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The edge states in the quantum spin Hall effect are expected to be protected by time reversal symmetry. The
experimental observation of the quantized conductance was reported in the InAs/GaSb quantum well (Du et al.,
arXiv:1306.1925), up to a large magnetic field, which raises a question on the robustness of the edge states in
the quantum spin Hall effect under time reversal symmetry breaking. Here we present a theoretical calculation
on topological invariants for the Benevig-Hughes-Zhang model in an external magnetic field, and find that the
quantum spin Hall effect remains robust up to a large magnetic field. The critical value of the magnetic field
breaking the quantum spin Hall effect is dominantly determined by the band gap at the � point instead of the
indirect band gap between the conduction and valence bands. This illustrates that the quantum spin Hall effect
could persist even under time reversal symmetry breaking.

DOI: 10.1103/PhysRevB.90.115305 PACS number(s): 72.25.Dc, 73.21.−b, 75.47.−m

I. INTRODUCTION

The quantum spin Hall effect (QSHE) is a novel state of
quantum matter, in which an electric field can generate a
transverse spin current [1–4]. A quantum spin Hall system
has a bulk gap between the conduction and valence bands
meanwhile processing a pair of gapless helical edge states
surrounding the boundaries [5–7]. The gapless helical edge
states give rise to a quantized conductance in a two-terminal
measurement, which has been observed experimentally in
HgTe/CdTe quantum well [8] and in InAs/GaSb quantum
well [9]. While these edge states are expected to be protected
by time reversal symmetry [10], a recent measurement of
QSHE in the InAs/GaSb quantum well surprisingly indicates
that the quantized plateau of conductance persists up to a 12 T
(tesla) in-plane magnetic field, or an 8 T perpendicular mag-
netic field [11,12]. This observation raises a question on the
robustness of QSHE under time reversal symmetry breaking.

The electronic backscattering in the gapless edge states is
prohibited by time reversal symmetry, so that the transport
is robust against disorders respecting the symmetry [13–15].
An external magnetic field breaks time reversal symmetry
and leads to two important effects: a Peierls phase to the
orbital motion, and a Zeeman split to the spin motion. The
interplay between the spin-orbit coupling and the Zeeman
coupling may break QSHE, where the edge states open a small
subgap [16,17], and the robust transports for QSHE break
down similar to the result caused by the finite size effect [18].

In this paper, we present theoretical calculations on
topological invariants of the Bernevig-Hughes-Zhang (BHZ)
model for the QSHE, under an external magnetic field. Our
main work focuses on the orbital motion (i.e., the Landau
level forming) effects of magnetic field, ignoring the Zeeman
couplings. This is reasonable for QSHE materials with small
g factors. Furthermore, due to the absence of spin-flip (e.g.,
Rashba-like spin-orbital coupling) terms, the physical spin
Sz is preserved and the system can be decoupled into two
components with opposite Sz. This makes the two spin-
dependent Chern numbers (for spin up and down components,
respectively) well defined, even in the presence of an external
field. Correspondingly, it is found that the edge states persist

up to a large magnetic field, until some band crossing happens.
The band gap at the � point instead of the indirect gap plays
an important role in determining the critical magnetic field
to break down the QSHE. However, when the symmetry
preserving Sz is also broken by spin-flip terms coupling
two spin components, usually the edge states are no longer
robust. At the end the effect of a finite Zeeman coupling for
perpendicular field is studied, and the critical values of the
Zeeman field are presented. The effects of other spin-orbital
coupling and the in-plane Zeeman field are also discussed.

II. MODEL AND SOLUTIONS

We start with the BHZ model defined, in the basis {|s ↑〉,
|p ↑〉,|s ↓〉,|p ↓〉}, for the QSHE in quantum wells [6],

H0(k) =
(

h+(k) 0

0 h−(k)

)
, (1)

where h±(k) = ε(k)σ0 + d± · σ with denoting d± =
[±Akx, − Aky,M(k)], ε(k) = −Dk2, M(k) = � − Bk2,
k2 = k2

x + k2
y , k± = kx ± iky , and σi are the Pauli matrices

for the orbital {|s〉,|p〉}. The system possesses time reversal
symmetry implied by the relation between two spin
components, h−(k) = h∗

+(−k). This model has been used to
describe the QSHE in HgTe/CdTe and InAs/GaSb quantum
wells [6,7].

The Hamiltonian (1) can be exactly diagonalized, and two
branches of doubly degenerated eigenenergies are

E±
s (k) = ε(k) + s|d±| = ε(k) + s

√
M2(k) + A2k2, (2)

where s = +1 (−1) stands for the conduction (valence) band,
and the superscript ± of E±

s (k) stands for spin up (down)
components, which are degenerated here. The term ε(k) breaks
the particle-hole symmetry. When |D|2 < |B|2, there is an
energy gap between the conduction band E±

s=+1(k) and the
valence band E±

s=−1(k). The gap at � (k = 0) is determined
by 2�. According to the Z2 classification, the system can be
classified as a topologically trivial insulator (B · � < 0) or
nontrivial (B · � > 0) insulator [19] when the Fermi level is
located within the gap. For a large value of |�|, the band gap
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FIG. 1. (Color online) Schematic of two-dimensional energy spectra of the quantum well systems. (a) The normal state of B · � < 0. (b)
The band inverted state of B · � > 0. (c) The band inverted state of B · � > 0 with a large gap at k = 0 but a small bulk gap such as in the
InAs/GaSb quantum well.

(the minimum band separation in the Brillouin zone, which
may not be located at �) is approximately given by 2|A|√�/B

when B · � > 0 as shown in Fig. 1.
Due to the decoupling between the two spin components

h±, the physical spin operator Sz = τz ⊗ σ0 commutes with
H0, and has good quantum numbers Sz = ±1, where τi refer
to Pauli matrices for physical spin and σ0 is a 2 × 2 identity ma-
trix. This symmetry guarantees that for each spin component
(h+ or h−), a spin-dependent Chern number is well defined.
The Chern numbers for these two spin components (±) are

n± = ± 1
2 [sgn(B) + sgn(�)], (3)

when the Fermi energy lies in the bulk gap [19]. As a
consequence, the Hall conductance for the whole system is
always zero, σxy = (n+ + n−) e2

h
= 0 due to time reversal

symmetry, as expected. On the other hand, the spin Chern
number [20] defined as ns = (n+ − n−)/2 equals 1 or −1
when B · � > 0, which indicates the spin Hall conductance
is σs = ns

e
4π

, and the system exhibits the QSHE.
A perpendicular magnetic field B = Bẑ (we assume B > 0

without losing generality) breaks the time reversal symmetry,
but Sz is still preserved, which makes it possible to calculate
the Chern numbers for each spin component h±, separately.
In the absence of the Zeeman splitting, the magnetic field
only manifests itself on the orbital motion. Similar to the
case of two-dimensional electron gas in a perpendicular
magnetic field [21], the wave vector in Eq. (1) is replaced by
the substitution, k → −i∇r + eA/�, where A is the vector
potential so that B = ∇ × A. Choosing the Landau gauge
A = (−By,0,0), which preserves the translational symmetry
in x direction, we can take the eigenwave function as the
form ϕ(x,y) = eikxφ(y). We define the ladder operators in the
following form:

a†(k) = 1√
2

(
y − y0


B

− 
B∂y

)
, (4)

a(k) = 1√
2

(
y − y0


B

+ 
B∂y

)
, (5)

where y0 = 
2
Bk is the guiding center of the wave package,

and 
B = √
�/eB is the magnetic length. These two operators

obey the canonical commutation relation, [a(k),a†(k′)] = 1.
Thus the Hamiltonian can be re-expressed in terms of the
ladder operators as

h±(a,a†) = ω2
(
a†a + 1

2

)
σ0 ± η(a†σ+ + aσ−)

+[
� + ω1

(
a†a + 1

2

)]
σz, (6)

with η = −√
2A/
B , ω1 = −2B/
2

B , and ω2 = −2D/
2
B . It

is now easy to analytically solve the eigenproblems for h±,
respectively.

For the spin-up component h+, the eigenenergies are

E+
n,k,s = 1

2 [ω1 + 2nω2 + s
√

(ω2 + 2(� + nω1))2 + 4nη2],

(7)

where η and ω1,2 are the functions of B. The corresponding
eigenstates |n,k,s〉+ have a degeneracy Nφ = �/(2π
2

B) with
� the area of the two-dimensional system for different wave
vectors k. Explicitly, the two-component eigenfunction for h+
is given by

|n,k,s〉+ =
(

cos θnsφn,k

sin θnsφn−1,k

)
, (8)

where φn,k(y) = 1√
n!2n
B

√
π
eikx−(y−y0)2/2
2

BHn( y−y0


B
) is the

eigenstate of the number operator a†a with an integer
eigenvalue n, and Hn are the Hermite polynomials defined
as Hn(ξ ) = (−1)neξ 2 ∂n

∂ξn e
−ξ 2

. Notice there are two Landau
levels with s = ± for n ≥ 1, but only s = sgn(ω2 + 2�) for
n = 0. For n = 0, θn=0,s = 0. Otherwise, for n ≥ 1, tan θn,s =
s
√

1 + u2
n − un with un = [ω2 + 2(� + nω1)]/

√
4nη2.

For the spin-down component h−, the eigenenergies are

E−
n,k,s = 1

2 [2nω2 − ω1 + s
√

(ω2 − 2(� + nω1))2 + 4nη2],

(9)

and the corresponding two-component eigenfunction for h− is
given by

|n,k,s〉− =
(− sin θ−

n,sφn−1,k

cos θ−
n,sφn,k

)
. (10)
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FIG. 2. (Color online) Landau levels as functions of a perpendicular magnetic field B in a unit of tesla (T). The upper row is for the HgTe
quantum well and the lower row is for the InAs/GaSb quantum well. The left, middle, and right columns correspond to h+ (spin up), h− (spin
down), and H0 (whole system), respectively. The shaded region is the bulk gap between the conduction and valence band, with topological
invariants labeled. Model parameters are listed in Table I.

Similarly, there are two Landau levels with s = ± for n ≥ 1,
but only s = sgn(ω2 − 2�) for n = 0. For n = 0, θ−

n=0,s =
0. Otherwise, for n ≥ 1, tan θ−

n,s = s
√

1 + v2
n − vn with vn =

[ω2 − 2(� + nω1)]/
√

4nη2.
When the Fermi energy lies in the bulk gap, as in the follow-

ing calculations, the Landau levels [Eq. (7)] are divided into
two sets: the electronlike Landau levels Em

n,k,s=+ evolving from
the conduction band, and the holelike Landau levels Em

n,k,s=−
evolving from the valence band for n > 0, with the superscript
m = ± referring to spin components h±. The zeroth Landau
level of h+ is electronlike (holelike) if 2� + ω2 > 0 (< 0),
so we can denote it as E+

0,k,+ = ω1
2 + ω2

2 + � (E+
0,k,− = ω1

2 +
ω2
2 + �). Analogously, for the h−, the zeroth Landau level is

electronlike (holelike) if 2� − ω2 < 0 (> 0), and we denote
E−

0,k,+ = −ω1
2 + ω2

2 − � (E−
0,k,− = −ω1

2 + ω2
2 − �). There is

always a finite gap between the electronlike Landau levels and
the holelike Landau levels. In other words, the gap between the

TABLE I. Bernevig-Hughes-Zhang model parameters for quan-
tum wells in the band inverted regime. Parameters for HgTe/CdTe
quantum well are at d = 7 nm [16]. For the InAs/GaSb quantum
well, � is deduced from the experiment, and other parameters are
taken to have a ratio of the 2� to to the indirect gap about 4 [9].

Parameters � (eV) B (eV nm2) D (eV nm2) A (eV nm)

HgTe −0.010 −0.686 −0.512 0.365
InAs/GaSb −0.008 −0.400 −0.300 0.023

conduction and valence bands never closes in a finite magnetic
field when the Zeeman splitting is ignored.

The developments of the Landau levels E+
n,k,s(B) and

E−
n,k,s(B) under the magnetic field for some typical parameters

associated with realistic quantum wells are plotted in Fig. 2.
One important observation in Figs. 2(a), 2(b), 2(d), and 2(e)
is that, for one spin component, the Landau levels from the
conduction band (electronlike) E±

n,k,s(B) never cross with those
from the valence band (holelike) E±

n,k,−s(B). In other words,
the orbital motion of electrons in a magnetic field cannot lead
to the gap closing between the conduction and valence bands.
This is one of the main results in this work. As a result,
with the increasing of magnetic field B, possible topological
transitions (band crossings) in the bulk gap can happen only
when both spin components are considered together, as shown
in Figs. 2(c) and 2(f). The calculation of the spin Chern
numbers is presented in the following section.

III. CHERN NUMBERS IN A MAGNETIC FIELD

The main result in this section is summarized as follows: in
the presence of a perpendicular magnetic field, when the Fermi
level lies in the bulk gap of h+ and h−, the spin-dependent Hall
conductivities are always

σ±
xy ≡ n±

e2

h
= ±1

2
[sgn(B) + sgn(�)]

e2

h
. (11)

It means that for any finite field B, σ± = 0 if B · � < 0,
while σ± = ±sgn(B)e2/h if B · � > 0 when the Fermi level
is located within the band gap between the conduction
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and valence bands. These results, which can be calculated
explicitly from the Kubo formula, or the formula for Chern
number [19], are identical to those in the absence of magnetic
field, i.e., B = 0.

A. General expression

In the following, we present the detailed calculations of
these Hall conductivities at zero temperature. By using the
Kubo formula, the Chern numbers for spin component m = ±

are given by

nm = −2π�
2

�

∑
k

∑
n=n′,s,s ′

[
f

(
Em

n,k,s − μ
) − f

(
Em

n′,k′,s ′ − μ
)]

× Im
[
m
〈n,k,s|v̂m

x |n′,k,s ′〉mm〈n′,k,s ′|v̂m
y |n,k,s〉m

]
(
Em

n,k,s − Em
n′,k,s ′

)2 , (12)

where f (x) is the Fermi-Dirac distribution function, μ is the
Fermi energy, and the velocity operators can be obtained

by evaluating v̂±
x = ∂h±/�∂kx and v̂±

y = ∂h±/�∂ky with the substitution k → −i∇r + eA/�,

v̂±
x = − 
B√

2�

(
ω+(a† + a) ±η

±η ω−(a† + a)

)
, (13)

v̂±
y = i
B√

2�

(
ω+(a† − a) −η

+η ω−(a† − a)

)
, (14)

where ω± = ±ω1 + ω2.
Assume that the Fermi energy is located within the gap between the electronlike and the holelike Landau levels. Then

f (Em
n,k,s − μ) = 0 if Em

n,k,s is electronlike (s = +), while f (Em
n,k,s − μ) = 1 if Em

n,k,s is holelike (s = −). The summation over k

in Eq. (12) only gives a factor of the Landau degeneracy N� = �/(2π
2
B) for each Landau level. Thus the Chern number eventually

becomes

nm = �
2


2
B

∞∑
n,n′=0

{
Im

[
vm

x;n−,n′+vm
y;n′+,n−

] 1(
Em

n,k,− − Em
n′,k,+

)2 − Im
[
vm

x;n+,n′−vm
y;n′−,n+

] 1(
Em

n,k,+ − Em
n′,k,−

)2

}

= 2�
2


2
B

∞∑
n,n′=0

Im
[
vm

x;n−,n′+vm
y;n′+,n−

] 1(
Em

n,k,− − Em
n′,k,+

)2 , (15)

where we have denoted the velocity matrix elements as vm
i;ns,n′s ′ ≡m 〈n,k,s|v̂m

i |n′,k,s ′〉m with i = x,y. These velocity matrix
elements are evaluated with the help of the expressions in Eq. (7) for the Landau levels as well as Eqs. (13) and (14). It turns out
that vm

i;ns,n′s ′ are nonzero only if n′ = n ± 1. By evaluating the matrix elements, the general expressions for the Chern numbers
of h± are

n+ =
∞∑

n=0

{
[ω+ cos θn,+ sin θn+1,+

√
n + 1 − ω− sin θn,+ cos θn+1,+

√
n − η cos θn,+ cos θn+1,+]2 1(

E+
n+1,k,− − E+

n,k,+
)2

−[ω+ cos θn+1,+ sin θn,+
√

n + 1 − ω− sin θn+1,+ cos θn,+
√

n + η sin θn+1,+ sin θn,+]2 1

(E+
n+1,k,+ − E+

n,k,−)2

}
, (16a)

n− =
∞∑

n=0

{
[ω+ sin θ−

n,− cos θ−
n+1,−

√
n − ω− cos θ−

n,− sin θ−
n+1,−

√
n + 1 + η cos θ−

n,− cos θ−
n+1,−]2 1(

E−
n+1,k,− − E−

n,k,+
)2

−[ω+ sin θ−
n+1,− cos θ−

n,−
√

n − ω− cos θ−
n+1,− sin θ−

n,−
√

n + 1 − η sin θ−
n+1,− sin θ−

n,−]2 1(
E−

n+1,k,+ − E−
n,k,−

)2

}
. (16b)

In the above summations, special attention should be paid
to the term with n = 0. For n+ if 2� + ω2 < 0 (> 0), the
zeroth Landau level of h+ is holelike (electronlike). As for
n−, if 2� − ω2 < 0 (> 0), the zeroth Landau level of h− is
electronlike (holelike).

In the presence of the magnetic field, the general an-
alytic expressions in Eqs. (16a) and (16b) are too long
to be simplified explicitly. Nevertheless, we can still draw
the conclusion shown in Eq. (11) in two alternative
ways.

B. Case of the particle-hole symmetry

When the system possesses the particle-hole symmetry, i.e.,
D = 0, the Chern numbers n± in Eqs. (16a) and (16b) can be
further reduced to

n± = ±
∞∑

n=0

ω1(εn+1 − εn)2 + 2η2� − ω3
1 − (2n + 1)ω1η

2

4εnεn+1(εn + εn+1)
,

(17)
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where εn =
√

(� + nω1)2 + nη2. By using the identity ε2
n+1 −

ε2
n = η2 + ω1[2� + (2n + 1)ω], the Chern numbers can be

rewritten as

n± = ±1

2

∞∑
n=0

[
� + nω1

εn

− � + (n + 1)ω1

εn+1

]

= ±1

2

[
�

ε0
− lim

n→∞
� + (n + 1)ω1

εn+1

]

= ±1

2
[sgn(�) + sgn(B)]. (18)

In the last line, we have used

�

ε0
= �√

�2
= sgn(�) (19)

and

lim
n→∞

� + (n + 1)ω1

εn+1
= sgn(ω1) = −sgn(B). (20)

Thus, in the case of D = 0, the Chern numbers can be
calculated exactly.

C. Case of the particle-hole symmetry breaking

When D = 0, so far we could not simplify the expressions
explicitly to the final form as in Eq. (11). However, we can still
draw the conclusion based on the following arguments. First
in a weak field limit of B, |ω1,2|, |η| � |�|, thus

(En+1,k,s − En+1,k,−s)
2 � (εn + εn+1)2 (21)

and

cos θn,+ � sin θ−
n,− �

√
1

2

[
1 + � + nω1

εn

]
, (22)

sin θn,+ � cos θ−
n,− �

√
1

2

[
1 − � + nω1

εn

]
. (23)

Substituting Eqs. (21), (22), and (23) into Eqs. (16a) and (16b), the Chern numbers read

n± = 1

2

∞∑
n=0

{
1

εn

[
± (� + nω1) + ω2(� + nω1)(2(2n + 1)ω1 ± ω2)

(εn + εn+1)2
+ nω2η

2

(εn + εn+1)2

]

− 1

εn+1

[
± (� + (n + 1)ω1) + ω2(� + (n + 1)ω1)(2(2n + 1)ω1 ± ω2)

(εn + εn+1)2
+ (n + 1)ω2η

2

(εn + εn+1)2

]}
. (24)

In the weak field limit, i.e., the Landau degeneracy is 1,∣∣∣∣ nω2η
2

(εn + εn+1)2

∣∣∣∣ � |� + nω1|,
∣∣∣∣ω2(� + nω1)(ω2 + 2(2n + 1)ω1)

(εn + εn+1)2

∣∣∣∣ � |� + nω1|, (25)

thus the Chern numbers in Eq. (24) become

n± = ±1

2

∞∑
n=0

[
� + nω1

εn

− � + (n + 1)ω1

εn+1

]
. (26)

Therefore, in the weak field limit, the Chern numbers are

n± = ± 1
2 [sgn(�) + sgn(B)]. (27)

These results are identical to the exact ones in the absence of
external magnetic fields, i.e., B = 0, as it should be.

Second, for a finite magnetic field, the band gap between the
conduction band and valence band never closes for either h+ or
h− by increasing the magnetic field. The topological invariant
does not change when there is no band crossing. Therefore, the
Chern numbers should remain unchanged in the whole shaded
regions in Figs. 2(a), 2(b), 2(d), and 2(e). The Chern number at
a finite magnetic field B should be equal to that in a weak field
limit or B = 0 [Eq. (3)], which is just the case for Eq. (11).
Thus we conclude that the formula holds for D = 0.

Finally, we restrict ourselves to one spin component [either
h+(B) or h−(B)]. When B · � > 0 (topologically nontrivial at
B = 0), the Chern numbers n± in the bulk gap as shown in
the shaded regions in Fig. 2(a), 2(b), 2(d), and 2(e) are either
+1 or −1, which is topologically nontrivial. This is valid for
arbitrary value of magnetic fieldB, as long as the Fermi energy
is located in the bulk gap. The topologically nontrivial phase

in the shaded regions will not be changed without any band
crossing or band inversion.

Alternatively, we can also start with the case of D = 0 in a
finite field, in which the Chern numbers have been calculated
rigorously. From the dispersion relations in Eq. (2), there
always exists a band gap between the conduction band and
valence band even for D = 0. However, for a large k limit,

E±
s (k) = −(D − s|B|)k2.

When |D| � |B|, there exists an indirect gap between two
bands, but the gap closes when |D| > |B|. Thus the Chern
numbers are the same when there exists the indirect band gap.
When |D| > |B|, one band is always partially filled when
the chemical potential −|�| < μ < |�|. Thus the summation
in Eq. (12) is no longer an integer. This conclusion can be
extended to the case of a finite field.

D. Change of Chern number

To establish the phase diagram as shown in Figs. 2(c)
and 2(f), we present the Chern number as a function of the
magnetic field B. While the Chern number is a constant within
the gap, it will change when the Fermi level crosses a Landau
level. As a concrete example, we show what will happen at a
definite Fermi energy, with increasing the magnetic field since
this is measurable experimentally. In Fig. 3, corresponding
to Landau levels for the InAs/GaSb quantum well shown

115305-5
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FIG. 3. (Color online) Schematic of evolution of the Chern num-
bers for each spin component, with increasing the magnetic field in an
InAs/GaSb QW system. The model parameters are given in Table I.
The Fermi energy is fixed at μ = 6 meV, as shown by the black
lines in (a) and (b). These Chern numbers (c) and (d) are calculated
by using Eqs. (16a) and (16b), which is well quantized. The Chern
number jumps by +1 or −1 when the Fermi energy crosses one
Landau level.

in Figs. 2(d) and 2(e), we plot the numerical results for
spin Chern numbers, given that the Fermi energy locates
in the bulk gap, i.e., μ = 6 meV shown by the black lines.
Since the increasing of B does not lead to crossing between
the Landau levels originating from the valance band and
those from the conduction band for each spin component,
the spin Chern number does not change, provided that the
Fermi energy locates within the bulk gap. However, the Chern
number changes by 1 or −1 when any Landau level crosses the
Fermi energy. For each spin component, since one Landau level
carries a Chern number ±1, the Chern number of a subsystem
will change by ±1 when one level crosses the Fermi energy.
The phase transitions of the whole system can be determined
by counting in both the changes of Chern numbers for the two
spin components, respectively.

E. Spin Chern numbers and QSHE

Now let us combine the two spin components of h+ and h−
as a whole system together. As shown in Figs. 2(c) and 2(f),
developing from the identical gap at zero field for both spin
components, there is always a finite region which is just the
overlap of their shaded regions, where h+ and h− have opposite
and nonzero Chern numbers. In this region, the total Hall
conductance is zero as a summation of σ±

xy , but the spin Hall
conductance is still quantized as σs = [(n+ − n−)/2] e

8π
=

[sgn(B) + sgn(�)] e
8π

even at a finite magnetic field. In other
words, the spin Hall conductance in the overlapped region in
Figs. 2(c) and 2(f) remains as that in the absence of the field.
This quantum spin Hall conductance σs [or corresponding spin

Chern number ns = (n+ − n−)/2] is well defined only when
there is no coupling between two spin components.

Due to the presence of finite model parameter B (which
guarantees B · � > 0), the envelops separating the conduction
and valence bands for h+ and h− are not parallel to each
other, with the increasing of B. As a result, a topological
quantum phase transition occurs when one Landau level from
the valence band associated with one spin component crosses
with the one from the conduction band associated with another
spin component. After this crossing, the Chern numbers may
no longer be opposite to each other, n+ = −n− for two spin
components, respectively, making the system from QSHE to
other quantum Hall states with both n = n+ + n− = 0 and
ns = n+ − n− = 0.

IV. CRITICAL MAGNETIC FIELD

We have demonstrated that the BHZ model (1) displays a
well-defined QSHE under a finite magnetic fieldB, until a band
crossing between one conduction band and one valence band
from h+ and h−, respectively, happens at a critical Bc. Thus
the magnitude of Bc determines the robustness of the QSHE.
Now we are in a position to determine this critical magnetic
field for various model parameters, with the above knowledge
of Landau levels and Chern numbers at finite B. First of all,
consider Landau levels with the index n = 0. Notice there is
only one Landau level of n = 0 from each spin component:
the one from h+ belongs to the valance band and the one from
h− belongs to the conductance band. They always cross at

B0 = �

e

�

B
. (28)

Therefore, a large ratio between � and B always leads to a large
critical value of magnetic fieldB0. Notice that the gap at � point
is determined by 2�, not the direct gap away from the � point.
For the model parameters for HgTe and InAs/GaSb quantum
wells listed in Table I, we find that the boundary of the QSHE
region is determined by the two levels of n = 0, and obtain
the critical magnetic field Bc = B0 = 9.59 T and 13.16 T,
respectively. Such a relatively strong critical magnetic field is
consistent with recent experimental observation in InAs/GaSb
quantum well [11,12].

In a general case, it is also possible for two Landau levels
with index n > 0 to cross first when increasing magnetic
field. The general procedure to extract Bc is as follows.
It is observed that two definite Landau levels of the same
index n > 0 from different spin components will cross first.
The general condition to determine the band crossing of two
Landau levels with index n > 0 from h− and h+ is given by an
integer nc � 1/

√
w(4 − w) with w = A2/[B�(1 − D2/B2)].

The corresponding magnetic fields at these crossing points are

Bc = �

e

nc

4n2
c − 1

2�

B

(
ζ −

√
ζ 2 − 1 + 1

4n2
c

)
, (29)

where ζ = 1 − w. Since a pair of Landau levels with smaller
n crosses at larger B, the first crossing point Bc by increasing
the magnetic field is given by the maximal integer nc from the
above inequality.
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FIG. 4. (Color online) First crossing magnetic field Bc as a
function of model parameters for InAs/GaSb quantum well when
other parameters are fixed as in Table I. (a) Bc as a function of |A|.
(b) Bc as a function of |B|. Different branches correspond to different
Landau levels (as indexed) that happen to cross first, starting from
low field.

With this process of determining Bc, it is natural to
investigate the optimal model parameters for a large critical
field, as a guidance for future device fabrication. For a
generic group of model parameters, the above process is rather
tedious, because of the strongly nonlinear and discontinuous
dependence ofBc on these parameters. To extract more insights
from Eq. (29), we present the parameter dependences of the
critical magnetic field in Figs. 4 and 5. The critical field is
plotted as a function of the model parameter A in Fig. 4(a).
For a sufficiently large A, the critical field is determined
by the crossing point of two Landau levels of nc = 0, i.e.,
Bc = �

e
�
B

. When A decreases, nc increases, but the critical
field decreases quickly if other parameters remain unchanged.
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FIG. 5. (Color online) Critical magnetic field Bc as a function
of |�|. Different branches correspond to different Landau levels (as
indexed) that happen to cross first.

In Fig. 4(b), the critical field increases quickly when the
parameter B decreases. The critical field reaches a maximal
value Bc = �

e
�
|D| when |B| → |D|. We notice that the critical

field is very sensitive to model parameters B and D, and can
be as large as tens of teslas. As for �, as plotted in Fig. 5,
the first observation is that the critical field increases with �

monotonically for a Landau level crossing with a specific index
nc. Increasing � leads to a band crossing of Landau levels with
a higher index, which corresponds to a larger critical magnetic
field Bc.

V. PERPENDICULAR ZEEMAN FIELD

The Zeeman coupling can destroy the QSHE in an alterna-
tive way. For a perpendicular Zeeman field, the Hamiltonian
has an additional term

H⊥ = V⊥

(
σ0 0

0 −σ0

)
(30)

(σ0 is a 2 × 2 identity matrix) and Sz is still a good quantum
number. The main effect of this type of Zeeman coupling to
the BHZ model is the change of the gap in h±:

�± = � ± V⊥. (31)

No matter what sign of the gap and the Zeeman field, the
Zeeman field always induces a topological transition to a
quantum anomalous Hall effect at |V c

⊥| = |�| according to
the formula of the Chern number. When |V c

⊥| > |�|, one
is zero, while another one is +1 or −1 [22,23]. Thus the
total Hall conductance becomes quantized in units of e2/h.
The Zeeman field V⊥ = g⊥μBB⊥ where μB is the Bohr
magenton. For the parameters given in Table I, we have
g⊥B⊥ = |�|/μB = 172.72 T and 138.22 T for HgTe and
InAs/GaSb, respectively. Although the concrete values of the
g factor are unknown to us yet, it is safe to say that the critical
field is larger that 10 T with a broad range of g⊥ ∈ (0,10).

Of course the combined effect of the Zeeman field and the
orbital motion may change the critical values of the magnetic
field when the g factor is not negligible.

VI. OTHER SPIN-ORBIT COUPLINGS

So far we just consider the case that two spin-component
h+ and h− are decoupled such that the spin Chern numbers are
well defined. When Sz is no longer a good quantum number, the
problem becomes more subtle and delicate [16]. For example,
when the Rashba spin-orbit coupling and the Zeeman coupling
coexist in the Kane-Mele model for QSHE, the helical edge
states may open a tiny subgap [17], which clearly indicates
the breaking down of the robust quantum spin Hall transport.
In this case it is understandable since there is no additional
symmetry to protect the QSHE.

The in-plane Zeeman field may couple two spin compo-
nents such that we couldn’t calculate the spin Chern numbers
as we did in the previous sections. It is still unclear whether
or not there exists a hidden symmetry similar to Sz after
proper transformation such that we could define two “spin” -
dependent Chern numbers or the Zeeman coupling is relatively
negligible. This will be a subject we need to study further. In
the experiment by Du et al. [11] the conductance is quantized
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while the Fermi level sweeps the whole band gap by tuning
the gate voltage. The quantum plateau is also robust up to an
8 T perpendicular field and a 12 T in-plane magnetic field.
Any subgap of the order of 10−3 meV in the edge states
(if exists) should be measurable at low temperatures (tens
mK) by sweeping the Fermi level or the gate voltage. One
possible explanation is that the Rashba-like spin-orbit coupling
between h+ and h− is negligible, and that the edge states are
robust with respect to the Sz symmetry. In this case the Chern
numbers in h+ and h− are still well defined in the presence of
a magnetic field. Another possibility is that the strong disorder
effect suppresses the spin-orbit coupling. In the experiment
the mobility gap and the quantum plateau of conductance
coexist, indicating the occurrence of the Anderson localization
for the bulk electrons. This is a clear signature of topological
Anderson insulator [24,25]. Thus the disorder may stabilize
the QSHE in the system. More studies are expected along this
direction in the future.

In general, when time reversal symmetry is broken, the edge
states may open a subgap even if there is no bulk band gap
closing, which is different from topological quantum phase
transition when the symmetry is invariant. For instance, the

zero end modes in the Su-Schrieffer-Heeger model with the
chirality symmetry move away from the zero energy to the bulk
band when a staggered on-site potential is introduced, which
breaks the chirality symmetry. In this case the bulk gap never
closes even when the end modes move into the bulk bands.
This is a key to understanding the Thouless charge pumping
in the Rice-Mele model [26].

VII. SUMMARY

In short, the quantum spin Hall effect can persist up
to a strong magnetic field when Sz is a good quantum
number. In this case the spin-dependent Chern number is
well defined in each subspace and, according to the bulk-edge
correspondence [27], the helical edge states are robust to an
external field.
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