the LED string in which an open-circuit fault occurs. The logic
circuit provides a logic “1” to turn ON Switch C for the slave
string and Switches A, B, and C for the master string when the
LED string is under normal operation. Under normal conditions
when these switches are turned ON, the equivalent circuit is
shown in Fig. 8 which is identical to the original CM circuit in
Fig. 1.

A. Open-Circuit Fault in a Slave String in the Improved Circuit

Now consider the situation when an open-circuit fault occurs
in one of the slave strings. Slave strings are those which pro-
vide signals to the ‘‘inverting inputs” of the op-amp circuits.
Assuming the LED3 string (the one on the right-hand side in
Fig. 6) has an open-circuit fault as shown in Fig. 9(a). Switch
C for controlling switch S3 will be turned OFF. The voltage at
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Fig. 15. Measured transient current waveforms of the original circuit with open-circuit fault occurring in one LED device in (a) String-1, (b) String-2, and
(c) String-3 [Ch1: String-1, Ch3: String-2, Ch4: String-3; 50 mA/div, 4 ms/div].

TABLE IV
STRING CURRENTS AND MAXIMUM CURRENT DIFFERENCE IN THE LED
SYSTEM USING THE IMPROVED CURRENT-MIRROR CIRCUIT (INCLUDING

POWER CONSUMPTION MEASUREMENT)

Fig. 16. Measured transient current waveforms of the improved circuit when
a short-circuit fault occurs in one LED device in String 2. [Ch1: String-3, Ch2:
String-2, Ch3: String-3; 50 mA/div, 4 ms/div].

point A3 will drop to a low level that the diode D3 will be re-
verse biased and turned OFF. Therefore, the third LED string is
isolated from the rest of the circuit as shown in Fig. 9(b).

B. Open-Circuit Fault in the Master String in the
Improved Circuit

The master string is the one which provides a signal to the
“noninverting inputs” of the op-amp circuits. In Fig. 6, the cen-
tral LED string is a master string. Assuming that an open-circuit
fault occurs in this string as shown in Fig. 10(a), the logic cir-
cuit of the central string will turn OFF the Switch C for S2 ,
Switch A, and Switch B. Because the value of the resistor Rk

is much higher than RE and much lower than the impedance of

TABLE V
STRING CURRENTS AND MAXIMUM CURRENT DIFFERENCE WITH THE

IMPROVED CURRENT-MIRROR CIRCUIT AFTER A SHORT-CIRCUIT FAULT

OCCURS IN THE LED2 STRING (INCLUDING POWER

CONSUMPTION MEASUREMENT)

the noninverting inputs of the op-amps, the resistor Rk effec-
tively ties the noninverting inputs to one of the inverting input
of the op-amp circuit, so that the noninverting inputs will not be
floating. The equivalent circuit when the master string has an
open-circuit fault is shown in Fig. 10(b). The simplified form
of this equivalent circuit is shown in Fig. 11. The proposed idea
can be extended to more parallel current strings as shown in
Fig. 12.

IV. EXPERIMENTAL VERIFICATION

LED systems based on the original and the improved current-
balancing circuits have been set up for comparison and practical
evaluation. Each LED system consists of three parallel strings.
Each string is composed of ten series-connected 3-W Sharp
white LED devices (Model: GW5BWC15L02) with a rated cur-
rent of 320 mA. The voltage across each LED device is about
10 V and the LED string voltage is about 100 V.

A. Tests on Original Circuit (as Reference)

Fig. 13 shows the original circuit. The op-amp circuits are
powered by the potential difference across one LED device
(i.e., about 10 V), and no external power supply is required. The
components used the CM circuit are: BJT transistors: BD139,
op-amp: LM324, diodes: 1N4148, Rz = 55 kΩ, and RE = 1Ω.
Test results of this circuit under normal operations have been
presented in [27].
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Fig. 17. Measured string currents before and after the open-circuit fault oc-
curring in one of the three LED strings [Ch1: String-3, Ch2: String-2, and Ch3:
String-1; 50 mA/div, 10 ms/div]. (a) Open-circuit fault occurring in String-
1 (Slave) only. (b) Open-circuit fault occurring in String-2 (Master) only.
(c) Open-circuit fault occurring in String-3 (Slave) only.

1) Normal Operation in the Original Circuit: Table II tab-
ulates the performance of the original circuit before and after
using the CM circuit. The information in this table is used as a
reference for comparison with the performance of the improved
circuit.

2) Short-Circuit Fault in One LED Device in the Orig-
inal Circuit: In this test, one LED device (out of the ten
series-connected devices) in String-2 of the circuit is shorted.
The transient waveforms of the three string currents are recorded
in Fig. 14. It can be seen that good current balance can still be
achieved. Some measured data are tabulated in Table III. The
collector voltage of the Q-transistor is an important parame-
ter that provides the selection of the current reference. Table II
shows that String-1 has the smallest current before using the
CM circuit. So the reconfigurable CM circuit will select String-

Fig. 18. Photograph of the proposed CM circuit with both short- and open-
circuit fault tolerance (compared with a quarter dollar coin). (a) Top side. (b)
Bottom side.

1 as the current reference. This point is confirmed in Table III,
in which the collector voltage of the Q-transistor in String-1
is smallest, meaning that Q-transistors in String-2 and String-3
vary to reduce their current to follow the current reference of
String-1.

Since the voltage across each LED device is about 10 V, the
collector voltage of the Q-transistor in String-2 increases by the
same magnitude in order to balance the currents. Good current
balance can be achieved with the reconfigurable CM circuit,
at the expense of higher conduction loss in the Q-transistor of
String-2. Comparison of the power consumptions of the CM
circuit in Tables II and III indicates that the power consumption
has increased from 1.3 W (1.9%) to 3.45 W (4.9%). However, it
should be noted that the original CM circuit can tolerate short-
circuit fault in one LED device.

3) Open-Circuit Fault in One LED Device in the Original
Circuit: Fig. 15 shows the practical measurements of the three
currents of circuit in Fig. 13, with one of the three LED current
strings suddenly cut off to simulate an open-circuit fault. It can
be seen that the three currents drop to zero or near zero. These re-
sults confirm that the original CM circuit can withstand an LED
short-circuit fault, but cannot cope with an LED open-circuit
fault as previously explained. If such open-circuit fault occurs,
the LED system will not function and no light is produced.

B. Tests on the Improved Circuit

The circuit example of Fig. 6 with three parallel LED strings
has been used for practical evaluation. The voltage across one
LED device is used to derive a 10-V dc power supply for the
op-amp circuit in order to avoid using a separate auxiliary power
supply. In Fig. 6, String-1 and String-3 are the slave strings and
String-2 is the master string. All S-transistors are implemented
in Darlington configuration. The sensitiveness of the collector
voltage with the resistor Rz is, therefore, much reduced. The
components used in the improved circuit are: BJT transistors
(including switch A and Darlington pairs): BD139, MOSFET

switches (Switchs B and C): IRF530 N, Rz = 2 kΩ, Rk =
1 kΩ and the other components are identical to the first set of
experiments. The detection logic circuit of Fig. 7 is used for
each LED string.

1) Normal Operation in the Improved Circuit: The improved
circuit has been tested under normal operation. Table IV tab-
ulates the measured data. The voltage differences at points B
of the three strings highlight the fact that the LED devices are
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TABLE VI
STRING CURRENTS AND OTHER MEASUREMENT DATA AFTER AN OPEN-CIRCUIT FAULT OCCURS IN THE THREE STRINGS WITH IMPROVED CM CIRCUIT

(INCLUDING POWER CONSUMPTION MEASUREMENT AND SWITCH STATES)

not exactly identical. The collector voltage of the Q-transistor
in String-1 is smallest, indicating that String-1 is selected as the
current reference. The string currents are well balanced with the
current difference less than 1% of the average string current.
These results of the improved circuit are similar to those of the
original circuit recorded in Table II.

2) Short-Circuit Fault in One LED Device in the Improved
Circuit: In this test, one LED device is shorted in String-2. The
three string currents before and after the short-circuit fault are
captured and displayed in Fig. 16. Some measured data after the
short-circuit faults are recorded in Table IV. Again, String-1 is
selected as the current reference because its Q-transistor has the
smallest voltage. The transient current measurements confirm
that the improved circuit can cope with short-circuit fault well. It
is noted from Table V that the Q-transistor of String-2 provides
the voltage to compensate the voltage of the LED device with
the short-circuit fault. The current balance is achieved at the
expense of increased power loss, which increases from 1.85 to
3.9 W.

3) Open-Circuit Fault in One LED Device in the Improved
Circuit: Open-circuit tests are conducted for each string. A
series-connected MOSFET is connected to each string. This
switch is turned OFF to simulate the open-circuit fault. The mea-
sured string currents of the LED system before and after the
open-circuit fault occurring in String-1, String-2, and String-3
are recorded and displayed in Figs. 17(a), 17(b), and 17(c),
respectively. It can be seen in the three cases that the remaining
two strings without open-circuit fault continue to be in opera-
tion with good current balance. Therefore, the proposed circuit
allows the LED system to continue to produce light even if one
LED device suffers an open-circuit fault. This feature is partic-
ularly useful for street lighting applications in which the system
availability rate is important.

Measured data of the system of the three open-circuit tests
are tabulated in Table VI. The current values after the open-
circuit faults in Figs. 17(b) and 17(c) are almost identical and
equal to those before the fault. The reason is due to the fact that
the current of String-1 is chosen as the current reference by the
reconfigurable CM circuit in these two cases, as confirmed by the
smallest voltage in the collector of the Q-transistor in String-1
recorded in Table VI. In Fig. 17(a), the string currents follow that
of String-1 before the open-circuit fault. After the open-circuit
fault in String-1, the current in String-2 is automatically chosen
as the current reference and so the new balanced current value
is different from that in Figs. 17(b) and 17(c). A photograph of
the proposed circuit is shown in Fig. 18.

V. CONCLUSION

The self-configurable CM circuit has provided an effective so-
lution to balance LED string currents. It has been demonstrated
that the original circuit can cope with an LED short-circuit fault,
but not an open-circuit fault. This paper presents an improved
version that allows the LED system with parallel strings to con-
tinue to operate and produce light even if one LED device suf-
fers either a short-circuit or an open-circuit fault. The improved
circuit can further enhance the lifetime of LED systems with
parallel LED strings even if an individual LED device fails. The
operating principle of the improved circuit has been explained
and practically demonstrated. This circuit design does not re-
quire any auxiliary power supply and electrolytic capacitors. It
can be used with passive LED drivers for street lighting sys-
tems because such passive drivers do not have switched mode
or regulated power supplies for the system operation.
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