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Introduction
Combining high-throughput microarray data with pathway 
information has proved to be a fruitful approach to uncov-
ering biological networks from genomics data. Compared 
to single-gene based analysis, pathway-based methods can 
identify more subtle changes in expression.1,35 Further-
more, pathway-based methods can help generate biological 
hypotheses, which can be readily tested using complementary 
approaches, such as proteomics and metabolomics technolo-
gies. Each pathway used in such analyses generally serves a 
particular cellular or physiologic function, and these annotated 
pathways usually come from various external databases, such 

as KEGG2 and BioCarta (http://www.biocarta.com/). Wang 
et al.3 recently reviewed pathway-based methods, including 
enrichment analysis, nonparametric regression, discriminant 
analysis, partial least squares, and random forests. Despite 
these recent progresses in pathway-based analysis, not much 
attention has been paid to sample heterogeneity that may be 
partly captured by observable clinical variables. The incorpo-
ration of such clinical information may help identify relevant 
pathways unique to a subpopulation, leading to novel insights 
into disease etiology and more specific treatment schemes.

In this paper, we propose to perform stratified pathway 
analysis for subpopulations, with attention to the analysis 
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results that overlap across strata as well as those that are 
unique to one of the stratum. If the pathways are found to be 
significant only to one of the subpopulations, it means that 
potentially those pathways are switched on for that subgroup. 
If the pathways are found to be significant for both subpopu-
lations, it suggests that the genes are consistently switched on 
for both subpopulations, ie, regardless of the stratifier. We pri-
marily study a breast cancer dataset to illustrate the usefulness 
of this approach. Estrogen receptor (ER) and progesterone 
receptor (PR) statuses are commonly used to estimate the risk 
of breast cancer, design therapy, and predict survival rate.4–10 
For example, breast cancer patients are usually treated either 
with hormone therapy or chemotherapy depending on the 
hormone status of ER and PR. However, not all breast carci-
nomas are responsive to the treatment, and pathway analysis 
may help identify novel therapeutic targets and develop new 
agents. Pathways or genes that can predict the PR status could 
potentially tell us more about the biological mechanism of the 
disease. PRs have been found to provide prognostic informa-
tion as well.11,12 Oral contraceptives are known to increase the 
risk of pre-menopausal breast cancer.13 Additional evidence 
supporting hormonal use as a confounding factor toward 
the risk of breast cancer was found based on the data from 
the Women’s Health Initiative.14 Another study found that 
women who have taken contraceptive pills are less likely to 
die of cancer or heart disease.15 This is strong evidence that 
oral contraceptive use can be a confounder in classifying breast 
cancer samples using hormonal status. Therefore, we perform 
stratified pathway analysis based on oral contraceptive use to 
explore potentially different pathways involved in breast can-
cer. More specifically, we aim to identify pathways involved 
in distinguishing PR status for users and non-users of oral 
contraceptives based on gene expression data. Top pathways 
may contain genes with expression that are good at distin-
guishing receptor status. For example, progesterone expression 
may predict progesterone status as it is related to genetic loss 
of heterozygosity.16 Other genes may serve as surrogates for 
that process.

For pathway analysis, we use the Random Forests approach, 
which has been found to perform well among a number of 
machine learning methods in pathway-based analysis.17,18

The rest of the paper is organized as follows. The detailed 
methodology is discussed in the Materials and methods sec-
tion. In the Results section, we demonstrate the usefulness 
of this approach through the application of our method to a 
breast cancer microarray dataset. We conclude the paper in 
the Discussion section.

Materials and Methods
Our approach is built on the previous proposal of adopting the 
Random Forests approach for pathway analysis.17 We describe 
below how we perform stratified pathway analysis, build 
pathway connections, compare overlapped pathway similari-
ties, and discover how genes are shared among them.

stratified pathway analysis. The stratified pathway analy-
sis considers important covariates in data analysis. In the case 
of the breast cancer dataset to be analyzed, we use information 
about the oral contraceptive use of each patient. In the simplest 
case, we partition all the samples into subgroups based on oral 
contraceptive use status, and analyze each subpopulation sepa-
rately. For each pathway, we build a Random Forest to predict 
an individual PR+/PR− status based on the gene expression 
levels within this pathway. To understand Random Forests, we 
first need to understand how to build a classification tree.

A classification tree is built as follows:

Step (I):  For each pathway, draw a bootstrap sample from 
the original data.

Step (II):  A classification tree is grown for each bootstrap 
sample.

Step (IIa):  At each node of the tree, select predictors (√p for 
classification) at random for splitting.

Step (IIb):  Using the gini impurity criterion described later, 
a node is split using the single predictor from step 
(IIa). Gini impurity criterion for a binary clas-
sification problem is 1 − p1

2 − p2
2, with p1 and p2 

being the proportions of individuals in class 1 and 
2, respectively.

Step (IIc):  Repeat steps (IIa) and (IIb) until each terminal 
node contains samples in the same class or only 
one sample.

Random Forests construct many classification trees and 
thus the name ‘forest’. Every tree is built using a determin-
istic algorithm that differs from ordinary tree algorithms in 
two regards. First, at each node, a best split is chosen from 
a random subset of predictors rather than all of them. Sec-
ond, every tree is built using a bootstrap sample of the origi-
nal observations. For more details, see Breiman.19 The default 
parameters in R’s Random Forest implementation are used, 
except for running 20,000 trees.

For calculating the classification error, we employ five-
fold cross-validation to make it more stable across the stratified 
subgroup. For each cross-validation, four-fifths of the samples 
are used to build Random Forests, and the other samples are 
used to estimate the classification error. In doing so, each sub-
ject from the left out set of the cross-validation iteration is put 
down every tree in the forest for classification using the input 
vector of gene expression for genes within a particular path-
way. Each tree gives a classification for this subject, and the 
forest chooses the class that gives the majority votes for this 
subject. Small classification error based on genes in a given 
pathway would indicate the pathway as potentially interest-
ing.17 Multiple-testing adjusted permutation P-values are cal-
culated. The permutation P-value is the proportion of observed 
cross-validation errors smaller than the cross-validation errors 
obtained from 500 Random Forest runs of randomly per-
muted labels of patients. The top pathways with a permutation 
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P-value of less than 0.05 from both users and non-users of oral 
contraceptives will be presented for overlapped and non-over-
lapping pathways. Important genes, ie, those having strong 
discrimination power and selected based on the importance 
measure in Random Forests, are also investigated.

We will provide some biological interpretations of 
our results with the help of PubMatrix,20 software for 
comparing a list of terms against any other list of terms in 
PubMed.

datasets. Pathways. A total of 285 pathways from Bio-
Carta were used for the analysis. Most of these are related to 
signal transduction in humans with a smaller group of meta-
bolic pathways.

Microarray data. A breast cancer microarray dataset 
accompanied by oral contraceptive use data was analyzed. This 
dataset used Affymetrix GeneChip® hgu-133 plus 2.0 with 
54,613 probe sets. The INTEGEN (http://www.integen.org/) 
dataset (accession number GSE2109 from GEO) consists of 
199 breast tissue samples with clinical status of PR. A total 
of 123 of the 199 samples were taken from patients with oral 
contraceptive use and the remaining 76 from patients who did 
not take oral contraceptives.

We chose the breast cancer dataset and PR positive/
negative status (PR+/PR−) to study because breast cancer has 
been extensively studied in the literature and tumor samples 
are normally classified on the basis of hormone receptor sta-
tus. A recent publication described PR as a stronger predictor 
of treatment response of adjuvant tamoxifen than the ER.21 
More recently, additional studies suggested that measure-
ment of PR status in conjunction with ER status may help 
identify patients that benefit from therapy.22,23 Daniel et al.24 
provide strong rationale for targeting PR and ER in com-
bination. The PR status has also been used to guide breast 
cancer therapy, breast cancer survival rate, and estimate breast 
cancer risk.4,5,9

Software. R was used to perform stratified pathway analysis. 
The R code is based on pathway analysis using Random Forests 
and it is available here: http://people.duke.edu/∼hp44/r_code.
htm. For pathway visualizations, Cytoscape25 was used.

results
top pathways. In this section, we show the results of the 

analyses. Top pathways for both users and non-users of oral 

contraceptives that are good at distinguishing between PR+ 
and PR− with permutation P-values of less than 0.05 are pre-
sented. Table 1 lists the top four pathways for non-users of 
oral contraceptives while the top five pathways for users of 
oral contraceptives are shown in Table 2. The top pathways 
in Table 1 are: (i) Eph Kinases and ephrins support plate-
let aggregation and (ii) IL 10 Anti-inflammatory Signaling 
Pathway. It has been found that Eph–ephrin signaling and IL 
10 signaling are related to cancer26,27 and to breast cancer in 
particular.28 The following genes are important for the clas-
sification between PR+ and PR− in the pathways in Table 1: 
ADCY1, MAP3K7, and PAK2. And for Table 2, these are the 
important genes that are shared in some of the pathways listed: 
JUN, MAPK3, PIK3C, PIK3R1, and SOS1. Moreover, oral 
ethinylestradiol, an active estrogen compound found in oral 
contraceptives, decreased expression of chemokine receptors 
such as CCR3.29 This potentially explains why CCR3 sig-
naling in eosinophils pathway was found as one of the top 
pathways among oral contraceptive users. About 27% of the 
important genes among the top pathways for non-users of oral 
contraceptives have literature citations compared with 39% 
of the important genes among the top pathways for users of 
oral contraceptives. While some pathway names and relation-
ships to cancer are less apparent, the top genes in them may be 

Table 1. Top pathways for non-users of oral contraceptives.

PAThwAY NAME P-vALUE*

Eph Kinases and ephrins support platelet aggregation 0.030

IL 10 Anti inflammatory signaling pathway 0.010

Regulation of spermatogenesis by CREM 0.012

TNFR1 signaling pathway 0.018

Note: *From permutation.

Table 2. Top pathways for users of oral contraceptives.

PAThwAY NAME P-vALUE*

CCR3 signaling in eosinophils pathway 0.012

Neuropeptides VIP and PACAP inhibit the apoptosis  
of activated T cells

0.004

PDGF signaling pathway 0.008

The IGF 1 receptor and longevity 0.024

Transcription factor CREB and its extracellular signals 0.010

Note: *From permutation.

Table 3. Overlapping top pathways for both users and non-users of 
oral contraceptives.

PAThwAY NAME P-vALUE 1 P-vALUE 2

IL 2 receptor beta chain in T cell 
activation

0.006 0.002

IL 6 signaling pathway 0.022 0.032

Keratinocyte differentiation 0.002 0.002

Pelp1 modulation of estrogen receptor 
activity

0.004 0.002

Rho cell motility signaling pathway 0.014 0.006

Estrogen-responsive Efp controls cell 
cycle breast tumors growth

0.008 0.026

Role of ERBB2 in signal transduction 
and oncology

0.002 0.002

Note: *From permutation P-value 1 and P-value 2 for non-users and users, 
respectively.
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biologically meaningful. The most important genes in Table 3 
will be explored in more detail in the next section. Given that 
the sample size for oral contraceptives users is larger than that 
for the non-users, we investigated whether the sample size had 
an impact on the number of top pathways by sampling only 
76 from the 123 oral contraceptive patients. All the pathways 
listed in Table 2 remain significant and have permutation 
P-values less than or equal to 0.05. If we did not stratify by the 
users and non-users of oral contraceptives, then four of the five 
top pathways are different from what have been found, includ-
ing MAPKinase Signaling Pathway; Telomeres, Telomerase, 

Cellular Aging, and Immortality; CARM1 and Regulation 
of the Estrogen Receptor pathway; and Cell to Cell Adhesion 
Signaling pathway. Keratinocyte Differentiation pathway is 
the only one found in Table 3.

Important genes and biological implications. Figure 1 
contains two plots, each showing the set of pathways listed 
in Table 3 as well as the corresponding important genes. 
The top and bottom halves of Figure 1 correspond to non-users 
and users of oral contraceptives, respectively. The genes are 
hexagon shaped and are shaded according to their discrimina-
tive power in distinguishing PR+/PR− samples, with darker 

figure 1. Top overlapped pathways for non-users (top) and users (bottom) of oral contraceptives. 
Notes: Hexagon shaped are genes. Dark red as most important, white as least important.
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red indicating more discriminative power. Clearly as an over-
view of the plot, we can see that users of oral contraceptives 
have darker red genes than non-users of oral contraceptives. 
Moreover, it is important to note that there are genes that are 
important for distinguishing PR status in non-users but not 
in users of oral contraceptives and vice versa.

The genes that are colored red and common among them 
include: ESR1, SFN, TP53, MAPK3, IRS1, IL6ST, ACTR2, 
ACTR3, SRC1, and PELP1. Of these genes, ESR1, IL6ST, and 
MAPK3 are shared among pathways, and may therefore help 
facilitate pathway crosstalk. Now, let us look at the unique top 
important genes separately. We make use of PubMatrix, web-
based software, to compare a list of terms against any other 
list of terms in PubMed. The top important genes SOCS1, 
CREBBP, IKBKB, CDC2, CDK2, FAS, JUN, and FOS of the 
bottom pathway cluster in Figure 1 have 102 literature citations 
relating them to oral contraceptives from PubMatrix. Whereas 
for non-users of oral contraceptives, the top important genes, 
PRKCD, CFLAR, EGFR, BCL2L1, and ERBB2, only have 
30 literature citations relating them to oral contraceptives 
from PubMatrix. Interestingly, these genes are unique among 
pathways and are not shared. A Mann–Whitney U test gives 
a two-sided P-value of 0.075 when comparing the number of 
literature in user and non-user groups for the top five genes. 
Furthermore, using GeneGO, we identified therapeutic drug 
targets for eight of the top genes identified, see Table 4.

discussion
Stratified pathway analysis refers to performing pathway analy-
sis and measuring prediction accuracy within subgroups or strata 
of the experimental population. Clinical covariates that may 
confound the pathway analysis or gene-set enrichment analysis 
should be taken into account. If necessary, stratified pathway 
analysis should be performed. In this paper, we highlight the 
importance of incorporating covariates in pathway analysis. We 
have described a Random Forests-based approach to perform 

stratified pathway analysis in distinguishing PR positive and 
negative breast cancer patients. The novel method presented 
in the article was able to identify unique pathways specific to 
oral contraceptives users and non-users as well as shared path-
ways among those groups. In addition, we were able to tease 
out the important genes that relate to outcome of interests that 
are biologically meaningful. Although we used Random For-
ests for classification, other methods, such as support vector 
machines, can also be employed here for stratified analysis.

We have demonstrated the biological relevance of our 
approach using PubMatrix. The number of important genes 
identified with literature agreed well with those shortlisted by 
our analyses. Furthermore, with the aid of network visual-
ization tools, we can allow biologists to investigate how the 
important genes are related to each other within a set of path-
ways. One limitation of our approach is that the computational 
intensity of our approach increases linearly with the number of 
levels of the confounding variable.

Bioinformaticians and biologists can make use of this 
method to analyze specific subgroup of patients, focus on a 
few sets of genes, identify pathway targets, and find out how 
important genes are shared among the top pathways. This 
allows researchers to obtain results that are more closely tied 
to the biological mechanism of diseases. This analysis can 
also be applied to ER status. In this case, a weighted ran-
dom forests algorithm should be used to deal with the unbal-
anced proportion of ER positive and negative groups.30 Other 
machine learning gene selection strategies may be incorpo-
rated.31,32 Moreover, it may be applied to genotyping data as 
well.33,34
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