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Emission mechanism of GeV-quiet soft gamma-ray

pulsars; A case for peculiar geometry?

Y. Wang, C.W. Ng, J. Takata, Gene C.K. Leung and K.S. Cheng

Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong;rubyngcw@connect.hku.hk, takata@hku.hk

ABSTRACT

There is a growing new class of young spin-down powered pulsars called GeV-

quiet soft gamma-ray pulsar; (1) spectral turnover appears around 10MeV,

(2) the X-ray spectra of below 20 keV can be described by power law with

photon index around 1.2 and (3) the light curve in X-ray/soft gamma-ray

bands shows single broad pulse. Their emission properties are distinct from

the normal gamma-ray pulsars, for which the spectral peak in νFν appears

in GeV energy bands and the X-ray/gamma-ray light curves show sharp and

double (or more) peaks. In this paper, we discuss that X-ray/soft gamma-

ray emissions of the GeV-quiet soft gamma-ray pulsars are caused by the

synchrotron radiation of the electron/positron pairs, which are created by

the magnetic pair-creation process near the stellar surface. In our model,

the viewing geometry is crucial factor to discriminate between the normal

gamma-ray pulsars and soft gamma-ray pulsars. Our model suggests that the

difference between the magnetic inclination angle (α) and the Earth viewing

angle (β) of the soft gamma-ray pulsars is small, so that the synchrotron

emissions from the high magnetic field region around the polar cap region

dominates in the observed emissions. Furthermore, the inclination angle of

the soft gamma-ray pulsar is relatively small, α 6 30 degree, and our line

of sight is out of the gamma-ray beam emitted via the curvature radiation

process in the outer gap. We also analysis the six year Fermi data for four

soft gamma-ray pulsars to determine the upper limit of the GeV flux.
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1 INTRODUCTION

The Fermi gamma-ray telescope has discovered about 150 γ-ray pulsars1. The Fermi re-

vealed that the pulsars with high-spin down power emit the GeV gamma-rays and the typical

gamma-ray spectra are described by the single power law plus exponential cut-off function

with a cut-off energy ∼GeV. It is now widely accepted that the GeV gamma-ray emission

region locates in outer magnetosphere near the light cylinder, where the co-rotation speed

with the pulsar becomes the speed of light (Aliu et al. 2008; Abdo et al. 2010b).

The soft gamma-ray pulsar is growing new class of young spin-down powered pulsars that

are observed in the non-thermal X-rays and soft gamma-ray bands (Kuiper & Hermsen, 2013,

2014). These soft gamma-ray pulsars are divided into two groups, that is, GeV-loud (e.g.

Crab and Vela pulsars) and GeV-quiet. Currently, six GeV-quiet soft gamma-ray pulsars

(hereafter, GeV-quiet SGPSRs) have been known; PSRs B1509-58, J1617-5055, J1811-1925,

J1838-0655, J1846-02658 and J1930+1852. Figure 1 summarizes the spin down power, char-

acteristic age and spectral characteristics of the radio pulsars (small-dots), Fermi-LAT

pulsars (filled-boxes) and GeV-quiet SGPSRs (filled-circles). We can see in Figure 1 that

GeV-quiet SGPSRs have a relatively large spin down power and small characteristics age.

Furthermore, we find in Figure 1 that the spectral properties of GeV-quiet SGPSRs are

distinct from those of the Fermi-LAT pulsars, that is, the weaker gamma-ray emissions but

a stronger X-ray emissions comparing with the Fermi-LAT pulsars. In fact, all of GeV-

quiet SGPSRs show (1) no GeV emissions and (2) a single broad light curves in X-ray/soft

gamma-ray bands. The original one, PSR B1509-58, was firstly recognized as the Crab-type

pulsar (Ulmer et al. 1993), since the spectral peak appears in ∼ 1MeV energy, which is

resemble to the spectrum of the Crab pulsar (Kuiper et al. 2001). Unlike the Crab pulsar,

however, the off-set of radio/X-ray peak phases is fairly large (Abdo et al. 2010a). More-

over, the Fermi revealed that PSR B1509-58 is not bright in GeV gamma-ray bands (Abdo

et al. 2010a), which is incompatible with the spectrum of the Crab pulsar, suggesting the

X-ray/gamma-ray emission mechanism of the PSR B1509-58 is different from that of the

Crab pulsar. In addition to PSR B1509-58, PSRs J1617-5055 (Torii et al. 1998), J1811-

1925 (Torii et al. 1997), J1838-0655 (Lin et al. 2009), J1846-0258 (Gotthelf et al. 2000) and

J1930+1852 (Camilo et al. 2002) are classified as GeV-quiet soft gamma-ray pulsars. Except

1 For updated list, see https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-

Ray+Pulsars
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for PSR J1617-5055, all of the soft gamma-ray pulsars are found in the center of supernova

remnants.

The formation of GeV-quiet soft gamma-ray spectra has not been conclusive yet. Zhang &

Cheng (2000) discussed X-ray/gamma-ray emissions from PSR B1509-58 within framework

of the outer gap model and considered that PSR 1509-58 is the Crab-like pulsar, that is, the

X-ray/gamma-ray emissions are created by the synchrotron radiation and inverse-Compton

emissions of the electron and positron pairs created in the outer magnetosphere. The cal-

culated overall spectrum qualitatively agrees with the multi-wavelength data. However, the

light cylinder radius of PSR B1509-69 is so large as to make it very difficult to attenuate all

of the GeV curvature photons emitted from the outer gap, which may be inconsistent with

no detection of GeV gamma-rays by Fermi.

Harding et al. (1997) proposed operation of the photon-splitting process for the formation

of the soft gamma-ray spectrum of PSR B1509-58, whose spin down dipole magnetic field

is Bs ∼ 2 × 1013G. They argued that as the stellar magnetic field approaches the critical

value, Bc ∼ 4.4 × 1013G, the magnetic photon-splitting process plays an important role as

attenuation of the gamma-rays emitted in the polar cap region. They discussed that the

photon-splitting and pair-creation cascade process can explain the position of the spectral

peak ∼10MeV of PSR B1509-58. However, this model will not explain the soft gamma-ray

spectra of PSRs J1617-5055 and PSR J1811-1925, whose inferred magnetic fields are only

Bs ∼ 3 × 1012G and 2 × 1012G, respectively, which are the typical values of the canonical

gamma-ray pulsars.

Wang et al. (2013) proposed a new model for PSR B1509-58 in the framework of the

outer gap accelerator model (Takata et al. 2010; Wang et al. 2010). They discussed that

the Earth viewing angle measured from the rotation axis is smaller than (or close to) the

inclination angle of the magnetic axis. In such a small viewing angle, the outward GeV

emissions, which creates the observed spectra of the Fermi-LAT pulsars, are missed by

the observer, while the inward emissions contribute to the observed emissions. Wang et al.

(2013) argued furthermore that the magnetic pair-creation cascade initiated by the inward

0.1-1GeV emissions near the stellar surface eventually produces the soft spectrum of the PSR

B1509-58. Lin et al. (2009) also proposed that the X-ray emissions from GeV-quiet SGPSR

J1838-0655 is produced by the synchrotron radiation of the pairs, which are produced by

the magnetic pair-creation process of the inward gamma-rays from the outer gap.

Main purpose of this paper is to apply the model of the inward emissions to other
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GeV-quiet SGPSRs, since the member of the GeV-quiet SGPSRs is growing and since no

previous studies have been discussed the emission mechanisms. In particular, we will apply

our model to four GeV-quiet soft gamma-ray pulsars, PSRs J1617-5055, J1811-1925, J1846-

0258 and J1930+1852, for which detailed spectral data in 10-100keV bands were found in

the literature. Although no detection of the emissions above 100keV has been reported, they

share some properties of the emissions with PSR B1509-58; for example, (1) their radio

emissions are dim or quiet, (2) the pulse profile in X-ray/soft gamma-ray bands is described

by a single broad curve, (3) there are no GeV emissions and (4) the broad band spectral

shape suggests the maximum energy flux at MeV energy bands. It is likely therefore that

the emission processes of those GeV-quiet SGPSRs are different from the typical gamma-

ray pulsars. The spin down parameters of those soft gamma-ray pulsars are summarized in

Table 1.

In the paper, we also analyze the six year Fermi data and determine the upper limit

flux of the GeV emissions (section2), because we could not find any published results. We

describe theoretical model in section 3 and compare the calculated spectra and light curves

in section 4. A brief summary is presented in section 5.

2 FERMI DATA ANALYSIS

We used the γ-ray data from the Fermi Large Area Telescope (LAT) to search any gamma-

ray emissions from the four soft gamma-ray pulsars, PSR J1617−5055, PSR J1811−1925,

PSR J1846−0258 and PSR J1930+1852. The data analysis was performed using the Fermi

Science Tools package (v9r32p5) availabe from the Fermi Science Support Center (FSSC)

2. The data we used here were obtained from the reprocessed Fermi Pass 7 database and

the instrumental response function used was the P7REP SOURCE V15 version. We used

the data in the period starting from 2008-08-04 15:43:37 to 2014-05-30 01:27:16 (UTC). We

selected the photons carrying energy between 100 MeV and 100 GeV within 20◦×20◦ regions

of interest (ROI) centered at the positions of the pulsars. To prevent the contamination by

the Earth’s albedo, the events with zenith angle greater than 100◦ or rocking angle greater

than 52◦ were filtered.

Binned likelihood analysis was performed using the gtlike function. To model the back-

ground source contributions, we included all 2-year Fermi Gamma-ray LAT (2FGL) catalog

2 http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
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Figure 1. Characteristics of the canonical pulsars. Small dots, filled boxes and filled circles show the radio pulsars, Fermi-
LAT pulsars and GeV-quiet soft gamma-ray pulsars, respectively. The large filed boxes located at Lsd = 7 × 1036ergs−1 and
4.6× 1038ergs−1 correspond to the Vela and Crab pulsars, respectively. Top left: Spin down power v.s. the characteristic age.
Top right: Spin down power v.s. gamma-ray efficiency. Lγ = 4πD2Fγ , where D is the distance and Fγ is the observed flux
above 100MeV. Bottom left: Spin down power v.s. X-ray efficiency. LX = 4πD2FX , where FX is the observed X-ray flux below
10keV. Bottom right: Spin down power v.s. ηγ/ηX . We extensively used the ATNF pulsar catalog (Manchester et al. 2005) and
the Fermi second catalog of the pulsars (Abdo et al. 2013). We referred the observed X-ray flux of GeV-quiet soft gamma-ray
pulsars from Becker & Aschenbach (20002) for J1617-5055, Torii et al. (1997) for J1811-1925, Lin et al. (2009) for J1838-0655,
Gotthelf et al. (2000) for J1846-0258 and Camilo et al. (2002) for J1930+1852, respectively.

point sources (Nolan et al., 2012) associated with the extended source templates within

20◦from the ROI center. The spectral parameters for sources greater than 10◦from the pul-

sars were kept fixed to the values defined in the catalog. For sources between 6◦ and 10◦

away from the center of ROI, only the spectral indices were kept fixed to the catalog defini-

tions. The galactic diffuse background (gll iem v05.fits) and the isotropic diffuse background

(iso source v05.txt) were also included in the modeling. All of these background modeling

resources are available from the FSSC.

Using the full energy range extracted, 100 MeV to 100 GeV, we modeled the four soft

gamma-ray pulsars as point sources using the simple power law

dN

dE
= N0

(

E

E0

)−Γ

. (1)

The spectral energy distributions (SEDs) under 1 GeV were calculated using the modeled
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PSRs P Lsd Bs D α β fgap
(ms) (1036ergs−1) (1012G) (kpc) (degree) (degree)

B1509-58 151 17 15 4.4 30 15 0.3
J1617-5055 69 16 3.1 6.5 15 25 0.21
J1811-1925 65 6.4 1.7 5 10 35 0.2

J1838-0655 65 6.4 1.7 6.6 - - -
J1846-0258 326 8.1 48 5.8 10 35 0.5
J1930+1852 136 12 10 5 20 41 0.28

Table 1. GeV-quiet soft gamma-ray pulsars. The second (P ), third (Lsd) and fourth (Bs) columns are rotation period, spin
down power and surface dipole magnetic field, respectively. The fifth (D) is the distance to the source and is used to estimate
the observed luminosity in Figure 1. The sixth (α), seven (β) and eight (fgap) are the magnetic inclination angle, Earth viewing
angle and the fractional gap thickness, respectively, inferred from the fitting of the observations. The fitting result for PSR
B1509-68 was taken from Wang et al. (2013). We did not fit PSR J1838-0655, since no point of the spectral data for the hard
X-ray emissions (>10keV) from the pulsar have not been published.

PSRs Emission in 100 MeV – 316 MeV Emission in 316 MeV – 1 GeV

(erg cm−2 s−1) (erg cm−2 s−1)

J1617−5055 <2.5 ×10−11 <9.1 ×10−12

J1811−1925 <3.7 ×10−12 <4.9 ×10−12

J1846−0258 <4.4 ×10−11 <1.0 ×10−11

J1930+1852 <1.9 ×10−11 <5.7 ×10−12

Table 2. Upper limits for the pulsars PSR J1617−5055, PSR J1811−1925, PSR J1846−0258 and PSR J1930+1852 in the
energy bands: 100 MeV – 316 MeV and 316 MeV – 1 GeV.

power law with all the spectral indices in the model kept fixed to the best-fit values. Two

equally divided energy bins, 100 MeV to 316 MeV and 316 MeV to 1 GeV, were used in this

analysis.

Figure 2 shows four test-statistic (TS) maps created in the 4◦×4◦ regions centered at

the four pulsars with energy ranged from 100 MeV to 316 MeV. The TS values indicated

that there is no detection by the Fermi-LAT in this energy band at the locations of the soft

gamma-ray pulsars. Only upper limits for the emissions under GeV could be determined

from the LAT data. The values were tabulated in Table 2. It is noted that a significant

source is detected by Fermi-LAT above GeV range at the position of PSR J1617−5055.

Figure 3 shows a TS map of PSR J1617−5055 with energy ranged from 100 MeV to 100

GeV and TS ≃ 100 (10σ) at the central position. This detection was reported by Xing et al.

(2014) and identified as the Fermi γ-ray counterpart to the supernova remnant RCW 103.

3 THEORETICAL MODEL

In our model, we suggest the emissions from the GeV-quiet soft gamma-ray pulsars are

produced via synchrotron radiation of the pairs, which are created by the interaction of

the inward gamma-rays and the strong magnetic field near the polar cap region. Figure 4
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Figure 2. 100 MeV to 316 MeV TS maps in the 4◦×4◦ regions centered at (a) PSR J1617−5055, (b) PSR J1811−1925, (c)
PSR J1846−0258 and (d) PSR J1930+1852.

shows schematic picture for the inward gamma-rays emissions and subsequent pair-creation

process and synchrotron radiation process. We emphasize that the viewing geometry is a

crucial factor to differentiate between the typical gamma-ray pulsars and soft gamma-ray

pulsars. Our model expects that millisecond pulsar does not show GeV-quiet soft gamma-ray

spectrum, since its dipole magnetic field Bs ∼ 108−9G is too small to operate the magnetic

pair-creation process (except for very close to stellar surface, where the stronger multi-pole

magnetic field may dominate the dipole field). Since a detail method of the calculation was

described by Wang et al. (2013), we briefly mention the guideline of the model.
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Figure 3. TS-map for PSR J1617−5055 in energy range from 100 MeV to 100 GeV.

Figure 4. Schematic view of the inward emissions from the outer gap accelerator. This figure is from Wang et al. (2013).
Primary particles accelerated in the gap emit the gamma-ray photons via the curvature radiation process in the direction of
its motion, which comprises of the motion along the magnetic field line and the co-rotation motion. Incoming particles emit
the 100MeV-1GeV gamma-rays below the null charge surface. The 100MeV-1GeV gamma-rays emitted near the stellar surface
interacts with the strong magnetic field and produce new pairs. The gyration motion of the pairs with an infinite pitch angle
produces hard X-ray/soft gamma-rays via the synchrotron radiation, which covers a wider sky area than the curvature radiation
of the primary particles

3.1 Inward emissions of the outer gap

In the outer gap model, the charged particles are accelerated by the electric field parallel

to the magnetic field, and emit the GeV gamma-rays via the curvature radiation process.

Takata et al. (2008) argued that the outer gap accelerator produces outward and inward

gamma-rays, which are produced by the outgoing particles and incoming particles acceler-



GeV-quiet soft gamma-ray pulsars 9

ated in the gap; for the magnetic inclination angle smaller than 90 degree, the outgoing and

incoming particles are positrons and electrons, respectively. In the outer gap, since (i) the

strong acceleration region extends between the null charge surface of the Goldreich-Julian

charge density and the light cylinder and (ii) most of pairs are produced around the null

charge surface (Cheng et al. 2000), the outgoing particles are accelerated by almost full

potential drop in the gap, while the incoming particles feel only potential drop between the

inner boundary and the pair-creation position. Hence, it is expected that the luminosity of

the outward propagating gamma-rays are about one order of magnitude larger than that

of inward propagating gamma-rays, suggesting the Fermi has preferentially detected the

outward emissions of the outer gap. Within the framework of the outer gap model, the

gamma-ray luminosity can be written as

Lγ ∼ IgapVgap, (2)

where Igap is total current in the outer gap and Vgap is electric potential drop along the

magnetic field line. As aforementioned pair-creation region in the outer gap accelerator, the

outgoing particles are accelerated by almost full potential drop in the gap, which can be

estimated as

V out
gap ∼ f 2

gapBlcRlc, (3)

where Rlc = Pc/2π is the light cylinder radius, Blc is the magnetic field at the light cylinder,

and fgap, which takes a value of ∼ 0.2 − 0.3, is the ratio of the gap thickness and the light

cylinder radius at the light cylinder. For the inward emissions, the incoming particles are

accelerated with a potential of V in
gap ∼ 0.1V out

gap .

In the outer gap magnetosphere, the charge particles are accelerated by the electric field

along the magnetic field line E|| ∼ Vgap/Rlc and emit gamma-rays through the curvature

radiation process. Assuming balance between the electric force and radiation drag force, the

saturated Lorentz factor is proportional to Γ ∝ V 1/4
gap . As a result, the typical energy of the

curvature radiation is proportional to Ec ∝ Γ3 ∝ V 3/4
gap . Since V

in
gap ∼ 0.1V out

gap , the energy

of the curvature radiation of inward emissions is a factor of ∼ 5 smaller than that of the

outward emissions and it typically becomes 0.1-1GeV.

For the outer gap accelerator, the strong acceleration region extends beyond the null

charge surface, which is defined by surface of Ω · B = 0. It has been proposed that the

active outer gap with the electric current can be extended “below” null charge surface

(Takata et al. 2004; Hirotani 2006)), but the accelerating electric field below the null charge
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surface is significantly reduced by the electron and positron pairs with a very weak field. We

approximate the electric structure below the null charge surface as

E||(r < rnull) =
(r/rin)

2 − 1

(rnull/rin)2 − 1
E||,null, (4)

where E||,null is the electric field strength at the null charge surface and is given by our three-

dimensional two-layer structure model (Wang et al. 2011), and rnull is the radial distance to

the null charge surface, which is a function of the inclination angle and azimuth angle. In

addition, rin is the radial distance to the inner boundary of the outer gap and is set at 20

stellar radius.

Near and below the inner boundary, the incoming particles loose their energy via the

curvature radiation process. When the Lorentz factor of the incoming particles drops low

enough, the curvature energy loss time scale becomes comparable to the time scale of the

particle’s movement to the stellar surface. In such a case, we can show that the energy of the

curvature photon is 9mec
2/8αf ∼100 MeV, where α is the fine structure constant (Takata et

al. 2010). Hence, we expect that the incoming particles emit 0.1-1GeV photons between the

null charge surface and the stellar surface. The gamma-ray photons emitted below the null

charge surface may pass through the strong magnetic field region near the stellar surface

and may initiate magnetic pair-creation cascade.

3.2 Magnetic pair-creation cascade

The typical cut-off energy 0.1-1GeV in the spectrum of the inward emissions will be still

higher than the spectral cut-off energy (∼1-10MeV) of the GeV-quiet SGPSRs; for example,

the original soft gamma-ray pulsar, PSR B1509-58, shows a spectral cut-off at ∼ 5MeV. To

explain the position of the spectral cut-off of PSR B1509-58, we simulate the pair-creation

cascades of the inward gamma-ray emissions (Wang et al. 2013). If the inward propagating

gamma-rays emitted below the null charge surface pass through near the stellar surface, they

may be absorbed by the magnetic field and be converted into electron and positron pairs

(magnetic pair-creation process). The mean free path of the magnetic pair-creation may be

written as (Erber 1966)

ℓ =
4.4

(e2/h̄c)

h̄

mec

Bc

B⊥
exp

(

4

3χ

)

, (5)

where χ = h̄ωB⊥/(2mec
2Bc) andB⊥ = B sin θp with θp being the angle between the magnetic

field direction and propagating direction of the photon and Bc = 4.4× 1013G. We calculate
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the optical depth τopt(si) =
∫ si
si−1

ds/ℓ(s) (i = 1, 2, 3..), where s0 = 0 corresponds to the

position of the emitted point. We determine the pair-creation position si from the condition

τ(si+1)− τ(si) = 0.1 and calculate the number of created pairs from the equation δN(si) =

N0{exp[−τ(si−1)]− exp[−τ(si)]}, where N0 is the emitted gamma-rays in the gap. We also

taken into account the pair-creation process of the gamma-rays with the X-rays.

3.3 Synchrotron emissions from new pairs

The created pairs have a pitch angle θp and loose their-energy via the synchrotron radiation.

We solve the evolution of the Lorentz factor (γ) of the pairs with the equations of

dP||

dt
= −

2e4B2γ2 sin2 θp
3m2c4

cos θp (6)

and

dP⊥

dt
= −

2e4B2γ2 sin2 θp
3m2c4

sin θp, (7)

where P|| = mecγ cos θp and P⊥ = mecγ sin θp. Since the magnetic field and Lorentz factor

of the particle at the pair-creation position are B⊥ = 2mec
2Bc/(χEγ) and γ = Eγ/2mec

2,

respectively, the maximum energy of the synchrotron radiation of the new born pairs becomes

as

Esyn,max ∼
3h̄γ2eB⊥

2mec
∼

3Eγ

4χ
∼ 38

(

Eγ

0.5GeV

)(

χ

0.1

)−1

MeV, (8)

suggesting the spectrum of the synchrotron radiations of the pairs, which are produced by

the magnetic pair-creation process, has a spectral turn over around 10MeV. The position

of this spectral turnover can explain that of the GeV-quiet SGPSRs. Therefore, we suggest

that the observed high-energy emissions from GeV-quiet SGPSRs are produced through

the synchrotron radiation occurred near the stellar surface. We also take into account the

magnetic pair-creation process of the synchrotron photons, which was ignored in Wang et

al. (2013).

We take into account the effects of the pitch angle and the gyration motion on the

emission direction of synchrotron radiation. The particle motion is expressed by sum of the

motion along the magnetic field line, gyration motion and co-rotation motion. Taking z-axis

along the rotation axis, the particle motion is calculated from (Takata et al. 2007; Wang et

al. 2013)

v = λvpv
′
syn/|v

′
syn|+Ω× r, (9)
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where vp is calculated from the condition |v| = c and v′
syn is given by

v′syn,x = B̂x + tan θp(ux cosT + vx sinT )

v′syn,y = B̂y + tan θp(uy cosT + vy sin T ), (10)

v′syn,z = B̂z + tan θp(uz cosT + vz sin T )

where θp is the pitch angle of the created pairs and T is the phase of the gyration motion.

In the equation above, B̂ = B/|B|, u = [By/(B
2
x + B2

y)]
1/2,−Bx/(B

2
x + B2

y)
1/2, 0) and v =

(B× u)/|B× u|. In addition, λ represents the direction of the particle motion projected to

the magnetic field line, it takes λ = 1 for θp 6 90◦ an λ = −1 for θp > 90◦.

The Earth viewing angle (β) measured from the rotation axis and the pulse phase ψ for

a synchrotron (or curvature) photon can be calculated from

cos β =
vz
v

(11)

and

ψ = − cos−1(vx/
√

v2x + v2y)−
r · v

vRlc

, (12)

respectively, where r is the vector to the radiation point. For each viewing angle β, we calcu-

late the phase-averaged spectrum and compare the result with the observations (section 4).

The synchrotron emissions from the pairs (θp 6= 0) with the gyration motion covers a

wider sky area than the curvature radiation of the primary particles (θp = 0), which is

emitted along the magnetic field line. Wang et al. (2013) discussed the evolution of the

X-ray/gamma-ray spectrum for the different viewing geometry: Fixing magnetic inclination

angle at α = 20degree, the outward curvature emissions dominate the inward emissions and

the spectrum extends up to several GeV if the viewing angle is β ∼ 70−90 degree. For mildly

viewing angle β ∼ 50 degree, the inward curvature emissions and subsequent synchrotron

radiation of the pairs can contribute to the spectrum. For small inclination angle β ∼ α

or β < α, only synchrotron radiation of the pairs created by the magnetic pair-creation

contributes to the observations, and the spectral peak in νFν appears at around ∼1MeV,

which can explain the spectral properties of GeV-quiet SGPSRs. Hence, our model suggests

that the GeV-quiet SGPSR is a peculiar case of the viewing geometry and it has a relatively

small viewing angle and inclination angle comparing with the normal gamma-ray pulsars.

In the present calculation, we apply the rotating dipole magnetic field in vacuum (Cheng

et al. 2000). Force-free magnetosphere has been investigated for magnetic field and current

structure in the pulsar magnetosphere (Contopoulos et al. 1999; Spitkovsky 2006), and
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provides a distinct GeV pulse profile from the vacuum dipole field (Bai & Spitkovsky 2010).

More realistic pulsar magnetosphere will be between the vacuum dipole field and the fore-

free field (e.g. Li et al. 2012; Kalapotharakos et al. 2012). In the present calculation, however,

since the emission regions in X-ray/soft gamma-ray bands are near the neutron star surface,

where the force-free field and vacuum dipole field may be close to each other, the rotating

vacuum dipole field may provide a good approximation to discuss the pulse profile.

4 RESULTS

To fit the observed spectrum, main model parameters are the fractional gap thickness fgap,

the magnetic inclination angle α and the Earth viewing angle β. The inclination angle and

the viewing angle of a pulsar is sometimes constrained by rotating vector model, which fits

the observations of the radio polarization (Radhakrishnan & Cooke 1969). For instance, the

fitting of the original soft gamma-ray pulsar, PSR B1509-58, suggests the inclination angle

of α < 60 degree (Crawford et al. 2001). The geometrical model of the pulsar wind nebula is

also used to constrain the viewing geometry of the pulsar (Gaensler et al, 2002; Ng & Romani

2008). Using CHANDRA data, for example, Lu et al. (2002) found clear torus structure of the

pulsar wind nebula surrounding the soft gamma-ray pulsar PSR B1930+1852 and suggested

the Earth viewing angle of β = 41 degree. We emphasize that within the framework of

our model, the viewing geometry that explains (1) the softness of the spectra, (2) it’s flux

level and (3) the single peak in the light curve of the GeV-quiet soft gamma-ray pulsars are

constrained in a narrow range of the parameters. In Table 1, we tabulate the best fitting

parameters of the inclination angle and the Earth viewing angle for four GeV-quiet SGPSRs.

4.1 J1617-5055

The 69 ms spin-down powered pulsar PSR J1617-5055 was discovered by the X-ray observa-

tions (Torii et al. 1998, Garmire et al. 1999; Becker & Aschenbach 20002; Kargaltsev et al.

2009) with the radio pulsation founded shortly afterwards (Kaspi et al. 1998). Soft gamma-

ray emissions at ∼ 100keV bands were discovered by INTEGRAL (Landi et al. 2007). The

timing analyses show that the spin down dipole magnetic field is Bs ∼ 3×1013Gauss and the

characteristic age is τa ∼ 8.1kyr. The dispersion measure gives the distance to the pulsar of

d ∼ 6.1−6.9kpc. The X-ray spectrum below ∼ 10keV is fitted by a single power law function

with a photon index of p ∼ 1.4, and there is a spectral break around 10keV (Torii et al.
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Figure 5. The spectrum (left) and X-ray light curve of PSR J1617-5055. The solid line in the left panel and the grey histogram
in the right panel show the calculated spectrum and the light curve, respectively. The results are for the inclination angle of
α = 15 degree and the Earth viewing angle of β = 25degree. For the observed flux, the data were taken from Landie et al.
(2007) for BeppoSAX and INTEGRAL and from Kuiper and Hermsen (2014) for RXTE. The upper limit of Fermi data were
determined by the this study. For the light curve, the data was taken from Becker and Aschenback (2002).

1998; Becker and Aschenback 2002). The inferred X-ray conversion efficiency in 0.5-10keV

bands is LX/Ė ∼ 1.4×10−3 for a distance of d = 6kpc (Becker and Aschenback 2002). These

X-ray properties are common among the GeV-quiet soft gamma-ray pulsar. Both the X-ray

and radio pule profiles of PSR J1617-5055 show a single peak, but absolute phase difference

between the X-ray and radio peaks has not been known.

Figure 5 compares the calculated spectrum (left panel, solid line) and X-ray light curve

(right panel, grey histogram) with the observations; the phase 0 (and 0.5) in Figure 5 corre-

sponds to the phase at which the magnetic axis points towards the Earth. We assumed the

inclination angle of α = 15 degree and the Earth viewing angle measured from the rotation

axis of β = 25 degree. In the present scenario, we have argued that the emissions from the

GeV-quiet SGPSRs are created by the synchrotron radiation process of the pairs, which

are produced by the interaction of the inwardly emitted GeV gamma-rays and the strong

magnetic field near the pulsar. Since the pairs are mainly produced above the polar cap,

the pulse peak with a strong the synchrotron emission appears if the line of sight cuts near

the polar cap region. Hence it is required the condition that the earth viewing angle is not

significantly shifted from the magnetic inclination angle. Furthermore, a small inclination

angle is required to avoid the detection of curvature radiation (GeV emissions) from the

outer gap.
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Figure 6. Same as with Figure 5, but for PSR J1811-1925. The model calculation is result for α = 10degree and β = 35degree,
respectively. For the observed flux, the data were taken from Dean et al. (2008) for Chandra and INTEGRAL and from Kuiper
and Hermsen (2014) for RXTE. For the light curve, the data were taken from Gavriil et al. (2004). Although the pulsed
component above 10keV was not discussed in Dean et al. (2008), it may dominate the nebula component above 10keV (c.f.
Figure 2 in Dean et al. 2008).

4.2 J1811-1925

The 65-ms pulsar PSR J1811-1925 at the center of G11.2-0.3 was discovered by ASCA

observations (Torii et al. 1997; Kaspi et al. 2001). This pulsar has not been detected in

the radio band (Crawford et al 1998). The X-ray timing analysis suggests that the spin

down dipole magnetic field is Bs ∼ 2 × 1012G and spin-down age is τ ∼ 24kyr (Torii et al.

1999). However, the CHANDRA observation combined with Very Large Array observations

(Roberts et al. 2003) suggests that the reverse shock of SNR has not yet reached the PWN,

which indicates that the system is about 2000 years old, which is consistent with the historical

record of supernova in A.D. 386 (Clark & Stephenson 1977). The distance to the pulsar is

d ∼ 5kpc as inferred from HI measurements (Becker et al. 1985; Green et al. 1988). Figure 6

compares the calculated spectrum (left panel, solid line) and X-ray light curve (right panel,

grey histogram) with the observations. We assumed the inclination angle of α = 10degree

and the Earth viewing angle measured from the rotation axis of β = 35degree.

4.3 J1846-0258

The 326 ms pulsar PSR J1846-0258 (also known as AX J1846.4-0258) was discovered by Got-

thelf et al. (2000) in the X-ray bands, and is at the center of SNR Kes 75 (c.f. Kesteven 1968;

Helfand et al. 2003; Molkov et al. 2004; Bird et al. 2007; Kumar & Safi-Harb 2008; McBride

et al. 2008; Ng et al. 2008). No radio emission has been observed from PSR J1846-0258



16 Wang et al.

10
-7

10
-6

10
-5

10
-4

10
-3

E
2
F
(
E
)
  
(
M

e
V

/
c
m

2
/
s
)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

E (MeV)

 RXTE PCA

 RXTE HEXTE

 INTEGRAL
FERMI

2.01.51.00.50.0

2.9 - 8.3 keV

8.3 - 16.7 keV

16.7 - 32.5 keV

33.1 - 60.1 keV

60 - 150 keV

Figure 7. Same as with Figure 5, but for PSR J1846-0258. The model calculation is result for α = 10degree and β = 35degree,
respectively. For the observed flux and light curve in X-ray/soft gamma-ray bands, the data were taken from Kuiper and
Hermsen (2014).

(Archibald et al. 2008), but the X-ray timing analysis reveals the surface dipole magnetic

field of Bs ∼ 4.8 × 1013Gauss and the characteristics age of τ ∼ 728yr. It is thought that

PSR 18460-258 is a transition object between rotation-powered pulsar and magnetically

powered pulsar (i.e. magnetar). In fact, the pulsar showed a magnetar-like X-ray outburst

accompanied by a large glitch in 2006 (Gavriil eta l. 2008).

Parent et al. (2011) derived the upper limit of the pulsed gamma-ray flux at 3 ×

10−11ergcm−2s−1, which will be consistent with the result of our Fermi data analysis

(c.f. Table 2 and Figure 7). The distance to the pulsar is the controversial in the range

of d = 5− 19kpc (Becker and Helfand 1984; Leahy and Tian 2008; Su et al. 2009). It is also

known that the pulsar is embedded in a pulsar wind nebula (Helfand et al. 2003; McBride

et al. 2008). Modeling of the torus in the PWN suggests a line of sight angle β ∼ 60 degree

(Ng & Romani 2008). In our model, on the other hand, we require a smaller viewing angle

β ∼ 35 degree with α ∼ 10 degree to reproduce the observed emission properties.

Figure 7 compares the calculated spectrum (left panel, solid line) and X-ray light curve

(right panel, grey histogram) with the observations. In the figure, we show the light curves

in the different energy bands. The observations suggest a single broad peak in X-ray/soft

gamma-ray bands, which can be explained by the present model.
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Figure 8. Same as with Figure 5, but for PSR J1930+1852. The model calculation is result for α = 20degree and β = 41degree,
respectively. The data were taken from Kuiper and Hermsen (2014) for observed X-ray flux and from Lu et al. (2007) for the
X-ray light curve.

4.4 J1930+1852

The 136ms radio pulsar PSR J1930+1852 was found in SNR G54.1+0.3 by Camilo et al.

(2002). Both the X-ray and radio pule profiles of PSR J1930+1852 show a single peak,

but absolute phase difference between the X-ray and radio peaks has not been known. The

timing analyses show that the spin down age of this pulsar is 2.9kyr, and the surface dipole

magnetic field is Bs ∼ 1 × 1013G. Lu et al. (2002) suggested that the distance of SNR

G54.1+0.3 is about d ∼ 5kpc by measuring the X-ray absorption column density. PSR

J1930+1852 is surrounded by a PWN, which has clear torus and jet structure. The ratio

between the observed semi-major and semi-minor axes of the torus of PWN suggests that

the Earth viewing angle inferred from the geometrical model is β ∼ 41degree (Lu et al.

2002), which is used in the calculation. Figure 8 compares the calculated spectrum (left

panel, solid line) and X-ray light curve (right panel, grey histogram) with the observations.

We assumed the inclination angle of α = 20degree and the Earth viewing angle measured

from the rotation axis of β = 41degree.

5 DISCUSSION AND SUMMARY

The present model suggests that the observed X-ray/soft gamma-rays are the synchrotron

emissions from the high magnetic field region near the stellar surface, and the difference

between the magnetic inclination angle and the Earth viewing angle is small, say |α− β| 6



18 Wang et al.

30 degree. To avoid the GeV emissions from the outer gap, furthermore, the inclination angle

is required to be small, say α 6 30 degree. We emphasize that the GeV-quit soft gamma-ray

pulsars actually emit outgoing GeV gamma-rays from the outer gap, which make gamma-

ray spectra of Fermi-LAT pulsars, but our line of sight is out of emission cone due to the

smaller magnetic inclination and a smaller Earth viewing angle. For the Earth viewing angle

is β ∼ 40 − 50 degree, the synchrotron emissions from the incoming pairs and the GeV

emissions of out going particles can be observed, as we described in section 3. This may be

the case for GeV-loud soft gamma-ray pulsars PSRs J0205+6449 and J2229+6114, which

show a very soft GeV spectra and the smaller ratio of the GeV fluxes and X-ray fluxes

comparing with the typical gamma-ray pulsars (e.g. Vela pulsar, Kuiper and Hermsen 2013,

2014). For the viewing angle of β ∼ 70 − 90 degree, the outward GeV emissions makes a

spectral peak in νFν at several GeV. Within the framework of our scenario, therefore, the

viewing geometry is crucial factor to discriminate between the normal gamma-ray pulsars

and soft gamma-ray pulsars, and the GeV-quiet SGPSR is peculiar case of the viewing

geometry.

The GeV-quiet SGPSRs are relatively young and have higher-spin down powers compared

with Fermi-LAT pulsars, as Figure 1 shows; the typical characteristic age and the spin down

power of the GeV-quiet SGPSRs are τs ∼ 103−4yr and Lsd ∼ 0.5−1×1037erg s−1. With the

current study, it is not obvious the reason why GeV-quiet SGPSRs with the characteristic

age of τs > 104yr and Lsd < 5×1036ergs−1 have not yet found, while many typical gamma-ray

pulsars with those spin down parameters have been found by the Fermi. However, we expect

that with the appropriate viewing geometry, the pulsars with higher-surface magnetic field

and/or high-spin down pulsars are preferentially detected as the GeV-quiet SGPSRs. For the

future study, therefore, we will study the evolution of spectrum in X-ray/gamma-ray bands

with the viewing geometry, spin down parameters etc. and will discuss the population of the

GeV-quiet soft gamma-ray pulsar, GeV-loud soft gamma-ray pulsars and typical gamma-ray

pulsars. The linking among these three group of the gamma-ray pulsars with provide us a

comprehensive picture of the high-energy pulsars.
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