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Abstract 

 

 Current strategies of computational crystal plasticity that focus on individual 

atoms or dislocations are impractical for real-scale, large-strain problems even with 

today’s computing power. Dislocation-density based approaches are a way forward 

but a critical issue to address is a realistic description of the interactions between 

dislocations. In this paper, a new scheme for computational dynamics of 

dislocation-density functions is proposed, which takes full consideration of the mutual 

elastic interactions between dislocations based on the Hirth-Lothe formulation. Other 

features considered include (i) the continuity nature of the movements of dislocation 

densities, (ii) forest hardening, (iii) generation according to high spatial gradients in 

dislocation densities, and (iv) annihilation. Numerical implementation by the 

finite-volume method, which is well suited for flow problems with high gradients, is 

discussed. Numerical examples performed for a single-crystal aluminum model show 

typical strength anisotropy behavior comparable to experimental observations. 

Furthermore, a detailed case study on small-scale crystal plasticity successfully 

captures a number of key experimental features, including power-law relation 

between strength and size, low dislocation storage and jerky deformation.  

 

Keywords: Crystal plasticity; dislocations; dislocation-density functions; stress-strain 

behavior; size effect 
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1. Introduction 

 The concept of crystal dislocations has been coined for over a century, with a 

huge knowledge base on how single dislocations behave, or how they interact in 

individual events, gathered for a wide range of crystalline materials. On the other 

hand, although crystal plasticity has to take place in units of dislocations, decades of 

experience have witnessed the impracticalities involved in computing all the 

participating dislocations, given that they can quickly multiply to very large quantities 

during plastic deformation. The introduction of atomistic molecular dynamics (MD) 

simulation in the 1960’s has allowed the cores of dislocations to be studied (Vitek, 

Perrin and Bowen 1970; Vitek 1974). However, despite computer speeds are faster 

than ever before, and new rare-event sampling and other computational 

methodologies have been developed, MD simulations are still limited to nano- space 

and time scales which are far too small compared to most engineering applications of 

interest, and it is hard to see how such a bottleneck can be circumvented in the future. 

In the 1990’s, discrete dislocation dynamics (DDD) emerged as a dislocation 

plasticity simulation technique which deals with the evolution of individual 

dislocation lines according to their laws of motion (Amodeo and Ghoneim 1990; 

Devincre and Condat 1992; Devincre and Kubin 1997; Bulatov et al. 1998; Bulatov 

and Cai 2006). In this approach, however, each curved dislocation line is discretized 

into short linear segments and very expensive calculation is performed on each of 

these to predict their trajectories according to their very complicated line-tension and 

mutual interaction effects. Therefore, although promising results have been 

demonstrated for situations with relative small quantities of dislocations, this method 

is impractical for higher dislocation quantities due to the amount of computation 

involved. DDD is therefore self-limiting at increasing strains, and is not practical for 

situations where patterns of dense dislocations develop (Walgraef and Aifantis 1985; 

Aifantis 1986; Hähner 1996; Ngan 2005; Pontes, Walgraef and Aifantis 2006), 

although observations from DDD simulations can be fed into a continuum crystal 

plasticity model as a multi-scale approach, to predict more realistic behaviors 

(Devincre, Hoc and Kubin 2008). 

In stark contrast with these approaches which emphasize on individual atoms or 

dislocation segments, a number of researchers have advocated the use of a modelling 

strategy that focuses on dislocation density (Walgraef and Aifantis 1985; Groma 1997; 

Acharya 2001; Arsenlis et al. 2004; Zhou and Sun 2004; Evers, Brekelmans and 

Geers 2004; Yefimov and Van der Giessen 2005; Pontes, Walgraef and Aifantis 2006; 

Ma, Roters and Raabe 2006; Hochrainer, Zaiser and Gumbsch 2007; Lee et al. 2010; 

Watanabe et al., 2010; Alankar, Eisenlohr and Raabe 2011; Hirschberger et al. 2011; 

Bargmann, Svendsen and Ekh 2011; Liu et al., 2011; Shanthraj and Zikry 2012; 
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Engels, Ma and Hartmaier 2012; Aghababaei and Joshi 2013; Li et al. 2013). Unlike 

DDD which becomes handicapped at high strains, such a strategy would be well 

suited for large-strain problems with high quantities of dislocations, since any amount 

of dislocations can still be represented a dislocation density. The earlier group of 

dislocation-density models deals with discrete categories of dislocation density, such 

as mobile vs immobile, cell-interior vs cell-wall, edge vs screw, etc. (Roters, Raabe 

and Gottstein 2000; Prasad, Goerdeler and Gottstein 2005; Ma, Roters and Raabe 

2006; Alankar, Eisenlohr and Raabe 2011; Vinogradov, Yasnikov and Estrin 2012), 

but without considering the field nature of the dislocation densities and the 

conservative nature of their motion (Walgraef and Aifantis 1985). A more 

sophisticated group of approach focuses primarily on the kinematics or dynamics of 

slip systems (Asaro and Rice 1977) and their relationships to densities of dislocations. 

Typically, the shear of slip systems against a critical resolved shear stress governed by 

certain basic dislocation-level physics, such as Taylor’s forest hardening, is 

considered (Busso et al. 2000; Dunne et al. 2007; Alankar, Mastorakos and Field 2009; 

Dunne et al. 2012; Cordero et al. 2012). Other models have focused on dislocation 

densities as continuous functions of space, with conservation including generation and 

annihilation duly taken into account (Acharya 2001; Arsenlis et al. 2004; Zhou and 

Sun 2004; Evers, Brekelmans and Geers 2004; Yefimov and Van der Giessen 2005; 

Pontes, Walgraef and Aifantis 2006; Hochrainer, Zaiser and Gumbsch 2007; 

Hirschberger et al. 2011; Bargmann, Svendsen and Ekh 2011; Puri, Das and Acharya 

2011). These models are based on crystal kinematics rules which govern the 

relationship between the evolution of geometrically necessary dislocations (GNDs) 

and the rate of change of the crystal shape (Asaro and Rice 1977). In doing so, the 

statistically stored dislocations (SSDs) are modeled much less rigorously, and so the 

interactions between dislocations and the internal stresses are not completely 

described. 

Still within the framework of crystal kinematics, other models have featured 

improved descriptions of the internal stresses that resist slip. In the “field dislocation 

mechanics” (FDM) and “phenomenological mesoscale field dislocation mechanics” 

(PMFDM) models developed by Acharya and co-workers (Acharya 2001; Taupin et al. 

2008; Puri, Das and Acharya 2011), the crystal kinematics laws for the GND 

evolution are modified to include the effects of lattice incompatibility in the plastic 

and elastic deformation matrices due to the presence of the dislocations themselves. 

The evolution of the GNDs is coupled to that of SSDs, the motion of which is 

modeled in terms of a phenomenological back-stress interaction resistance which 

involves empirical hardening and recovery coefficients (Puri, Das and Acharya 2011). 

The models by Yefimov and Giessen (2005) and Hirschberger et al. (2011) also 
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involve a similar empirical back stress resistance, which lacks details of the 

long-range elastic interactions between dislocations. In the model by Arsenlis et al. 

(2004), a configurational resistance is also involved which is an empirical back stress 

pertinent only to elastic interactions in 2-D dislocation arrays (Groma et al. 2003). In 

the recent approach by Bertin, Capolungo and Beyerlein (2013), the coupled 

evolutions of GNDs and SSDs are also considered, and for the SSDs, a virtual loop 

concept is involved to sample interactions for different line orientations.  

Another line of development to capture realistic dislocation interactions was 

made by Hochrainer and co-workers (Hochrainer, Zaiser and Gumbsch 2007; Zaiser 

et al. 2007; Sandfeld et al. 2010; Sandfeld et al. 2011). In their continuum dislocation 

dynamics (CDD) theory, the curvature and line-tension effects of dislocations are 

emphasized as the main factors contributing to the internal stress, in addition to 

Taylor’s interactions. The inclusion of the dislocation curvature requires its evolution 

to be modeled as a coupled problem with the evolution of the dislocation density, and 

this inevitably greatly increases the computational efforts needed (Sandfeld et al. 

2011). For this reason, successful numerical implementation has been limited to 

situations involving crude discretization of the line-direction space (Zaiser et al. 2007), 

or very simple slip-system configurations (Zaiser et al. 2007; Sandfeld et al. 2010; 

Sandfeld et al. 2011). While this approach is elegant, efficient numerical 

implementation algorithms are yet to be developed for problems involving realistic 

dislocation microstructures. Moreover, this approach highlights the “self” line tension 

and Taylor hardening as the only internal stresses (Zaiser et al. 2007; Sandfeld et al. 

2011), while the long-range elastic interactions between dislocation groups are not 

modelled. 

 The above summary points to the fact that an accurate description of the mutual 

elastic interactions between dislocations has been a critical issue in developing 

realistic dislocation-density models. In this paper, we propose a new formulation 

which fully considers such mutual elastic interactions between 3-D dislocation 

densities, in an exact manner without involving any ad hoc back-stress assumption as 

in some of the previous models. This is made possible by generalizing the elastic 

interactions between dislocation segments (Hirth and Lothe 1992) for dislocation 

densities, and reducing the line-integral formulation involved into an algebraic form 

comprising only elementary functions which are straightforward enough for efficient 

numerical implementation. Also, instead of separating the dislocation population into 

GNDs and SSDs as in the previous crystal-kinematics-based models, we use a fully 

dynamics approach which is similar to that used in MD and DDD simulations, namely, 

we calculate the net forces acting on each type of dislocation density situated at each 

pixel, due to the applied stress net of Taylor and lattice resistances and the elastic 
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interactions from other dislocation densities, and then calculate the evolution of the 

density via a dynamics law. In this paradigm, the evolution of all mobile dislocations, 

whether GNDs or SSDs, is governed by the same law, as should be the case in reality. 

To make clear the fact that full dynamics for dislocation-density functions are 

considered here, we term our approach dislocation-density function dynamics (DDFD) 

hereafter. For numerical implementation, to cater for high gradients in the dislocation 

densities, we use the finite volume method (FVM), which is more suitable for 

fluid-like transport problems with sharp gradients. 

 

2. General Formulation of Model 

 In this section, we will formulate the basic equations of the evolution rules in our 

model. As in the previous density-based models, we imagine that we cannot see 

individual dislocation lines, but just densities of them, measured as line length of 

dislocations per unit volume. The graining of the spatial domain under discussion here 

is chosen so that it is coarse enough for a material pixel to contain sufficient 

dislocations for their density to be treated as uniform inside the pixel, but is fine 

enough compared to the microstructure length scale over which the dislocation 

density typically varies. 

 Let 𝜌𝛼
 (𝑟, 𝑡) be the density (length per unit volume) of dislocations of type  at 

position 𝑟 and time t, where  is specified by the following factors:  

(i) the slip system {�̂�, �⃗⃗�} with �̂� being the slip plane unit normal and �⃗⃗� the 

Burgers vector,  

(ii) the dislocation character (edge, screw or any mixed character), and  

(iii) the sign of the dislocation (either + or −).  

 

In the following, we develop the equation governing the evolution of 𝜌𝛼
 (𝑟, 𝑡), using 

as much known physics of dislocations as is possible. 

 

2.1 Dislocation Flux and Strain Rate 

 The dislocation flux J⃗𝛼(𝑟, 𝑡)  is defined as the quantity (line length) of 

dislocations of type 𝛼 moving across a perpendicular surface of unit area per unit 

time. The flux is related to the velocity v⃗⃗𝛼 of the dislocations by (Walgraef and 

Aifantis 1985) 

 

J⃗𝛼(𝑟, 𝑡)  = 𝜌𝛼
 (𝑟, 𝑡)  v⃗⃗𝛼(𝑟, 𝑡) .      (1) 

 

The dislocation velocity v⃗⃗𝛼(𝑟, 𝑡) is assumed to be a power law of the effective stress 

𝜏𝛼
𝑒𝑓𝑓

 acting on the dislocation (Johnston and Gilman 1959), viz. 
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v⃗⃗𝛼(𝑟, 𝑡) = 𝑠𝑔𝑛 (𝜏𝛼
𝑒𝑓𝑓(𝑟, 𝑡)) (�̂� × 𝜉) 𝑣0|𝜏𝛼

𝑒𝑓𝑓(𝑟, 𝑡)/𝜏0|
𝑚

   (2) 

where 𝑣0, 𝜏0 and m are constants, sgn(x) is the sign function, 𝜉 is the unit vector 

along the dislocation line corresponding to the dislocation type 𝛼. Details of the 

effective stress 𝜏𝛼
𝑒𝑓𝑓

 are given in Section 2.2 below.  

 Following Walgraef and Aifantis (1985), the evolution of the density of a given 

dislocation type 𝛼 is governed by the conservative law: 

 

�̇�𝛼
 (𝑟, 𝑡) = −∇⃗⃗⃗ ∙ J⃗𝛼(𝑟, 𝑡) + net production rate, 

or 

�̇�𝛼
 (𝑟, 𝑡) = −∇⃗⃗⃗ ∙ [𝜌𝛼

 (𝑟, 𝑡)  v⃗⃗𝛼(𝑟, 𝑡)] + net production rate.   (3) 

 

The net production rate here accounts for dislocation generation and annihilation, and 

details of these are given in Section 2.3 below. 

 The Orowan strain-rate field (Orowan 1940) produced by dislocation type 𝛼 at 

time t is  𝜌𝛼
 (𝑟, 𝑡)[v⃗⃗𝛼(𝑟, 𝑡) ∙ (n̂ × 𝜉)](�⃗⃗� ⊗ n̂) = |J⃗𝛼(𝑟, 𝑡)| (�⃗⃗� ⊗ n̂) , where �⃗⃗� ⊗ n̂  is 

the tensor product between the two vectors, and so summing the contributions from 

all dislocation types, the gross plastic strain-rate tensor field is 

 

�̇�(𝑟, 𝑡) =  ∑ (�⃗⃗� ⊗ n̂)[J⃗𝛼(𝑟, 𝑡) ∙ (n̂ × 𝜉)]𝛼 .    (4) 

 

The cumulative plastic strain tensor field is therefore obtainable as 

 

𝛆𝒑(𝑟, 𝑡) =  ∫ ε̇(𝑟, 𝑡′) 𝑑𝑡′
𝑡

0
  .     (5) 

 

As will be discussed later in Section 5, the Orowan strain here represents a pure-shear 

plastic strain produced by the glide motion of the dislocations at a coarse-grained 

level, while elastic deformation and the self-fields of the dislocations are not included. 

It may appear, because of the summation in eqn. (4), that only the glide motions of the 

GNDs contribute to the Orowan strain rate, while those of the SSDs effectively cancel 

out. However, the dynamics of the SSDs intricately affect those of the GNDs, and for 

this reason, the evolution of all dislocations, including both GNDs and SSDs, needs to 

be considered fully. 

 

2.2 Effective Glide Stress on Dislocation Systems 

 The effective glide stress on the dislocation system in eqn. (2) above is  
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𝜏𝛼
𝑒𝑓𝑓(𝑟, 𝑡) = 𝜏𝛼

𝑒𝑥𝑡(𝑟, 𝑡) − 𝜏𝛼
𝑓
− 𝜏𝛼

𝑇𝑎𝑦𝑙𝑜𝑟
+ 𝜏𝛼

𝑖𝑛𝑡(𝑟, 𝑡)   (6) 

 

where the four terms on the right side are, respectively,  

(i) the externally applied stress 𝜏𝛼
𝑒𝑥𝑡, which is the component of the applied 

stress on the slip plane (with normal n̂) along the n̂ × 𝜉 direction; 

(ii) the lattice friction 𝜏𝛼
𝑓
 which is in general a function of the dislocation 

type 𝛼, but in a simplified exercise, can be supposed to be a constant 𝜏𝑓 

independent of 𝛼; 

(iii) the Taylor hardening resistance 𝜏𝛼
𝑇𝑎𝑦𝑙𝑜𝑟

 due to the short-ranged 

interactions between dislocations; and 

(iv) the long-range elastic interaction stress 𝜏𝛼
𝑖𝑛𝑡 with all other dislocations in 

the system, in addition to the Taylor interaction mechanism. 

 

2.2.1 Long-range elastic interaction stress 𝜏𝛼
𝑖𝑛𝑡 

 As discussed by Hirth and Lothe (1992), and more recently by Balluffi (2012), 

the elastic interaction force between two infinitesimally short dislocation segments 1 

and 2 as shown in Fig. 1(a) is 

 

𝛿𝑓 = −
𝜇

8𝜋
[(�⃗⃗�2 × �⃗⃗�1) ∙ ∇⃗⃗⃗(∇2R)](𝑑𝑙1 × 𝑑𝑙2) 

−
𝜇

8𝜋
{[�⃗⃗�2 × ∇⃗⃗⃗(∇2R)] × 𝑑𝑙1}(�⃗⃗�1 ∙ 𝑑𝑙2) 

−
𝜇

4𝜋(1 − 𝜈)
[(�⃗⃗�2 × 𝑑𝑙2) ∙ ∇⃗⃗⃗](𝑑𝑙1 × �⃗⃗�1𝕋) 

+
𝜇

4𝜋(1−𝜈)
[(�⃗⃗�2 × 𝑑𝑙2) ∙ ∇⃗⃗⃗(∇2R)](𝑑𝑙1 × �⃗⃗�1)   … (7) 

 

where R is the distance between the two segments, ∇⃗⃗⃗ = �̂�  
𝑑

𝑑𝑅
 for operation on any 

function which depends on R alone, and 𝕋 is the tensor 

𝕋 =
𝜕2𝑅

𝜕𝑥𝑎𝜕𝑥𝑏
�̂�𝑎 ⊗ �̂�𝑏 

with 𝑥𝑎 and 𝑥𝑏 being the relative coordinates of dislocation segment 1 with respect 

to segment 2. 

 In our DDFD model, we generalize eqn. (7) to the situation when two densities 

of dislocations, instead of two line segments, interact. As shown in Fig. 1(b), the force 
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on unit length of dislocation of type 𝛼 situated at 𝑟, due to a density of dislocations 

of type 𝛼′ inside an infinitesimal volume 𝑑3𝑟′ at 𝑟′, is obtainable from eqn. (7) by 

letting 𝑑𝑙1 = 𝜉 and 𝑑𝑙2 = 𝜉′ 𝜌𝛼′(𝑟′, 𝑡) 𝑑3𝑟′, where 𝜉 and 𝜉′ are the unit vectors 

of the dislocation line corresponding to the two dislocation types at 𝑟  and 𝑟′ 

respectively. Hence, the dislocation-dislocation interaction force on unit length of 

dislocation, of a general type 𝛼 at a general position 𝑟, is obtained by integrating the 

effects of all the dislocations in the system as 

 

𝑓𝛼(𝑟, 𝑡) = −
𝜇

8𝜋
∑∭𝜌𝛼′(𝑟′, 𝑡)[(�⃗⃗�′ × �⃗⃗�) ∙ ∇⃗⃗⃗(∇2R)](𝜉 × 𝜉′)𝑑3𝑟′

𝛼′

 

−
𝜇

8𝜋
∑∭𝜌𝛼′(𝑟′, 𝑡){[�⃗⃗�′ × ∇⃗⃗⃗(∇2R)] × 𝜉}(�⃗⃗� ∙ 𝜉′)𝑑3𝑟′

𝛼′

 

−
𝜇

4𝜋(1 − 𝜈)
∑∭𝜌𝛼′(𝑟′, 𝑡)[(�⃗⃗�′ × 𝜉′) ∙ ∇⃗⃗⃗](𝜉 × �⃗⃗�𝕋)𝑑3𝑟′

𝛼′

 

+
𝜇

4𝜋(1 − 𝜈)
(𝜉 × �⃗⃗�)∑∭𝜌𝛼′(𝑟′, 𝑡)[(�⃗⃗�′ × 𝜉′) ∙ ∇⃗⃗⃗(∇2R)]𝑑3𝑟′

𝛼′

 

          …(8) 

 

where 𝑅 = |𝑟 − 𝑟′| . The glide component of 𝑓𝛼  is 𝑓𝛼 ∙ (�̂� × 𝜉) , and so the 

Peach-Koehler glide stress due to dislocation-dislocation interaction is  𝜏𝛼
𝑖𝑛𝑡 = 𝑓𝛼 ∙

(𝜉 × �̂�)/𝑏 ,  i.e.  

 

𝜏𝛼
𝑖𝑛𝑡(𝑟, 𝑡) = −

𝜇

8𝜋
(�̂� × 𝜉) ∙ ∑∭𝜌𝛼′(𝑟′, 𝑡)[(�⃗⃗�′ × �̂�) ∙ ∇⃗⃗⃗(∇2R)](𝜉 × 𝜉′)𝑑3𝑟′

𝛼′

 

−
𝜇

8𝜋
(�̂� × 𝜉) ∙ ∑∭𝜌𝛼′(𝑟′, 𝑡){[�⃗⃗�′ × ∇⃗⃗⃗(∇2R)] × 𝜉}(�̂� ∙ 𝜉′)𝑑3𝑟′

𝛼′

 

−
𝜇

4𝜋(1 − 𝜈)
(�̂� × 𝜉) ∙ ∑∭𝜌𝛼′(𝑟′, 𝑡)[(�⃗⃗�′ × 𝜉′) ∙ ∇⃗⃗⃗](𝜉 × �̂�𝕋)𝑑3𝑟′

𝛼′

 

        … (9) 

 

where �̂� = �⃗⃗�/𝑏. Note that the last term in eqn. (8) is the climb force, and so its dot 

product with (�̂� × 𝜉) is zero, and that is why this term is no longer present in eqn. 

(9). Climb of the dislocations can be considered by adding a term in the direction of 

(𝜉 × �̂�) in the expression for v⃗⃗α(𝑟, 𝑡) in eqn. (2), and by considering its dependence 

on the climb force (the last term in eqn. (8)), but in the present work, this is ignored. 

Eqn. (9) may be rewritten in a more condensed form as 

 

𝜏𝛼
𝑖𝑛𝑡(𝑟, 𝑡) = ∑ ∭𝑔(�⃗⃗�, 𝑡) 𝜌𝛼′(𝑟′, 𝑡) 𝑑3𝑟′𝛼′     (10) 
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where  

𝑔(�⃗⃗�, 𝑡) = −
𝜇

8𝜋
(�̂� × 𝜉) ∙ [(�⃗⃗�′ × �̂�) ∙ ∇⃗⃗⃗(∇2𝑅)](𝜉 × 𝜉′) 

−
𝜇

8𝜋
(�̂� × 𝜉) ∙ {[�⃗⃗�′ × ∇⃗⃗⃗(∇2𝑅)] × 𝜉}(�̂� ∙ 𝜉′) 

−
𝜇

4𝜋(1 − 𝜈)
(�̂� × 𝜉) ∙ [(�⃗⃗�′ × 𝜉′) ∙ ∇⃗⃗⃗](𝜉 × �̂�𝕋) 

…(11) 

and �⃗⃗� = 𝑟 − 𝑟′. 

It is worth noting here that, by virtue of the outer summation over all the 

dislocation types 𝛼′ in eqn. (10), the density 𝜌𝛼′(𝑟′, 𝑡) at the source location 𝑟′ 

needed to be considered in the integration can simply be replaced by the net GND 

density, since the effects of all SSDs at 𝑟′ sum up to zero. However, the calculated 

𝜏𝛼
𝑖𝑛𝑡(𝑟, 𝑡) at the field point 𝑟 applies to the corresponding dislocation type  there, 

no matter whether it is GND or SSD. The dynamics of GNDs at the field point 𝑟 are 

affected by the presence of SSDs in the neighborhood and vice versa, and in the 

present approach, the dynamics of all dislocations in the structure are considered, 

without the need to know which are GNDs and which are SSDs. 

 

2.2.2 Taylor hardening resistance 𝜏𝛼
𝑇𝑎𝑦𝑙𝑜𝑟

 

 The coarse-grained, or representative volume element (RVE), approach in 

DDFD models is pertinent to recent advances in mechanical characterization of 

micron-sized specimens, which, apart from free-surface effects, may be regarded as 

the RVEs sampled from a master dislocation structure (Gu and Ngan 2013). Recent 

experiments on such micro-specimens with their dislocation contents purposely varied 

have shown that their strength is remarkably well correlated to the square-root of the 

dislocation density confined in them (Gu and Ngan 2012), thus indicating that Taylor 

hardening (Taylor 1934) is an important factor of the flow resistance. Franciosi and 

Zaoui (1982) proposed the following strain-hardening law for fcc crystals 

 

𝜏𝛼
𝑇𝑎𝑦𝑙𝑜𝑟

= 𝜇𝑏√∑ 𝑎𝛼𝛼′𝜌𝛼′𝛼′  ,      (12) 

  

where the interaction coefficients 𝑎𝛼𝛼′  adopt one of six possible values 

corresponding to self hardening as well as interactions due to coplanar systems, 

collinear but not coplanar systems, Hirth locks, glissile junctions and Lomer-Cottrell 

locks. These interaction coefficients, however, are not known a priori, and instead of 

engaging in a multi-variable fitting exercise as in, for example, Arsenlis and Parks 
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(2002), we assume the following reduced scheme in this work:  

𝑎𝛼𝛼′ = (𝛼⊥ �⃗� 𝛼 ∙ 𝜉 𝛼′)
2
 if (�⃗� 𝛼 ∙ 𝜉 𝛼′)

2
≠ 0, and     (13) 

𝑎𝛼𝛼′ = 𝑎∥       otherwise,      (14) 

 

where 𝛼⊥ and 𝑎∥ are constant parameters. Eqn. (13) here represents the short-range 

interactions due to dislocations lying on slip planes intersecting that of type 𝛼, while 

eqn. (14) represents short-ranged interactions with dislocations lying on the same slip 

plane as type . It should be noted that Kubin, Devincre and Hoc (2008) have also 

proposed corrections to the Taylor hardening based on long-range dislocation 

interactions, but since the latter are already modeled separately, such corrections are 

not used in eqn. (13). 

 

2. 3. Dislocation Density Production and Annihilation 

2.3.1 Dislocation generation 

 An important way by which new dislocation lengths are generated arises from 

the dislocation motion itself. The amount of dislocations of type 𝛼 may change 

whenever dislocations of another character 𝛼′  on the same slip plane develop 

velocity gradients along their own line direction, viz. 

  

�̇�𝛼
𝑔𝑒𝑛

= ∑ ∂(𝜌𝛼′
  𝑣𝛼′

 )/𝜕𝜉𝛼′𝛼′→𝛼 .     (15) 

 

To see this, we follow a framework similar to that proposed by Arsenlis et al. (2004), 

where the dislocation character is limited to only the edge (e) or screw (s) type as 

shown in Fig. 2. With such an idealization, dislocations of a given slip system {�̂�, �⃗⃗�} 

can only adopt one of the two orthogonal line orientations corresponding to e or s, and 

with the two signs + or –, there will be 4 dislocation types 𝑒 +, 𝑒 −, 𝑠 + and 𝑠 − 

on the slip system. Dislocation generation in this case may arise as a rectangular loop 

expands (Fig. 3(a)), or as a dislocation line bows out between pinned ends (Fig. 3(b)). 

These two processes can be generalized into a similar concept of dislocations trailing 

behind – when a dislocation glides, it will produce new trailing dislocations; for 

example, a gliding edge dislocation will generate new screw lengths (Fig. 3(c)), and 

vice versa. A special form of eqn. (15) for this case has been given by Arsenlis et al. 

(2004) as: 

 

�̇�𝑒+
𝑔𝑒𝑛

= �̇�𝑒−
𝑔𝑒𝑛

= 𝜌𝑠− ×
𝑣𝑠−

ℓ𝛼
+ 𝜌𝑠+ ×

𝑣𝑠+

ℓ𝛼
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�̇�𝑠+
𝑔𝑒𝑛

= �̇�𝑠−
𝑔𝑒𝑛

= 𝜌𝑒− ×
𝑣𝑒−

ℓ𝛼
+ 𝜌𝑒+ ×

𝑣𝑒+

ℓ𝛼
  ,   (16) 

 

where ℓ𝛼 is the free dislocation length between pinning points, and 𝑣𝑒+ etc. are 

magnitudes of dislocation velocities. Eqns. (15) and (16) can also capture Frank-Read 

sources, which are free segments of dislocations terminated within the lattice at 

pinning points, and therefore correspond to a step increase of dislocation density in 

the pixel containing them. In Section 3.3, we will discuss how the criterion in eqn. (15) 

or (16) for dislocation generation can be implemented numerically. 

 Apart from trailing dislocations, cross slip of screw dislocations also leads to 

production of new dislocations, as shown in Fig. 4. Here, the red segment is the 

cross-slipping segment due to a more favorable stress on an intersecting slip plane, 

and once it has cross-slipped, the segment disappears in the original system, leading 

to a reduction of 𝜌𝑠−  in the original (111) plane and an increase of density by the 

same amount in the (11̅1̅) plane. Alankar, Field and Zbib (2012) have recently 

discussed the incorporation of cross slip into a DDFD model, by involving a 

probability function that represents the effects of a cross-slip length, stacking fault 

energy and the resolved shear stress on the original and cross-slip planes. 

 

2.3.2 Dipole annihilation 

 As considered by Arsenlis et al. (2004), annihilation of dislocation densities 

occurs whenever opposite signed densities come within a critical capture radius. In 

the edge-screw idealization, the annihilation rates are given as 

 

�̇�𝑒+
𝑎𝑛𝑛 = �̇�𝑒−

𝑎𝑛𝑛 = −𝜌𝑒+𝜌𝑒−𝑅𝑒|𝑣𝑒+ − 𝑣𝑒−| 

�̇�𝑠+
𝑎𝑛𝑛 = �̇�𝑠−

𝑎𝑛𝑛 = −𝜌𝑠+𝜌𝑠−𝑅𝑠|𝑣𝑠+ − 𝑣𝑠−|,    (17) 

 

where 𝑅𝑒  and 𝑅𝑠  are the critical capture radii for edge and screw characters 

respectively. 

 

3. Numerical Implementation 

 To illustrate the use of the above model, we have performed numerical 

simulation for an idealized single-crystal fcc model, which consists of 12 slip systems 

of the type {111} 〈
1

2
,
1

2

̅
, 0〉. On each slip system, the edge-screw idealization shown in 

Fig. 2 is used, thus there are 4 dislocation types 𝑒 +, 𝑒 −, 𝑠 + and 𝑠 − on each slip 

system. As a result, there are totally 48 types of dislocation densities under 

consideration.   
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 As mentioned before, numerical implementation is based on the finite volume 

method (FVM), for its capability to capture high gradients. FVM is widely used in 

Computation Fluid Dynamics (Wesseling 2001; Zikanov 2010), and this is also a 

good methodology for DDFD because dislocation density dynamics are very similar 

to fluid flow. In particular, for DDFD, the internal states are the dislocation densities 

𝜌𝛼 which can flow freely and may exhibit high gradients. 

 To numerically implement the model framework above using FVM, the 

equations involved need to be re-cast in discrete forms, and sometimes they need to 

be modified to suit the FVM context. These are discussed in detail below. 

 

3.1 Flux 

 The main concept in FVM is the discretization of space into cells, and for a 

typical flux operator  

�̇� + ∇⃗⃗ ∙ (𝜌𝑣 ) 

 

which is pertinent to eqn. (3) in our model, the first-order “upwind” discretization of 

the i-th cell will be 

 

𝑑𝜌𝑖

𝑑𝑡
+

1

∆𝑥𝑖
[(𝜌𝑣)𝑖+1 − (𝜌𝑣)𝑖] +

1

∆𝑦𝑖
[(𝜌𝑣)𝑖+1 − (𝜌𝑣)𝑖] +

1

∆𝑧𝑖
[(𝜌𝑣)𝑖+1 − (𝜌𝑣)𝑖]. 

 

This is the basic FVM formulation, but in order to handle high gradients, a total 

variation diminishing scheme must be introduced, and usually Monotone 

Upstream-centered Schemes for Conservation Laws (MUSCL) (Wesseling 2001) are 

employed. Here, we used the Kurganov-Tadmor central scheme, which is a 

second-order, high-resolution MUSCL construction. With this, the flux operator 

above is re-cast into the semi-discrete form (Wesseling 2001) 

 

𝑑𝜌𝑖

𝑑𝑡
+

1

∆𝑥𝑖
[(𝜌𝑣)∗

𝑖+1/2
− (𝜌𝑣)∗

𝑖−1/2
] + ⋯  

where 

(𝜌𝑣)∗
𝑖±1/2

=
1

2
{[𝜌𝑖±1/2

𝑅 𝑣𝑖±1/2 + 𝜌𝑖±1/2
𝐿 𝑣𝑖±1/2] − 𝑚𝑎𝑥[|𝑣𝑖|, |𝑣𝑖±1|][𝜌𝑖±1/2

𝑅 − 𝜌𝑖±1/2
𝐿 ]}; 

𝜌𝑖+1/2
𝐿 = 𝜌𝑖 + 0.5𝜙(𝑟𝑖)(𝜌𝑖+1 − 𝜌𝑖) ; 𝜌𝑖+1/2

𝑅 = 𝜌𝑖+1 + 0.5𝜙(𝑟𝑖+1)(𝜌𝑖+2 − 𝜌𝑖+1) ; 

𝜌𝑖−1/2
𝐿 = 𝜌𝑖−1 + 0.5𝜙(𝑟𝑖−1)(𝜌𝑖 − 𝜌𝑖−1) ;   𝜌𝑖−1/2

𝑅 = 𝜌𝑖 + 0.5𝜙(𝑟𝑖)(𝜌𝑖+1 − 𝜌𝑖) ;  

𝑟𝑖 = (𝑣𝑖 − 𝑣𝑖−1)/(𝑣𝑖+1 − 𝑣𝑖) . 

 

Here, 𝜙(𝑟) is the flux limiter, which is a function such that for 𝑟 < 0, 𝜙 = 0 and 
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𝜙 = 1 for 𝑟 = 1. The main idea of MUCSL is to use slope limited left and right 

extrapolated states for the cell’s approximation, and the left and right states are those 

at the cell walls, i.e. 𝑖 = ±1/2. Also MUSCL is combined with the Runge-Kutta time 

marching method to obtain accurate results. 

 

3.2 Interaction Stress 

 The elastic interaction stress between dislocation densities is given by eqn. (10), 

and with the edge-screw idealization shown in Fig. 2, the interaction function 𝑔(�⃗⃗�) 

concerned is given in the Appendix as eqn. (A4). As there are 48 types of dislocation 

densities, there will be 48×48 pairs of dislocation densities to interact, and by 

converting eqn. (10) into a discretized form, the total glide stress acting on density 

type  in the i-th cell will be 

 

𝜏𝛼
𝑖𝑛𝑡(𝑟𝑖) = ∑ ∑ 𝑔(𝑟𝑗 − 𝑟𝑖)𝜌𝛼′(𝑟𝑗) 𝑉𝑗≠𝑖

48
𝛼′=1     (18) 

 

where 𝑗 are the cells surrounding the i-th cell within a cutoff radius 𝑅𝑐, and V is the 

cell volume. A cutoff radius 𝑅𝑐 is used here to increase the computational speed as 

the interaction force varies with 1/𝑅2, and so dislocation densities situated far away 

can be neglected. In the results presented below in Section 4, 𝑅𝑐 was set to be about 

half the mean dimension of the size of the specimen.  

 For the effective stress in eqn. (6), the lattice friction 𝜏𝛼
𝑓

 is set to be the 

Peierls-Nabarro stress in the numerical examples given below, i.e. 

 

𝜏𝛼
𝑓

=
2𝜇

(1−𝜈)
𝑒−2𝜋𝑎(1−𝜈) 𝑏⁄ ,      (19) 

 

where 𝑎 is the interplanar spacing, 𝑏 is the Burgers vector and 𝜈 the Poisson ratio. 

The Taylor hardening 𝜏𝛼
𝑇𝑎𝑦𝑙𝑜𝑟

 is calculated using eqns. (12) to (14). In the velocity 

law in eqn. (2), the stress exponent m is set to be 5. Strain rate and strain are 

calculated using eqns. (4) and (5) respectively. 

 

3.3 Generation 

 As discussed in Section 2.3.1, consideration of dislocation generation is based on 

finding locations where dislocation densities exhibit high spatial gradients according 

to eqn. (15). In the FVM scheme when space is discretized into cells of size ∆𝑥, 

instead of using a global configurational length ℓ𝛼  we take the units for the 

consideration of dislocation generation to be the FVM cells, i.e. in eqn. (16) we set 

ℓ𝛼  = ∆𝑥 , where ∆𝑥  is the cell size. Potential dislocation generation is then 
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considered at the walls of the cells, as shown in Fig. 5(a). Here, a dislocation segment 

moving to the left (the black segment) potentially drags out new dislocation lengths of 

another orientation (green and blue) at the upper and lower walls of the cell, but 

whether such new lengths are counted as real generation depends on the criterion set 

by eqn. (15). 

 To implement eqn. (15) or (16), if the densities of dislocations of the same type 

on two adjacent cells are similar (Fig. 5), i.e. (
𝜌𝑣

∆𝑥⁄ )
𝑖
= (

𝜌𝑣
∆𝑥⁄ )

𝑖+1
, then the 

dislocations concerned are considered to be simply threading through the two cells i 

and 𝑖 + 1 , and so their movement along the �̂� × 𝜉  direction will not lead to 

generation of new dislocations. This step ensures that the consideration of dislocation 

generation is not affected by the cell size. On the other hand, if (
𝜌𝑣

∆𝑥⁄ )
𝑖
≠

(
𝜌𝑣

∆𝑥⁄ )
𝑖+1

, then the wall between the 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ cells will act as a source 

of the types shown in Fig. 3(a,b), and generation of new dislocation densities will 

occur. The quantity of new dislocation production at the cell wall thus depends on the 

difference in 𝜌𝑣/∆𝑥 between the two cells, and so eqn. (15) or (16) is recast into:   

 

�̇�𝑒+
𝑖,𝑖+1 = 𝐹 [(

𝜌𝑣

Δ𝑥
)
𝑠+

𝑖+1

− (
𝜌𝑣

Δ𝑥
)
𝑠+

𝑖

] + 𝐹 [(
𝜌𝑣

Δ𝑥
)
𝑠−

𝑖+1

− (
𝜌𝑣

Δ𝑥
)
𝑠−

𝑖

] 

�̇�𝑒−
𝑖,𝑖+1 = 𝐹 [(

𝜌𝑣

Δ𝑥
)
𝑠+

𝑖

− (
𝜌𝑣

Δ𝑥
)
𝑠+

𝑖+1

] + 𝐹 [(
𝜌𝑣

Δ𝑥
)
𝑠−

𝑖

− (
𝜌𝑣

Δ𝑥
)
𝑠−

𝑖+1

] 

 etc.,            (20) 

 

where 𝐹(𝑥) is the ramp function (i.e. 𝐹(𝑥) = 𝑥 if x > 0, and 0 otherwise). However, 

not all dislocations in cell i are connected to the neighboring cell, and so eqn. (20) 

would overestimate the new dislocation production. In fact, whenever (𝜌𝑣)𝑖 ≠

(𝜌𝑣)𝑖+1, the quantity of dislocations generated in cell i is limited by the work done by 

the net effective stress acting on the cell. Since the power density for a given slip 

system  is 𝜌𝛼𝑣𝛼𝑏𝜏𝛼
𝑒𝑓𝑓

, the generation rates in eqn. (20) are scaled as follows: 

 

�̇�𝑒+
𝑖,𝑖+𝑛 →

�̇�𝑒+
𝑖,𝑖+𝑛

𝐸𝑒(∑  �̇�𝑒+
𝑖,𝑖+𝑛

𝑛 ) 
× 𝜌𝑒+𝑣𝑒+𝑏𝜏𝑒+

𝑒𝑓𝑓
 ; 

   �̇�𝑒−
𝑖,𝑖+𝑛 →

�̇�𝑒−
𝑖,𝑖+𝑛

𝐸𝑒(∑  �̇�𝑒−
𝑖,𝑖+𝑛

𝑛 ) 
× 𝜌𝑒−𝑣𝑒−𝑏𝜏𝑒−

𝑒𝑓𝑓
 ;       etc.,    (21) 

 

where (𝑖 + 𝑛) denotes the neighbor cells of i, and Ee is the energy per unit length of 
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dislocation. The generated densities at the cell wall are partitioned equally into the 

two cells, i.e. 

 

�̇�𝑒
𝑖 = 0.5 �̇�𝑒

𝑖,𝑖+𝑛 ;  �̇�𝑒
𝑖+𝑛 = 0.5 �̇�𝑒

𝑖,𝑖+𝑛
.    (22) 

 

In general, the dislocation line direction 𝜉  would not be aligned with the cell wall but 

is inclined with respect to it. In this case the generation will be the same, but a term 

(�⃗� 𝑤 ∙ 𝜉 )/(|�⃗� 𝑤||𝜉 |) will be multiplied to the generation rate, where �⃗� 𝑤 is the cell 

wall normal. For example, the real generation rate on the positive edge of the 

(𝑖 + 1)𝑡ℎ cell will be �̇�𝑒+
𝑤𝑎𝑙𝑙 × (�⃗� 𝑤 ∙ 𝜉 )/(|�⃗� 𝑤||𝜉 |), meaning that even if the gradient 

is large between the 𝑖𝑡ℎ  and (𝑖 + 1)𝑡ℎ  cells, if (�⃗� 𝑤 ∙ 𝜉 )/(|�⃗� 𝑤||𝜉 |) = 0 (i.e. the 

dislocation line direction is perpendicular to the cell alignment), no generation will 

occur.  

It is worth noting that the down scaling of the generation rates in eqn. (21) 

effectively represents an effect of the line tension to resist the dislocations from 

developing “curvatures”, which, in the edge-screw idealization, are simply manifested 

by the lengthening of one dislocation character as the other character glides. This 

economical way of approximately treating curvature and line-tension effects avoids 

the heavy computation required in solving the coupled evolutions of density and 

curvature as in the CDD scheme (Hochrainer, Zaiser and Gumbsch 2007).   

As mentioned in Section 2.3.1, cross slip for screw dislocations may be allowed 

in the present simulations. A cross-slip probability given as (Madec et al. 2002) 

𝑃𝑐𝑟𝑜𝑠𝑠−𝑠𝑙𝑖𝑝 = e(−
𝐸𝐴
𝑘𝑇

)
 may be used, where k is the Boltzmann constant, T is the 

absolute temperature, and 𝐸𝐴 is the activation energy.  

 

3.4 Annihilation  

 The annihilation process is shown in Fig. 6, where two groups of opposite signed 

dislocations, blue and red, situated in two neighboring cells at the time instant shown 

are approaching each other for annihilation. In the FVM implementation, while the 

computation is based on each cell, the annihilation process shown in Fig. 6 actually 

depends on dislocation densities of the opposite sign in the neighboring cells. Thus, 

using eqn. (17) for each cell, where 𝜌𝑒+, 𝜌𝑒−, 𝜌𝑠+ and 𝜌𝑠− are evaluated only for 

the cell concerned, will not enable the annihilation process shown in Fig. 6 to be 

captured. To capture such a process, the dislocation densities in eqn. (17) need to be 

replaced by average values taken over neighboring cells. For this reason, a modified 

form of eqn. (17) is used in the actual implementation, namely, 
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�̇�𝑒+
𝑎𝑛𝑛 = �̇�𝑒−

𝑎𝑛𝑛 = −[min (�̅�𝑒+, �̅�𝑒−)]2𝑅𝑒|𝑣𝑒+ − 𝑣𝑒−| 

 

�̇�𝑠+
𝑎𝑛𝑛 = �̇�𝑠−

𝑎𝑛𝑛 = −[min (�̅�𝑠+, �̅�𝑠−)]2𝑅𝑠|𝑣𝑠+ − 𝑣𝑠−| 

where 

�̅�𝑒+ =
1

𝑁𝑎𝑛𝑛
∑

(𝑅𝑎𝑛𝑛−𝑅) 𝜌𝑒+

𝑅𝑎𝑛𝑛
𝑅≤𝑅𝑎𝑛𝑛

 , etc.,     (23) 

are weighted averages of the corresponding dislocation densities, taken over the 𝑁𝑎𝑛𝑛 

cells inside a radius of annihilation 𝑅𝑎𝑛𝑛, and 𝑅 is the distance between the current 

cell and the summation cell. With 𝑅𝑎𝑛𝑛, which is much larger than the actual capture 

radius for annihilation 𝑅𝑒 or 𝑅𝑠, we can include some of the dislocation densities in 

neighboring cells in the evaluation of the opposite-signed densities for anticipated 

annihilation, so that cases like Fig. 6 can be captured. It should be noted that the use 

of 𝑅𝑎𝑛𝑛  here is only for the evaluation of the average dislocation densities for 

anticipated annihilation, while the actual annihilation rates are still scaled by the 

capture radius for annihilation 𝑅𝑒 or 𝑅𝑠 which are of atomic dimensions. 

  

3.5 A Simple Simulation Example for Single Crystal Aluminum 

FORTRAN codes were written with the above implementation scheme. Here, we 

present a first example of numerical implementation involving a rectangular single 

crystal subjected to a uniaxial load P, as shown in Figure 7(a). Periodic boundary 

conditions were applied to all three dimensions, which means that as dislocations go 

out from one side of the simulation block, they re-enter at the opposite side. Initially, 

the density of each of the 48 types of dislocations was set to be randomly distributed 

within the simulation block, with a total value at 1012 m-2
. The cell size (∆𝑥, ∆𝑦, ∆𝑧) 

used in the FVM scheme was (200𝑏 × 200𝑏 × 200𝑏), and the simulation block had 

50(𝑥) × 50(𝑦) × 5(𝑧) cells (Table 1). The time step in the simulation was adjusted 

using a simple adaptive scheme of  

 

  ∆𝑡 = 0.5 × (∆𝑥∆𝑦∆𝑧)
1

3/max (speed of the densities)    (24) 

 

In this exercise, we aim to replicate the crystal plasticity response of pure aluminum. 

Thus, the following material parameters for Al were used in the simulations: 

𝑏 = 2.863 × 10−10m and 𝜇 = 25 × 109Pa. The parameters in dislocation velocity 

law in eqn. (2) were chosen to represent the mean behavior between screw and edge 

dislocations as calculated from molecular dynamics simulation by Olmsted et al. 

(2005): 𝑣0 = 1 m/s, 𝜏0 = 0.0463 MPa, and 𝑚 = 1 . The out-of-plane Taylor 

hardening coefficient in eqn. (13) was set at 𝛼⊥ = 0.3, while the in-plane hardening 
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coefficient in eqn. (14) was at 𝑎∥ = 0.1. 

The tensile stress was applied along the 〈100〉, 〈111〉, 〈112〉 or 〈123〉 directions 

of the fcc lattice, and the strain rate was set to be 2 × 10−3𝑠−1. Figure 7(b) shows the 

simulated stress-strain responses, in comparison with the experimental data by 

Hosford et al. (1960). Overall, the simulations correctly predicted the experimental 

trend that the 〈111〉  orientation is strongest, while the 〈112〉  and 〈123〉 

orientations are weakest. For the 〈111〉 orientation, the initial strain hardening, up to 

about 0.5%, is rather well captured by the simulation, although at higher strains, the 

simulated hardening is not as rapid as the experimental value. For the other three 

orientations 〈100〉, 〈112〉 and 〈123〉, the simulation overestimates the initial flow 

stress, but better agreement is achieved for larger strains. Several factors may account 

for the discrepancies from the experimental data. First, the Taylor interactions may 

not be fully represented by the reduced scheme in eqns. (13) and (14). Secondly, the 

accumulation of dislocations may not be fully represented by the scheme in eqns. (20) 

and (21) – such a scheme accounts only for production due to the connectivity of 

dislocations, namely, new dislocations are produced whenever gradients in flux arise 

(Figure 3), but generation from discrete sources is not modeled. In any case, Figure 

7(b) shows that the flow anisotropy in Al is captured by the simulations.      

 The case with the tensile direction along 〈100〉 is selected for more detailed 

analysis in Figure 8. From Figure 8(a), the normal strain component 휀𝑥𝑥 along the 

tensile axis increases in the tensile direction with time, while 휀𝑦𝑦 and 휀𝑧𝑧 along the 

orthogonal directions also develop with time according to 휀𝑥𝑥 + 휀𝑦𝑦 + 휀𝑧𝑧 ≈ 0, as 

must be the case since volume is conserved. Figure 8(b) shows the simulated 

stress-strain behavior. From Figure 8(c), the dislocation densities on the four sets of 

slip planes multiply steadily, to the order of 1014 m
-2

 at the strain of about 5%. 

Figure 8(d) shows the evolution of the Taylor hardening resistance and the dislocation 

elastic interaction stress. The contribution from GNDs in Taylor hardening is also 

calculated by counting only the dislocation contents with a net Burgers vector in each 

simulation cell, and plotted separately in Figure 8(d). It can be seen that, although 

GNDs play a major role in Taylor resistance, the hardening due to the SSDs, i.e. the 

discrepancy between total hardening stress and GND hardening, is certainly not 

negligible. The Taylor hardening and elastic interaction both increase as the 

dislocation density increases. The elastic interaction is negligibly small at the 

beginning of the simulation, due to the nearly even distribution of dislocations. 

However, as the simulation proceeds, the elastic interaction between dislocations 

becomes more significant.  

Of interest here is that instead of a smooth behavior, stress bumps are seen 

throughout the plastic flow process in Figure 8(b). Such a bumpy flow behavior is not 
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expected from a bulk specimen, but it must be remembered that the current 

stress-strain behavior in Figure 8(b) is computed for a small simulation block size of 

50(𝑥) × 50(𝑦) × 5(𝑧) cells, or 2.86 μm × 2.86 μm × 0.286μm. For small crystals 

of such a size, stress bumps are often seen in real experiments due to a lack of 

mean-field environment for dislocation interactions (Rao et al. (2008); Ng and Ngan 

(2008)). In a bulk specimen, discrete events in different parts of the specimen would 

average out to give a smooth overall response. The stress-strain response in Figure 8(b) 

is therefore reasonable.    

Figure 8(e-h) illustrates the evolution of dislocation density patterns from the 

simulation in Figure 8(b). At the beginning, the dislocations are very evenly 

distributed with a low density. As strain increases, the dislocation density in some 

regions builds up rapidly, while that in other regions stagnates or even declines. 

Regions with either very high dislocation densities reaching 1014m
-2

, or very low 

dislocation densities at 1012m
-2

, appear. The areas with high and low densities 

juxtapose and form alternating patterns resembling a cellular structure. 

 

 

4. A Detailed Case Study: Size Effect of Crystal Plasticity 

4.1 Motivation 

To further validate the present DDFD approach, we have performed a detailed 

case study on the size dependence of strength of small crystals. It is by now 

well-known that nano- or micron- sized crystals in general deform in a jerky manner 

with stochastic occurrence of discrete strain bursts (Uchic et al. 2004, Ng and Ngan 

2008, Shan et al. 2008, Kim et al. 2012). In addition, their yield strength 𝜎 exhibits a 

remarkable smaller-being-stronger size effect according to a power law 𝜎~𝐷−𝑚, 

where 𝐷 is specimen size (Greer and De Hosson 2011; Dou and Derby 2009). For 

sub-micron sized specimens, the reason for such a size effect and jerky deformation is 

easy dislocation depletion from the specimen volume and the need for re-nucleation 

(Greer and Nix 2006), and this so-called dislocation starvation mechanism has been 

confirmed by in situ TEM experiments (Shan et al. 2008). For larger specimens in the 

micron regime, complete starvation is difficult to achieve, and the size effect has been 

proposed to be a consequence of the size dependence of the dislocation microstructure 

the specimen contains – smaller specimens were proposed to either contain shorter 

dislocation source lengths (Parthasarathy et al. 2007, Akarapu 2010), or finer 

dislocation mesh size (Gu and Ngan 2013).  

DDD simulations have been employed to understand small-scale plasticity, but 

due to the amount of computation involved in 3D DDD, previous attempts were 

limited to the small specimen size range of sub-micron to a few microns, with 
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dislocation densities of 1012 to 1015m−2 (Akarapu et al. 2010, Zhou et al. 2010, 

Huang et al. 2012) and much higher strain rates, on the order of 10
2
 s

-1
 or above, 

compared to experimental conditions (Motz et al. 2009, Akarapu et al. 2010, Zhou et 

al. 2010). A so-called 2.5D DDD approach (Benzerga 2009, Gómez-García et al. 2006) 

has also been used, which is a mesoscopic simulation scheme based on 2D DDD but 

with certain 3D mechanisms, such as Taylor interactions and Frank-Read sources, 

partially considered in a highly simplified manner. MD simulations have also been 

carried out (Yamakov et al. 2002, Komanduri et al. 2001, Xu et al. 2013), but as 

mentioned beforehand, real time and size scales were not simulated directly. For these 

reasons, there is a need for an approach which can capture small-scale plasticity over 

a wide range of specimen size from, say, a micron to tens or hundreds of microns, in a 

unified way. The dislocation-density based CDD scheme has been employed to model 

size effects of thin films under tension and bending (Zaiser et al. 2007; Sandfeld et al. 

2010; Sandfeld et al. 2011). However, because of the very heavy computational costs 

involved, simple geometries involving only two slip systems in a symmetrical 

configuration were simulated, and no comparison with experimental results was made. 

In the following, the use of the present DDFD scheme to simulate small-scale 

plasticity in an fcc model with 12 slip systems of the type {111} 〈
1

2
,
1

2

̅
, 0〉 is described. 

 

4.2 Simulation Details  

Single fcc crystals of various sizes were constructed in the [
1 0 0
0 1 0
0 0 1

] 

orientation, with the tensile load applied along [001] , i.e. the z-direction. The 

surfaces normal to the x- and y- axes were set to be free surfaces, while periodic 

boundary conditions were applied along the z-axis, so that the specimen can be 

thought of as a wire of infinite length along the z-axis. The pixel size was (100b, 100b, 

100b) for the smallest specimen of size (1000b,1000b,1000b), and was (200b, 200b, 

200b) for other specimen sizes of (2000b,2000b,1000b), (4000b,4000b,1000b,), 

(6000b,6000b,1000b), (8000b,8000b,1000b) and (16000b,16000b,1000b). The 

simulation scheme followed the same way as described in Section 3. In the simulation, 

the dislocation speed was capped at 20 μm/s, and the prototypic values of Taylor 

interaction coefficients employed were 𝛼⊥ = 1 and 𝑎∥ = 0.5 (c.f. section 2.2.2). 

Activation energy for cross-slip was assumed to be 0.5eV (c.f. section 3.3), and the 

stress exponent m in the velocity law in eqn. (2) was set to be 1. Other material 

parameters were: 𝑏 = 2.863 × 10−10 m, 𝜇 = 26 × 109  Pa, 𝜏0 = 7.8 × 106Pa and 

𝑣0 = 1 ms−1.  The initial density of each of the 48 dislocation types in each 
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simulation pixel was generated randomly from a Gaussian distribution with mean 

1012m−2

48
 and standard deviation 109m−2, which is simply a convenient choice. This 

corresponds to an overall averaged dislocation density of 10
12

 m
-2

.  

The crystals were loaded at a constant nominal strain rate of  2.5 × 10−3𝑠−1 

which is a representative experimental value. One feedback method used is to adjust 

the stress in proportion to the error (El-Awady et al. 2009), i.e.   

 

𝝈 ̇ ∝  (�̇�𝒑𝒓𝒆𝒔𝒄𝒓𝒊𝒃𝒆𝒅 − �̇�𝒂𝒄𝒕𝒖𝒂𝒍).     (25) 

 

While this works pretty well in most cases, for smaller specimens where extensive 

dislocation depletion frequently occurs, serious overshoot in stress may occur 

whenever dislocation depletion and a tremendous drop in strain rate happen, so that 

the applied stress is increased rapidly. To alleviate such a problem, a derivative term 

similar to that used in proportional-integral-differential control was added to the stress 

adjustment, i.e. the stress was adjusted also in proportion to the rate of change of the 

strain-rate error. If the error in strain rate is decreasing, the stress adjustment is also 

decreased and vice versa. This is found to be effective in suppressing the stress 

overshooting. 

In addition to the externally applied stress, image stresses which pull 

dislocations towards free surfaces are normally considered in discrete DD simulations 

(Fivel and Canova 1999). While it is not particularly difficult to include image 

stresses in the present work, this is not done because the pixel size in the present 

approach is typically hundreds of Burgers vectors large. Since image stresses 

attenuate from the free surface over distances that scale with b, the image stress acting 

even in the first pixel next to a free surface would be negligible. For this reason, 

image stresses are ignored in the present work. All the free surfaces of the simulation 

block adopt a no-entry, free-exit boundary condition, i.e. no dislocation flux enters the 

simulation space through the free surfaces, but dislocation fluxes are not obstructed 

from leaving the simulation space at the free surfaces. Such a condition constantly 

leaves the simulation cells at the free surfaces at a lower dislocation density than the 

interior cells.  

The no-entry, free-exit boundary condition is coupled with the MUSCL 

scheme by using ghost cells with velocity and density values assigned as follows: 

 

For 𝑖 = 1 or 𝑗 = 1 or 𝑘 = 1: 
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{

𝑣𝑖−1 = min(0, 𝑣𝑖) ,

 𝜌𝑖−1 = 𝜌𝑖 max(0, 𝑠𝑔𝑛(−𝑣𝑖)),      and

(𝜌𝑣)∗
𝑖−1/2

= min (0, (𝜌𝑣)∗
𝑖−

1

2

)
     (26) 

 

For 𝑖 = 𝑛𝑥 or 𝑗 = 𝑛𝑦 or 𝑘 = 𝑛𝑧: 

 

{

𝑣𝑖+1 = max(0, 𝑣𝑖) ,

 𝜌𝑖+1 = 𝜌𝑖 max(0, 𝑠𝑔𝑛(𝑣𝑖)), and

(𝜌𝑣)∗
𝑖+1/2

= max (0, (𝜌𝑣)∗
𝑖+

1

2

)
      (27) 

 

where 𝑣 and 𝜌 are the velocity and density of type α dislocations. When 𝑣 inside 

the free surface cell is pointing outward of the simulation space, the ghost cell would 

be at a downwind position, and the velocity and density of type α dislocations in the 

ghost cell would be equal to that of the surface cell, so that the flux out of the 

simulation space would not be obstructed. This is referred to as the zero-streamwise 

gradient exit condition (Zikanov 2010). On the other hand, if the velocity of type α 

dislocations in the surface cell points inward of the simulation space, the ghost cell 

would be upwind of the surface cell. Since there should be zero flux entering the 

simulation space, the ghost cell would be assigned zero dislocation density and zero 

velocity. 

 

4.3 Simulation Results 

Figure 9 shows the simulated stress-strain curves of specimens of various sizes. 

It can be seen that the tensile strength increases with decreasing specimen size, and 

the smaller specimens exhibit a sharp yield point. The upper yield stress of the first 

yield point represents the strength of the specimens, and this is plotted in Figure 10 

versus specimen size in a double-logarithmic fashion. The variation between the 

present simulated strength  and size D roughly follows the well-known power-law 

trend 𝜎~𝐷−𝑚. Also shown in Figure 10 are typical experimental data and calculated 

yield stresses, and it can be seen that the present results are in broad agreement with 

known reported data.  

Of special interest in the results so far is that a sharp initial yield point occurs for 

specimens < 4000𝑏 in Figure 9, and this diminishes for larger specimens. Figure 11 

shows the total dislocation density evolution during deformation. It can be seen that 

the smaller specimens first undergo a considerable drop in dislocation density, and 

eventually end up with an almost constant dislocation density, whereas the larger 

specimen simulated of size of 16000𝑏, i.e. ~4.6 μm, first undergoes an insignificant 

change in the dislocation density initially, followed by a subsequent gradual build-up. 
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By noting that strain is proportional to time at constant strain-rate, the stress peaks in 

the stress-strain curves for the smaller specimens in Figure 9 are found to correspond 

to the initial depletion and then sudden multiplication of dislocation density in Figure 

11, and so their formation is related to the loss of dislocations from the specimen, i.e. 

dislocation starvation. The stress peak therefore has the same nature as a strain burst 

accompanying mechanical annealing (Shan et al. 2008): with a small specimen 

cross-section, the initial dislocations present quickly escape from the specimen at the 

initial stage of plastic deformation, and once the specimen becomes depleted of 

dislocations, the deformation cannot catch up with the prescribed strain rate. The 

applied stress then increases rapidly to a high value at which rapid dislocation 

multiplication occurs. The instantaneous strain rate then momentarily exceeds the 

prescribed strain rate, and so the applied stress decreases rapidly to maintain the strain 

rate. The initial stress overshoot is therefore attributed to the low initial dislocation 

density level with respect to the prescribed constant strain rate (Yonenaga and Sumino 

1978; Verdier et al. 1998; Petukhov 2001). Whenever the prescribed strain rate is high 

and the initial dislocation density small, stress has to increase rapid to a level for 

dislocation multiplication to occur. When enough dislocations have been generated, 

the strain rate would exceed the prescribed value, and the stress would start to relax. 

The largest specimen size simulated here is 16000b which corresponds to only several 

microns, and the stress overshoot is known to occur in this size regime. In the 

classical tensile experiments on metal whiskers by Brenner (1957), the whiskers used 

were a few to over a dozen microns in diameter, and high ratios of yield stress to flow 

stress of up to ~80:1 were observed. The whiskers Brenner used were not pre-strained, 

and so their initial dislocation density should also be low.   

Figure 12 shows the 3-D dislocation-density plots for different specimen sizes 

at different cumulative strains. As in Figure 11, for the smaller specimen sizes 1000b 

and 4000b, the dislocation density remains at a low value, but for the largest specimen 

size of 16000b simulated, dislocation accumulation takes place as strain increases. At 

a plastic strain of ~0.2%, clear dislocation debris is observed on {111} planes (Ohashi 

2005). Also, while the dislocations are concentrated in the core region for the smaller 

specimens, for larger specimens, clusters of dislocations are scattered around the 

whole specimen, with a relatively lower density at the free surfaces. The clustered 

cases correspond well to the so-called “soft-surface, hard-core” structure commonly 

observed in experiments (Fourie 1970), in which the observed dislocation density is 

higher in the core region. In addition, the low dislocation density in the proximity of 

free surfaces indicates that free surfaces are effective sinks for dislocations. Thus, in 

the initial stage of deformation where the dislocation generation rate is low, the rate of 

dislocation escape is the highest in the smallest specimen due to the highest surface 



23 
 

area to volume ratio. 

From the simulation results, the reason for present model to capture the size 

effect of strength in Figure 10 is summarized as follows. The free surfaces normal to 

the x- and y- axes of the specimens allow dislocations to exit the simulation space 

freely (c.f. eqns. (26) and (27)), and hence they are effective sinks for dislocations. 

Since a smaller specimen has a higher surface area to volume ratio, the loss rate of 

dislocations at free surfaces would increase with decreasing specimen size. Figure 11 

shows that the largest specimen has its dislocation density increasing with strain, 

while for the smaller specimens, the dislocation density initially rises and then settles 

to a steady state. By analyzing the simulation data, such a steady state was found to be 

an equilibrium condition in which the loss rate of dislocations at free surfaces is 

approximately balanced by the dislocation generation rate. Since the loss rate at free 

surfaces is higher in a smaller specimen, and the generation rate at steady state is also 

higher for a smaller specimen. Since the generation rate scales with the work done by 

stress (eqn. (21)), a higher generation rate would require a higher flow stress, so a 

smaller specimen is predicted to be stronger.   

In summary, the use of the DDFD scheme here successfully captures a number 

of key features of small-scale plasticity. First, jerky deformation typically seen in 

experiments (Uchic et al. 2004, Ng and Ngan 2008, Shan et al. 2008, Kim et al. 2012) 

is reproduced in Figure 9. Secondly, the “smaller-being-stronger” size effect is 

reproduced in Figure 9, and strength was found to roughly follow a power-law trend 

with size, in agreement with known experimental data as shown in Figure 10. The 

storage of dislocations as seen from Figure 11 and 12 is also in agreement with 

experimental findings – for small specimens, storage is low with easy depletion from 

the specimen (Shan et al. 2008; Ng and Ngan 2008), and for large specimens where 

storage is efficient, the experimental “soft-surface, hard-core” structure (Fourie 1970) 

is reproduced. The broad agreement between the computational results and 

experimental observations here indicates the validity of the present DDFD approach. 

As discussed above, the prime factor for the “smaller-being-stronger” size effect is the 

easy loss of dislocations from small specimens, which is a direct consequence of the 

continuity nature of dislocation movements. The current DDFD approach takes the 

continuity nature of dislocation movements explicitly into consideration via eqn. (3), 

and this is an important reason why size effect can be captured as shown in Figure 10.        

 

5. Discussion 

 

5.1 Significance of Elastic Interactions and SSDs 

 As explained in the Introduction, the key differences between the present model 
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and earlier ones are (i) a formal treatment of the mutual elastic interactions between 

dislocations via the Hirth-Lothe formulation, and (ii) the employment of the same 

dynamics laws for both SSDs and GNDs, instead of treating them separately as in a 

crystal kinematics framework. Here, it is useful to see the significance of both 

features in the numerical examples presented above.  

In the simulation for Al with periodic boundary conditions in Section 3.5, Figure 

8(d) shows that Taylor hardening is the major component of strength, in agreement 

with the experimental observation that the strength of micro-specimens is well 

correlated to the square-root of the dislocation density stored inside them (Gu and 

Ngan 2012). However, Figure 8(d) still shows that the elastic interactions between 

dislocations are about 10% of the Taylor resistance and hence are not negligible. In 

the case study on small specimens with free surfaces discussed in Section 4, the 

elastic interactions between dislocations produce more intricate effects. Figure 13 

shows the effects of switching off the elastic interactions between dislocations in this 

case. Comparing Figure 13(a) with Figure 11 shows that with elastic interactions 

switched off, all specimens, including the largest simulated of 16000b, do not exhibit 

growth in dislocation density on continuous deformation, although growth is still 

expected in larger specimen sizes not simulated. Comparing Figure 13(b) with Figure 

12 shows that switching off elastic interactions suppresses the occurrence of high 

dislocation densities – the maximum densities encountered in Figure 12 well exceed 

4 × 1012m−2, while those in Figure 13(b) are significantly lower, and this also agrees 

well with the lack of growth in Figure 13(a). The 0.2% proof stress data in Table 2 

indicate that switching off the elastic interactions leads to significant overestimation 

of the proof stress for the smallest specimen simulated, and this trend drops on 

increasing specimen size, ending with a slight underestimation of the strength for the 

largest specimen simulated. Analyzing the dislocation loss rate at free surfaces and 

generation rate in the specimen interior shows that both rates increase without elastic 

interactions, yet they again more or less balance one another corresponding to the 

steady density in Figure 13(a). The results here therefore indicate that switching off 

the elastic interactions reduces high-density dislocation entanglements, so that 

dislocations can exit a small specimen through its free surfaces more easily. To 

maintain the prescribed strain rate, the generation rate within the specimen has to 

increase, and this requires higher stress, thus explaining the higher strength for most 

specimen sizes in Table 2 when elastic interactions are switched off. This trend, 

however, is counteracted by the reduced Taylor hardening as high-density dislocation 

clusters are suppressed with elastic interactions turned off, and this explains why the 

largest specimen becomes softer without such interactions. In summary, the present 

results show that mutual elastic interactions between dislocations produce intricate yet 
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significant effects on the dislocation microstructure and flow resistance especially in 

small specimens. 

On the effects of SSDs in the overall flow resistance, in the example in Figure 

8(d), the net effects of SSDs on the Taylor hardening are revealed as the difference 

between the total hardening and that due to the GNDs. In this example, SSDs account 

for about 10% of the Taylor resistance, and this again is not negligible. 

 

5.2 Elastic Deformation and Lattice Rotations 

 The DDFD formulation described in sections 2 and 3 focusses on the plastic 

strain given as the time-integration of the Orowan strain rate, viz. eqns. (4) and (5), 

while elastic deformation has been neglected so far. It is useful here to understand the 

significance of such a plastic strain in a general elastoplastic framework. In the crystal 

kinematics approach of plasticity (Asaro and Rice 1977), the total deformation 

gradient tensor 𝑭 is decomposed into a plastic component 𝑭𝒑 as well as an elastic 

component 𝑭𝒆, i.e. 𝑭 = 𝑭𝒆𝑭𝒑, and 𝑭𝒑 and 𝑭𝒆 are related to the plastic and elastic 

deformation tensors 𝑼𝒑  and 𝑼𝒆 as 𝑭𝒑 = 𝑰 + 𝑼𝒑  and 𝑭𝒆 = 𝑰 + 𝑼𝒆  respectively. 

The plastic strain 𝛆𝒑(𝑟, 𝑡) calculated via eqns. (4) and (5) represents a coarse-grained, 

pure-shear strain tensor 𝑼∥
𝒑
 produced by the glide motion of the GNDs, while their 

self-fields are not represented (Figure 14). The discreteness of the slip steps produced 

after the glide motion is also not included in 𝑼∥
𝒑
, but this is unimportant at the 

coarse-grained resolution concerned. Also, by virtue of the summation in eqn. (4), the 

glide motions of the SSDs will cancel out at the coarse-grained resolution concerned, 

but, as mentioned in section 2.2.1, the dynamics of the GNDs are intricately affected 

by those of the SSDs and these are duly considered in the present model. The 

remaining part of the plastic deformation, 𝑼⊥
𝒑

 in Figure 14, is due to the self-fields of 

the GNDs, since strains of the SSDs will cancel out at the resolution of the present 

DDFD scheme concerned. More precisely, 𝑼∥
𝒑
 is the anti-symmetric part of 𝑼𝒑 that 

switches sign as the dislocation contents reverse their motion (Figure 14), and 𝑼⊥
𝒑

 is 

the remaining symmetric part of 𝑼𝒑, and 𝑼𝒑 = 𝑼∥
𝒑
+ 𝑼⊥

𝒑
. Similarly, if we define 

𝑼⊥
𝒆  as the part of the elastic deformation due to the self-fields of the GNDs, and 𝑼∥

𝒆 

as the remaining part of the elastic deformation due to the applied loadings, then 

𝑼𝒆 = 𝑼⊥
𝒆 + 𝑼∥

𝒆. Note that 𝑼∥
𝒑
 and 𝑼∥

𝒆 are compatible deformation tensors (𝑼∥
𝒑
 is in 

fact pure shear), while 𝑼⊥
𝒑

 and 𝑼⊥
𝒆  contain incompatible components due to the 

GND contents present. In fact, the Nye tensor is given as 𝑨 = −𝐜𝐮𝐫𝐥 𝑼⊥
𝒑

=  𝐜𝐮𝐫𝐥 𝑼⊥
𝒆  

(Taupin et al. 2008) and is non-zero in general, while 𝐜𝐮𝐫𝐥 𝑼∥
𝒑

=  𝐜𝐮𝐫𝐥 𝑼∥
𝒆 = 𝟎 due 

to the compatibility of 𝑼∥
𝒑

 and 𝑼∥
𝒆. The total deformation mapping is therefore 

𝑭 = 𝑭𝒆𝑭𝒑 = (𝑰 + 𝑼⊥
𝒆 + 𝑼∥

𝒆)(𝑰 + 𝑼⊥
𝒑

+ 𝑼∥
𝒑
), and this can be expressed as  
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𝑭 = 𝑰 + 𝑼𝒐𝒗𝒆𝒓𝒂𝒍𝒍 + 𝑼𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 ,       (28) 

 

where 

 

𝑼𝒐𝒗𝒆𝒓𝒂𝒍𝒍 = 𝑼∥
𝒑
+ 𝑼∥

𝒆(𝑰 + 𝑼∥
𝒑
)      (29) 

 

may be described as the “overall” elasto-plastic deformation due to the motion of the 

GNDs, without considering their self-fields. Also, in eqn. (28), 

 

 𝑼𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 = (𝑼⊥
𝒑

+ 𝑼⊥
𝒆 ) + 𝑼∥

𝒆𝑼⊥
𝒑

+ 𝑼⊥
𝒆𝑼𝒑      (30) 

  

is the “internal” deformation due to the self-fields of the GNDs. 

The above indicates that the present DDFD scheme offers a method whereby the 

plastic part 𝑼∥
𝒑
 of the 𝑼𝒐𝒗𝒆𝒓𝒂𝒍𝒍 deformation in eqn. (29) can be calculated. Although 

not done in the examples in this work, the remaining elastic part 𝑼∥
𝒆(𝑰 + 𝑼∥

𝒑
) can 

also be calculated rather easily, as a purely elasticity exercise using the plastically 

deformed shape (𝑰 + 𝑼∥
𝒑
) as a reference state subjected to the external loading, 

without considering the dislocations inside.  

For 𝑼𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍, eqn. (30) indicates that it is first order in (𝑼⊥
𝒑

+ 𝑼⊥
𝒆 ), which is 

simply the elasto-plastic deformation due to the self-fields of the GND contents. This 

term gives important information about local lattice rotations and strain gradients, and 

although their full solution would be a very involved exercise, the key information 

can in fact be represented by the Nye tensor which, in the present simulation scheme, 

can be easily calculated as 𝑨 =  ∑ (𝜌𝛼
+ − 𝜌𝛼

−) �⃗⃗�𝛼 ⊗ 𝜉 𝛼𝛼  (Arsenlis et al. 2004). The 

case study in Section 4 above concerns uniform deformation of small crystals where 

lattice rotations and local strain gradients are not as important as the loss of 

dislocations which gives rise to the size effect of strength. However, in other cases, 

lattice rotations, which are pertinent to dislocation pattern formation, may be of 

significant interest and should not be ignored. For example, the Nye tensor is very 

useful in indicating subcell formation under vibrational loadings and this will be 

discussed elsewhere (Cheng et al., 2014). Also, as future work, the lattice rotations 

associated with the computed Nye tensor can be used to update the resolved shear 

stress on the slip systems at each time step, in order to provide a strategy to more 

accurately capture the larger-strain range.  

 

6. Conclusions 

 A dislocation-density functional model for crystal plasticity has been developed 

which takes into full consideration of the mutual elastic interactions between 
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dislocations, as well as the following elements of the dislocation theory: (i) the 

continuity nature of dislocation movements, (ii) forest hardening, (iii) generation 

according to high spatial gradients in dislocation densities, and (iv) annihilation. 

Equations governing the evolution of dislocation density functions have been derived 

based on consideration of dislocation fluxes with the above elements incorporated. 

Numerical implementation has been designed with the finite-volume method, which is 

well suited for flux problems with high gradients, as in the dislocation case. 

Numerical examples have been performed for an idealized single-crystal aluminum 

model with 48 types of dislocation densities on 12 slip systems. Typical strength 

anisotropy behavior comparable to experimental observations was predicted. A 

detailed case study on small-scale crystal plasticity also successfully captured a 

number of key experimental features, including power-law relation between strength 

and size, low dislocation storage and jerky deformation. The size effect of strength, 

which originates from the easy loss of dislocations from a small material volume, 

illustrates the importance of the continuity nature of dislocation movements duly 

considered in the present simulation approach.  

 

Appendix 

The interactive glide stress 𝜏𝛼
𝑖𝑛𝑡 is given by eqn. (10) involving a kernel 𝑔(�⃗⃗�, 𝑡) 

given in eqn. (11). Although not used in this work, the climb component of the 

interactive stress can also be obtained from the last term in eqn. (8) as 𝜏𝛼
𝑐𝑙𝑖𝑚𝑏 = 𝑓𝛼 ∙

(𝜉 × �̂�)/𝑏, giving 

 

𝜏𝛼
𝑐𝑙𝑖𝑚𝑏(𝑟, 𝑡) = ∑ ∭ℎ(�⃗⃗�, 𝑡) 𝜌𝛼′(𝑟′, 𝑡) 𝑑3𝑟′𝛼′ ,   (A1) 

where 

ℎ(�⃗⃗�, 𝑡) = −
𝜇

8𝜋
(𝜉 × �̂�) ∙ [(�⃗⃗�′ × �̂�) ∙ ∇⃗⃗⃗(∇2𝑅)](𝜉 × 𝜉′)  

−
𝜇

8𝜋
(𝜉 × �̂�) ∙ {[�⃗⃗�′ × ∇⃗⃗⃗(∇2𝑅)] × 𝜉}(�̂� ∙ 𝜉′)  

−
𝜇

4𝜋(1−𝜈)
(𝜉 × �̂�) ∙ [(�⃗⃗�′ × 𝜉′) ∙ ∇⃗⃗⃗](𝜉 × �̂�𝕋)  

+
𝜇

4𝜋(1−𝜈)
[(�⃗⃗�′ × 𝜉′) ∙ ∇⃗⃗⃗(∇2R)].          (A2) 

 

Here, we evaluate the kernels 𝑔(�⃗⃗�) and ℎ(�⃗⃗�).  

 

Case (i) – the two dislocation densities are non-parallel 

In Figure 1(a), the oblique coordinates 𝑥 and 𝑦 are the distances from 𝑂 to 
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the segments d-1 and d-2 along the dislocation line vectors 𝜉1 and 𝜉2 respectively, 

and 𝑧 is along direction �̂�3 given by 

�̂�3 =
1

sin 𝜃
(𝜉1 × 𝜉2) 

where 𝜃 is the angle between 𝜉1 and 𝜉2. The distance R between the two segments 

is then given by 𝑅 = (𝑥2 + 𝑦2 − 2𝑥𝑦 cos 𝜃 + 𝑧2)1/2 , and the gradient operator 

∇⃗⃗  = �̂� (𝑑/𝑑𝑅) in terms of the oblique coordinates is (Hirth and Lothe 1992) 

 

∇⃗⃗ = 𝜉1 (
1

𝑠𝑖𝑛2𝜃

𝜕

𝜕𝑥
+

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃

𝜕

𝜕𝑦
) − 𝜉2 (

1

𝑠𝑖𝑛2𝜃

𝜕

𝜕𝑦
+

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛2𝜃

𝜕

𝜕𝑥
) + �̂�3 (

𝜕

𝜕𝑧
) .    

 

In Figure 1(a), the relative positions between two interacting short dislocation 

segments d-1 and d-2 are specified by (𝑥, 𝑦, 𝑧) in the oblique coordinate system. Let 

the relative position of d-1 from d-2 be �⃗⃗� = (𝑥1, 𝑥2, 𝑥3) in a global Cartesian 

coordinate system. The global coordinates (𝑥1, 𝑥2, 𝑥3)  of �⃗⃗�  are related to the 

(𝑥, 𝑦, 𝑧) in the oblique coordinate system via the transformation 

[
𝑥
𝑦
𝑧
] = [−[𝜉1] [𝜉2] [𝑒3]]

−1 [

𝑥1

𝑥2

𝑥3

]     (A3) 

where [𝜉1], [𝜉2] and [𝑒3] are column vectors of 𝜉1, 𝜉2 and �̂�3 respectively.   

 

A particular simple result pertinent to eqns. (11) and (A2) is ∇2𝑅 = 2/𝑅. The 

third term in eqns. (11) and (A2) involves the tensor 𝕋, which is given in terms of the 

basis vectors in the oblique coordinate system (Hirth and Lothe 1992) as: 

 

𝕋 = 𝜉2 ⊗ 𝜉2 (
cos2 𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥2 + 2
cos𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑦
+

1

sin4 𝜃

𝜕2𝑅

𝜕𝑦2)  

−𝜉1 ⊗ 𝜉2 (
cos𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥2
+

1+cos2 𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑦
+

cos𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑦2
)  

−(�̂�3 ⊗ 𝜉2 + 𝜉2 ⊗ �̂�3) (
cos𝜃

sin2 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑧
+

1

sin2 𝜃

𝜕2𝑅

𝜕𝑦𝜕𝑧
)  

+ 𝜉1 ⊗ �̂�3 (
1

sin2 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑧
+

cos𝜃

sin2 𝜃

𝜕2𝑅

𝜕𝑦𝜕𝑧
) + �̂�3 ⊗ �̂�3

𝜕2𝑅

𝜕𝑧2  

 

where terms of 𝜉1 ⊗ 𝜉1, 𝜉2 ⊗ 𝜉1 and �̂�3 ⊗ 𝜉1 are omitted as they produce zero 

result in the operation (𝜉 × �̂�𝕋) in eqns. (11) and (A2). The vector (𝜉 × �̂�𝕋) then 

involves products such as 𝜉1 × [�̂�1(𝜉2 ⊗ 𝜉2)], 𝜉1 × [�̂�1(𝜉1 ⊗ 𝜉2)], etc., which can 

be worked out by expressing the vectors involved in an orthogonal basis such as {�̂�3, 
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𝜉1, �̂�3 × 𝜉1}, to give: 

𝜉1 × �̂�1𝕋 =
(𝑏1𝑠 cos𝜃+𝑏1𝑒 sin𝜃)

𝑏1
�̂�3 sin 𝜃 (

cos2 𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥2
+ 2

cos𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑦
+

1

sin4 𝜃

𝜕2𝑅

𝜕𝑦2
)  

–
𝑏1𝑠

𝑏1
�̂�3 sin 𝜃  (

cos𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥2
+

1+cos2 𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑦
+

cos𝜃

sin4 𝜃

𝜕2𝑅

𝜕𝑦2
)  

– [
𝑏1𝑛

𝑏1
�̂�3 sin 𝜃 −

(𝑏1𝑠 cos𝜃+𝑏1𝑒 sin𝜃)

𝑏1
(�̂�3 × 𝜉1)] (

cos𝜃

sin2 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑧
+

1

sin2 𝜃

𝜕2𝑅

𝜕𝑦𝜕𝑧
)  

−
𝑏1𝑠

𝑏1
(�̂�3 × 𝜉1) (

1

sin2 𝜃

𝜕2𝑅

𝜕𝑥𝜕𝑧
+

cos𝜃

sin2 𝜃

𝜕2𝑅

𝜕𝑦𝜕𝑧
) −

𝑏1𝑛

𝑏1
(�̂�3 × 𝜉1)

𝜕2𝑅

𝜕𝑧2
  

 

With this, the kernels 𝑔(�⃗⃗�) and ℎ(�⃗⃗�) for the glide and climb interactions in eqns. 

(11) and (A2), respectively, can be shown to be of the form: 

 

𝑔(�⃗⃗�) =
𝜇

4𝜋𝑏1
{(𝐴1

𝑔
𝑥 + 𝐴2

𝑔
𝑦 + 𝐴3

𝑔
𝑧)/𝑅3 + (𝐶4

𝑔
𝑥3 + 𝐶5

𝑔
𝑦3 + 𝐶6

𝑔
𝑧3 + 𝐶7

𝑔
𝑥2𝑦 +

𝐶8
𝑔
𝑥2𝑧 + 𝐶9

𝑔
𝑦2𝑥 + 𝐶10

𝑔
𝑦2𝑧 + 𝐶11

𝑔
𝑧2𝑥 + 𝐶12

𝑔
𝑧2𝑦 + 𝐶13

𝑔
𝑥𝑦𝑧)/[(1 − 𝜈)𝑅5]};       

(A4)           

  

ℎ(�⃗⃗�) =
𝜇

4𝜋𝑏1
{(𝐴1

𝑐𝑥 + 𝐴2
𝑐𝑦 + 𝐴3

𝑐𝑧)/𝑅3 + (𝐶4
𝑐𝑥3 + 𝐶5

𝑐𝑦3 + 𝐶6
𝑐𝑧3 + 𝐶7

𝑐𝑥2𝑦 + 𝐶8
𝑐𝑥2𝑧 +

𝐶9
𝑐𝑦2𝑥 + 𝐶10

𝑐 𝑦2𝑧 + 𝐶11
𝑐 𝑧2𝑥 + 𝐶12

𝑐 𝑧2𝑦 + 𝐶13
𝑐 𝑥𝑦𝑧)/[(1 − 𝜈)𝑅5]},         (A5)                       

    

where (𝑥, 𝑦, 𝑧) now specifies �⃗⃗� in the oblique coordinate system in Figure 1(a), and 

the coefficients are given below. In the following, the notations involved are 

 

𝑏𝑠 = �⃗⃗� ∙ 𝜉   ;  𝑏𝑛 = �⃗⃗� ∙ �̂�3  ;   𝑏𝑒 = �⃗⃗� ∙ (�̂�3 × 𝜉) 

sin 𝜃 = |𝜉1 × 𝜉2|  ;   cos 𝜃 = 𝜉1 ∙ 𝜉2 

cos 𝛽 = 𝜉2 ∙ �̂�  ;   cos 𝛾 = �̂�3 ∙ �̂� 

 

If dislocation segment d-1 on which the force is calculated is glissile and non-screw, 

then �⃗⃗�1 ∙ �̂� = 0, and  

 

cos 𝛾 = 𝑏1𝑒/√𝑏1𝑒
2 + 𝑏1𝑛

2 ; cos 𝛽 = − sin 𝜃 𝑏1𝑛/√𝑏1𝑒
2 + 𝑏1𝑛

2 . 

 

If d-1 is purely screw, then 𝑏1𝑛 = 𝑏1𝑒 = 0, and �̂� needs to be defined separately. 

Since only edge dislocations are susceptible to climb, the kernel ℎ(�⃗⃗�) for climb is 

for the case 𝑏1𝑠 = 0, and �̂� = (𝜉1 × �̂�1).  
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The coefficients in eqn. (A4) are: 

 

𝐴1
𝑔

= [−𝑏2𝑠𝑏1𝑛 sin 𝜃 + 2𝑏2𝑛𝑏1𝑒 − 𝑏2𝑒𝑏1𝑛 cos 𝜃 + 𝑏2𝑛𝑏1𝑠
cos𝜃

sin𝜃
] cos 𝛽  

−(𝑏2𝑠 sin 𝜃 + 𝑏2𝑒 cos 𝜃)(𝑏1𝑠 cos 𝜃 + 𝑏1𝑒 sin 𝜃) cos 𝛾  

 

𝐴2
𝑔

= [𝑏2𝑛𝑏1𝑠
(sin2 𝜃−cos2 𝜃)

sin𝜃
 + 𝑏2𝑒𝑏1𝑛 − 2𝑏2𝑛𝑏1𝑒 cos 𝜃] cos 𝛽  

+[𝑏2𝑒(𝑏1𝑠 cos 𝜃 + 𝑏1𝑒 sin 𝜃)] cos 𝛾  

 

𝐴3
𝑔

= [𝑏2𝑠𝑏1𝑠
(sin2 𝜃−cos2 𝜃)

sin𝜃
+ 2𝑏2𝑒𝑏1𝑒 sin 𝜃 + 2𝑏2𝑒𝑏1𝑠 cos 𝜃 − 2𝑏2𝑠𝑏1𝑒 cos 𝜃] cos 𝛽  

 

𝐶4
𝑔

= [𝑏1𝑠𝑏2𝑒 + 𝑏1𝑛𝑏2𝑛 sin 𝜃] cos 𝛾 + 𝑏2𝑛 (−𝑏1𝑠
cos𝜃

sin𝜃
+ 𝑏1𝑒) cos 𝛽  

 

𝐶5
𝑔

= [−𝑏2𝑒(𝑏1𝑠 cos 𝜃 + 𝑏1𝑒 sin 𝜃)] cos 𝛾  

+[𝑏2𝑛𝑏1𝑠
(2 cos2 𝜃−1)

sin𝜃
+ 2𝑏2𝑛𝑏1𝑒 cos 𝜃 − 𝑏2𝑒𝑏1𝑛] cos 𝛽  

 

𝐶6
𝑔

= [𝑏2𝑛𝑏1𝑠 sin 𝜃 − 𝑏2𝑛𝑏1𝑒 cos 𝜃] cos 𝛾 + [
𝑏2𝑒𝑏1𝑒−𝑏1𝑛𝑏2𝑛 cos𝜃

sin𝜃
] cos 𝛽  

 

𝐶7
𝑔

= [−2𝑏2𝑛𝑏1𝑛 cos 𝜃 sin 𝜃 − 3𝑏2𝑒𝑏1𝑠 cos 𝜃 − 𝑏2𝑒𝑏1𝑒 sin 𝜃] cos 𝛾  

+[𝑏2𝑛𝑏1𝑠
(2+cos2 𝜃)

sin𝜃
− 𝑏2𝑒𝑏1𝑛] cos 𝛽  

 

𝐶8
𝑔

= [−𝑏2𝑛𝑏1𝑒 cos 𝜃 + 3𝑏1𝑛𝑏2𝑒 − 2𝑏1𝑠𝑏2𝑛 sin 𝜃] cos 𝛾 + [
𝑏2𝑒𝑏1𝑒−𝑏1𝑛𝑏2𝑛 cos𝜃

sin𝜃
] cos 𝛽  

 

𝐶9
𝑔

= [𝑏1𝑛𝑏2𝑛 sin 𝜃 +𝑏1𝑠𝑏2𝑒(1 + 2 cos2 𝜃) + 2𝑏1𝑒𝑏2𝑒 sin 𝜃 cos 𝜃] cos 𝛾  

+[−𝑏2𝑛𝑏1𝑠
cos𝜃

sin𝜃
(2 + cos2 𝜃) − 𝑏2𝑛𝑏1𝑒(2 + cos2 𝜃) + 2𝑏2𝑒𝑏1𝑛 cos 𝜃] cos 𝛽  

 

𝐶10
𝑔

= [𝑏2𝑛𝑏1𝑠 sin 𝜃 − 𝑏2𝑛𝑏1𝑒 cos 𝜃 + 3𝑏1𝑛𝑏2𝑒] cos 𝛾  

+[−𝑏2𝑛𝑏1𝑛
cos𝜃

sin𝜃
− 3𝑏2𝑒𝑏1𝑠 cos 𝜃 − 𝑏2𝑒𝑏1𝑒

(2−3 cos2 𝜃)

sin𝜃
] cos 𝛽  
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𝐶11
𝑔

= [−2𝑏1𝑠𝑏2𝑒 − 2𝑏1𝑛𝑏2𝑛 sin 𝜃] cos 𝛾 + [𝑏2𝑛 (−𝑏1𝑠
cos𝜃

sin𝜃
+ 𝑏1𝑒)] cos 𝛽  

 

𝐶12
𝑔

= [2𝑏2𝑒(𝑏1𝑠 cos 𝜃 + 𝑏1𝑒 sin 𝜃)] cos 𝛾  

+[−𝑏2𝑛𝑏1𝑠
(1−2cos2 𝜃)

sin𝜃
+ 2𝑏2𝑛𝑏1𝑒 cos 𝜃 + 2𝑏2𝑒𝑏1𝑛] cos 𝛽  

 

 

𝐶13
𝑔

= [−6𝑏2𝑒𝑏1𝑛 cos 𝜃 + 𝑏2𝑛𝑏1𝑠 cos 𝜃 sin 𝜃 + 𝑏2𝑛𝑏1𝑒(2 + sin2 𝜃)] cos 𝛾  

+[𝑏2𝑛𝑏1𝑛
(2+sin2 𝜃)

sin𝜃
+ 3𝑏2𝑒𝑏1𝑠 − 2𝑏2𝑒𝑏1𝑒

cos𝜃

sin𝜃
] cos 𝛽  

 

 

The coefficients in eqn. (A5) are: 

 

𝐴1
𝑐 = cos 𝛾 sin 𝜃 [𝑏2𝑠𝑏1𝑛 sin 𝜃 − 2𝑏2𝑛𝑏1𝑒 + 𝑏2𝑒𝑏1𝑛 cos 𝜃]  

−𝑏1𝑒 cos 𝛽 (𝑏2𝑠 sin 𝜃 + 𝑏2𝑒 cos 𝜃)  

 

𝐴2
𝑐 = cos 𝛾 sin 𝜃 [−𝑏2𝑒𝑏1𝑛 + 2𝑏2𝑛𝑏1𝑒 cos 𝜃] +𝑏1𝑒𝑏2𝑒 cos 𝛽  

 

𝐴3
𝑐 = 2 cos 𝛾 sin 𝜃 [−𝑏2𝑒𝑏1𝑒 sin 𝜃 + 𝑏2𝑠𝑏1𝑒 cos 𝜃]  

 

𝐶4
𝑐 = 2𝑏1𝑏2𝑛 sin 𝜃 + [−𝑏2𝑛𝑏1𝑒 sin 𝜃] cos 𝛾 + [𝑏1𝑛𝑏2𝑛] cos 𝛽  

 

𝐶5
𝑐 = [−2𝑏2𝑛𝑏1𝑒 cos 𝜃 + 𝑏1𝑛𝑏2𝑒] sin 𝜃 cos 𝛾 + [−𝑏2𝑒𝑏1𝑒] cos 𝛽  

 

𝐶6
𝑐 = 2𝑏1𝑏2𝑒 + [𝑏1𝑛𝑏2𝑛 cos 𝜃 − 𝑏2𝑒𝑏1𝑒] cos 𝛾 + [−𝑏2𝑛𝑏1𝑒

cos𝜃

sin𝜃
] cos 𝛽  

 

𝐶7
𝑐 = −4𝑏1𝑏2𝑛 sin 𝜃 cos 𝜃 + [𝑏1𝑛𝑏2𝑒 sin 𝜃] cos 𝛾 + [−2𝑏1𝑛𝑏2𝑛 cos 𝜃 − 𝑏2𝑒𝑏1𝑒] cos 𝛽  

 

𝐶8
𝑐 = 2𝑏1𝑏2𝑒 + [𝑏1𝑛𝑏2𝑛 cos 𝜃 − 𝑏2𝑒𝑏1𝑒] cos 𝛾 + [−𝑏2𝑛𝑏1𝑒

cos𝜃

sin𝜃
+

3𝑏1𝑛𝑏2𝑒

sin𝜃
] cos 𝛽  

 

𝐶9
𝑐 = 2𝑏1𝑏2𝑛 sin 𝜃 + [𝑏2𝑛𝑏1𝑒(2 + cos2 𝜃) − 2𝑏1𝑛𝑏2𝑒 cos 𝜃] sin 𝜃 cos 𝛾  

+[𝑏1𝑛𝑏2𝑛 + 2𝑏2𝑒𝑏1𝑒 cos 𝜃] cos 𝛽  

 

𝐶10
𝑐 = 2𝑏1𝑏2𝑒 + [𝑏1𝑛𝑏2𝑛 cos 𝜃 + 𝑏2𝑒𝑏1𝑒(2 − 3 cos2 𝜃)] cos 𝛾  
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+[−𝑏2𝑛𝑏1𝑒
cos𝜃

sin𝜃
+

3𝑏1𝑛𝑏2𝑒

sin𝜃
] cos 𝛽  

 

𝐶11
𝑐 = 2𝑏1𝑏2𝑛 sin 𝜃 + [−𝑏2𝑛𝑏1𝑒 sin 𝜃] cos 𝛾 + [−2𝑏1𝑛𝑏2𝑛] cos 𝛽  

 

𝐶12
𝑐 = [−2𝑏2𝑛𝑏1𝑒 sin 𝜃 cos 𝜃 − 2𝑏1𝑛𝑏2𝑒 sin 𝜃] cos 𝛾 + [2𝑏1𝑒𝑏2𝑒] cos 𝛽  

 

 

𝐶13
𝑐 = −4𝑏1𝑏2𝑒 cos 𝜃 + [𝑏1𝑛𝑏2𝑛(−2 − sin2 𝜃) + 2𝑏2𝑒𝑏1𝑒 cos 𝜃] cos 𝛾  

+[𝑏2𝑛𝑏1𝑒
(2+sin2 𝜃)

sin𝜃
− 6𝑏1𝑛𝑏2𝑒

cos𝜃

sin𝜃
] cos 𝛽  

  

Case (ii) – the two dislocation densities are parallel 

In this case, the oblique coordinate system in Figure 1(a) breaks down, and 

instead, a Cartesian system with mutually orthogonal unit basis vectors {𝜉2, �̂�3 × 𝜉2, 

�̂�3} is used, as explained by Hirth and Lothe (1992). Here, 𝜉2 points along the 

dislocation segment d-2, and segment d-1 along 𝜉1 is now parallel to the 𝜉2 axis, 

where (𝜉1 ⋅ 𝜉2) is ±1 depending on whether the two dislocations are parallel or 

anti-parallel. As before, (x, y, z) represent the relative coordinates of d-1 from d-2 in 

the coordinate system {𝜉2, �̂�3 × 𝜉2, �̂�3}. In eqns. (11) and (A2),  

 

∇⃗⃗ = 𝜉2 (
𝜕

𝜕𝑥
) + �̂�3 × 𝜉2 (

𝜕

𝜕𝑦
) + �̂�3 (

𝜕

𝜕𝑧
), ∇2𝑅 = 2/𝑅, 

and 

�̂�1𝕋 = 𝜉2 (
𝑏1𝑠

𝑏1

𝜕2𝑅

𝜕𝑥2 +
𝑏1𝑒

𝑏1

𝜕2𝑅

𝜕𝑥𝜕𝑦
+

𝑏1𝑛

𝑏1

𝜕2𝑅

𝜕𝑥𝜕𝑧
)  

+�̂�3 × 𝜉2 (
𝑏1𝑠

𝑏1

𝜕2𝑅

𝜕𝑥𝜕𝑦
+

𝑏1𝑒

𝑏1

𝜕2𝑅

𝜕𝑦2 +
𝑏1𝑛

𝑏1

𝜕2𝑅

𝜕𝑦𝜕𝑧
)  

+�̂�3 (
𝑏1𝑠

𝑏1

𝜕2𝑅

𝜕𝑥𝜕𝑧
+

𝑏1𝑒

𝑏1

𝜕2𝑅

𝜕𝑦𝜕𝑧
+

𝑏1𝑛

𝑏1

𝜕2𝑅

𝜕𝑧2)  

 

The forms in eqn. (A4) and (A5) still apply. As before, we define the 

following quantities: 

 

𝑏1𝑠 = �⃗⃗�1 ∙ 𝜉1  ;  𝑏1𝑛 = �⃗⃗�1 ∙ �̂�3  ;   𝑏1𝑒 = �⃗⃗�1 ∙ (�̂�3 × 𝜉1) ; 

𝑏2𝑠 = �⃗⃗�2 ∙ 𝜉2  ;  𝑏2𝑛 = �⃗⃗�2 ∙ �̂�3  ;   𝑏2𝑒 = �⃗⃗�2 ∙ (�̂�3 × 𝜉2)  

 

In the following, we set �̂�3 to be the slip plane normal �̂� for dislocation segment d-1. 
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The coefficients in eqn. (A4) are: 

 

𝐴1
𝑔

= (𝜉1 ⋅ 𝜉2)[−𝑏1𝑠𝑏2𝑒]  

 

𝐴2
𝑔

= (𝜉1 ⋅ 𝜉2)[𝑏1𝑠𝑏2𝑠]  

 

𝐴3
𝑔

= 0  

 

𝐶4
𝑔

= [𝑏1𝑠𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶5
𝑔

= [−𝑏1𝑛𝑏2𝑛 + 𝑏1𝑒𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶6
𝑔

= [−𝑏1𝑒𝑏2𝑛](𝜉1 ⋅ 𝜉2)  

 

𝐶7
𝑔

= [−𝑏1𝑛𝑏2𝑛 + 𝑏1𝑒𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶8
𝑔

= [−𝑏1𝑒𝑏2𝑛 + 3𝑏1𝑛𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶9
𝑔

= [𝑏1𝑠𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶10
𝑔

= [3𝑏1𝑛𝑏2𝑒 + 2𝑏1𝑒𝑏2𝑛](𝜉1 ⋅ 𝜉2)  

 

𝐶11
𝑔

= [−2𝑏1𝑠𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶12
𝑔

= [2𝑏1𝑛𝑏2𝑛 − 2𝑏1𝑒𝑏2𝑒](𝜉1 ⋅ 𝜉2)  

 

𝐶13
𝑔

= [3𝑏1𝑠𝑏2𝑛](𝜉1 ⋅ 𝜉2)  

 

 

For the coefficients in eqn. (A5), since only edge dislocations can climb, we set 

𝑏1𝑠 = 𝑏1𝑛 = 0. The coefficients become: 

 

𝐴1
𝑐 = 𝐴2

𝑐 = 𝐴3
𝑐 = 𝐶4

𝑐 = 0  

 

𝐶5
𝑐 = [−2𝑏1𝑏2𝑛](𝜉1 ∙ 𝜉2)   

 

𝐶6
𝑐 = [2𝑏1𝑏2𝑒 − 𝑏1𝑒𝑏2𝑒](𝜉1 ∙ 𝜉2)   
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𝐶7
𝑐 = [−2𝑏1𝑏2𝑛 + 3𝑏1𝑒𝑏2𝑛](𝜉1 ∙ 𝜉2)   

 

𝐶8
𝑐 = [2𝑏1𝑏2𝑒 − 𝑏1𝑒𝑏2𝑒](𝜉1 ∙ 𝜉2)  

 

𝐶9
𝑐 = 0  

 

𝐶10
𝑐 = [2𝑏1𝑏2𝑒 + 2𝑏1𝑒𝑏2𝑒](𝜉1 ∙ 𝜉2)  

 

𝐶11
𝑐 = 0  

 

𝐶12
𝑐 = [−2𝑏1𝑏2𝑛 + 3𝑏1𝑒𝑏2𝑛](𝜉1 ∙ 𝜉2)  

 

𝐶13
𝑐 = 0  

 

In these expressions, the term (𝜉1 ∙ 𝜉2) represents the proper behavior of dipole 

interactions, and is needed when the interaction force calculated based on the 

coordinate system {𝜉2, �̂�3 × 𝜉2, �̂�3} for dislocation 2 is referred back to dislocation 1 

as in eqns. (9) and (A2).  
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Table 1 – Parameters for the simulation example in section 3.5   

 

Parameters Values 

Poisson’s ratio 0.3 

Crystal dimensions (with periodic boundary 

conditions), Fig. 7(a) 

50(𝑥) × 50(𝑦) × 5(𝑧) cells 

Cell size ∆𝑥, ∆𝑦, ∆𝑧 section 3.3 200𝑏, 200𝑏, 200𝑏 

Capture radius of interaction force 𝑅𝑐, eqn. (18) 400𝑏 

Radius of annihilation 𝑅𝑎𝑛𝑛, eqn. (23) 200𝑏 

Capture radius for annihilation of edge 𝑅𝑒, eqn. (23) 200𝑏 

Capture radius for annihilation of screw 𝑅𝑠, eqn. (23) 200𝑏 

 

 

 

Table 2 – Proof stress of micro-specimens with and without elastic interactions 

between dislocations. 

 

Specimen 

size 

𝜎0.2%/𝜇 with 

interaction stress 

(×10
-3

) 

𝜎0.2%/𝜇 without 

interaction stress 

(×10
-3

) 

% change without 

interaction stress 

1000b 3.35 4.39 30.93 

2000b 2.02 2.64 30.79 

4000b 1.40 1.65 18.18 

6000b 1.20 1.36 13.31 

8000b 1.09 1.20 10.30 

16000b 1.04 9.94 -4.44 

  



45 
 

Figure Captions 

 

Figure 1 – Elastic interaction between (a) two dislocation segments, and (b) a 

dislocation segment at 𝑟 and a density of dislocations at 𝑟′.  

Figure 2 – Edge-screw idealization of slip systems. 

Figure 3 – Production of new dislocations in the edge-screw idealization by (a) 

expansion of a rectangular loop, (b) bow-out, and (c) trailing 

dislocations. 

Figure 4 – Cross-slip in the edge-screw idealization.   

Figure 5 – Dislocation generation in FVM cells. 

Figure 6 – Dislocation annihilation in FVM cells. 

Figure 7 – (a) Schematic of the simulation block. (b) Simulated stress-strain behavior 

of single crystal aluminum under uniaxial tensile loading. The dashed 

lines are experimental results from Hosford et al. (1960) and the solid 

lines are simulation results. 

Figure 8 – (a): Strain evolution of the specimen under tensile stress along 〈100〉 

lattice direction. (b) The stress-strain curve. (c) Dislocation density 

evolution for the four slip systems. (d) Evolution of the Taylor resistance 

and elastic interaction stress between dislocations. (Stresses are 

normalized by shear modulus 𝜇 .) (e to h): Dislocation density 

distribution evolution. The density maps shown are sections near the 

middle of the cell along the z direction. Dislocation density scale is in 

units of m
-2

. Strain along the tensile direction (휀𝑥𝑥) is specified under 

each snapshot. 

Figure 9 – Simulated stress-strain curves for various specimen sizes loaded at a 

constant strain rate of 2.5×10
-3

s
-1

. 

Figure 10 – Comparison of the present simulation results with data in the literature. 

The upper stress values of the sharp yield points in Figure 9 are used to 

convert into resolved shear strengths here with a Schmid factor of 0.408 

assumed. 

Figure 11 – Dislocation evolution of different specimen sizes with time.   

Figure 12 – Evolution of dislocation-density contour plots as specimens of different 

sizes undergo deformation to different cumulative strains. Dislocation 

density in units of m
-2

. 

Figure 13 – Effects of switching off mutual elastic interactions between dislocations. 

(a) Dislocation density vs time and (b) dislocation density plots at 0.2% 

strain of different specimen sizes with elastic interactions switched off. 

The density scale in (b) is the same as in Figure 12. 
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Figure 14 – The Orowan strain as a compatible, pure-shear, component of the total 

plastic strain tensor due to movement of a dislocation, relative to the 

initial dislocation-free state. The remaining part of the plastic 

deformation tensor is due to the self-field of the dislocation and contains 

incompatibility.  
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(a) 

 

(b) 

 

Figure 1 – Elastic interaction between (a) two dislocation segments, and (b) a 

dislocation segment at 𝑟 and a density of dislocations at 𝑟′.  

 

 

 

 

 
 

Figure 2 – Edge-screw idealization of slip systems. 
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(a) 

 

 

(b) 

 

(c) 

Figure 3 – Production of new dislocations in the edge-screw idealization by (a) 

expansion of a rectangular loop, (b) bow-out, and (c) trailing dislocations. 

 

 

 

 

Figure 4 – Cross-slip in the edge-screw idealization.   
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              (a)                    (b)                

 

Figure 5 – Dislocation generation in FVM cells. 

 

 

 

 

Figure 6 – Dislocation annihilation in FVM cells.  
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(a) 

 

(b) 

 

Figure 7 – (a) Schematic of the simulation block. (b) Simulated stress-strain behavior 

of single crystal aluminum under uniaxial tensile loading. The dashed lines are 

experimental results from Hosford et al. (1960) and the solid lines are simulation 

results. 
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(a) 

 
(b) 

 
(c)  

 
(d)  

 
(e) Strain = 0.001 

 
(f) Strain = 0.01 

 
(g) Strain = 0.02 

 
(h) Strain = 0.03 

 

Figure 8 – (a): Strain evolution of the specimen under tensile stress along 〈100〉 
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lattice direction. (b) The stress-strain curve. (c) Dislocation density evolution for the 

four slip systems. (d) Evolution of the Taylor resistance and elastic interaction stress 

between dislocations. (Stresses are normalized by shear modulus 𝜇 .) (e to h): 

Dislocation density distribution evolution. The density maps shown are sections near 

the middle of the cell along the z direction. Dislocation density scale is in units of m
-2

. 

Strain along the tensile direction (휀𝑥𝑥) is specified under each snapshot. 
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Figure 9 – Simulated stress-strain curves for various specimen sizes loaded at a 

constant strain rate of 2.5×10
-3

s
-1

. 

 

 

 

Figure 10 – Comparison of the present simulation results with data in the literature. 

The upper stress values of the sharp yield points in Figure 9 are used to convert into 

resolved shear strengths here with a Schmid factor of 0.408 assumed. 
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Figure 11 – Dislocation evolution of different specimen sizes with time.   

 

 
 

Figure 12 – Evolution of dislocation-density contour plots as specimens of different 

sizes undergo deformation to different cumulative strains. Dislocation density in units 

of m
-2

. 



55 
 

 

 

 

(a) 

 

   

1000b 4000b 16000b 

(b) 

 

Figure 13 – Effects of switching off mutual elastic interactions between dislocations. 

(a) Dislocation density vs time and (b) dislocation density plots at 0.2% strain of 

different specimen sizes with elastic interactions switched off. The density scale in (b) 

is the same as in Figure 12. 
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Figure 14 – The Orowan strain as a compatible, pure-shear, component of the total 

plastic strain tensor due to movement of a dislocation, relative to the initial 

dislocation-free state. The remaining part of the plastic deformation tensor is due to 

the self-field of the dislocation and contains incompatibility.  
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