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Abstract

The discontinuous Galerkin (DG) scheme is used to solve a conserved higher-
order (CHO) traffic flow model by exploring several Riemann solvers. The
second-order accurate DG scheme is found to be adequate in that the accura-
cy is comparable to the weighted essentially non-oscillatory (WENO) scheme
with fifth-order accuracy and much better than the scheme with first-order
accuracy in resolving a wide moving jam with a shock profile. Moreover, it
considerably reduces the differences between the proposed solvers in gener-
ating numerical viscosities or errors. Thus, this scheme can maintain high
efficiency when a simple solver is adopted. The scheme could be extended
to solve more complex problems, such as those related to traffic flow in a
network.
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1. Introduction

A Riemann solver, or numerical flux, is sufficient for designing a first-order
accurate scheme for hyperbolic conservation laws. The Godunov, Engquist-
Osher (EO), and Lax-Friedrichs (LF) are well-known numerical fluxes for
solving scalar equations, such as the Lighthill-Whitham-Richards (LWR)
model [16, 21] and the Burgers equation, which give rise, respectively, to
the Godunov, EO, and LF schemes [24, 4, 23, 6] (see also [8, 9, 29, 5, 3,
2, 15, 11, 26, 35] for studies of the LWR or Multi-class LWR models). To
solve the conserved higher-order (CHO) model [33], which is an extension of
the LWR model, the aforementioned fluxes were extended with a so-called
traffic flow (TF) flux to design a number of first-order accurate schemes [30].
Although these extended fluxes were able to reproduce stable and conver-
gent numerical solutions, considerable numerical viscosities or errors were
observed.

This sequence simplifies the expression of these fluxes and the compu-
tation becomes more efficient; however, the shock profile of the reproduced
wide moving jam in the CHO model becomes smoother and the backward
moving wave becomes faster, which suggests an increase in numerical viscos-
ity. It seems that the improvement in efficiency from computing a simpler
numerical flux is counteracted by an increase in numerical viscosity. If a first-
order accurate scheme is adopted, the grid needs to be refined to improve
the solution. Generally, improving the scheme’s accuracy should suppress
the redundant numerical viscosity in a simpler flux. More precisely, numer-
ical fluxes (either simple or complicated) are expected to produce similarly
accurate solutions in a higher-order scheme. In this case, using a simpler flux
will improve the scheme’s efficiency.

Following this insight, this paper designs a discontinuous Galerkin (DG)
scheme for solving the CHO model by exploiting the numerical fluxes ex-
tended from the Godunov, EO, LF and TF fluxes [30, 19]. The DG scheme
is found to be more accurate than the first-order scheme in that it is able to
suppress differences between the explored solvers when generating numeri-
cal viscosities. Moreover, we find that the performance of the second-order
DG scheme is similar to that of the fifth-order WENO schemes, a similarity
that is due to the existence of a shock profile in the solution, although the
latter scheme is expected to be more accurate in generating smooth solution-
s. These findings indicate that the second-order DG scheme is adequate for
the model, especially when a simpler flux with a lower computational cost is
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adopted. To enhance the argument, an analytical solution for a wide moving
jam is constructed for comparison with the numerical solutions.

The remainder of this paper is organized as follows. Section 2 discusses
the CHO model, together with its solution for a wide moving jam. In Sec-
tion 3, the extended Godunov, EO, LF and TF numerical fluxes are derived
by applying the Riemann solution to the model’s homogeneous system. In
Section 4, the DG schemes are constructed using these fluxes. In Section 5,
numerical solutions to the wide moving jam are derived through simulation,
and the solutions produced by the first-order accurate scheme, the fifth-order
accurate WENO scheme and the second-order accurate DG scheme are com-
pared with the analytical solution. Section 6 concludes the paper.

2. Model equations

Taken as a continuum, the mass conservation of traffic flow is described
through the following partial differential equation:

∂tρ+ ∂x(ρv) = 0, (1)

where ρ(x, t) and v(x, t) are the density and velocity in location x at time
t, respectively, and q(x, t) = ρ(x, t)v(x, t) denotes the flow at (x, t). Assume
that there is a determined equilibrium velocity-density relationship v = ve(ρ)
(v′e(ρ) < 0). Then, the substitution of v in Eq. (1) by this equation gives
rise to the following well-known LWR model [16, 21]:

∂tρ+ ∂x(ρve(ρ)) = 0. (2)

The traffic flow model has been improved since the LWR model was first
proposed. Among the improved models, the higher-order model [20, 10,
18, 25] is typically used to describe stop-and-go waves under a metastable
mechanism.

2.1. Conserved higher-order model

Zhang et al. [33] proposed a conserved higher-order (CHO) model with
the novel introduction of pseudo-density w(x, t), which is transformed from
the velocity through the function v = V (w), where V (·) is also taken as a
velocity-density relationship with V ′(w) < 0, and (wV (w))′′ < 0. Substi-
tuting the velocity v with V (w) in Eq. (1) and an assumed acceleration
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equation, the CHO model can be written as the following conserved system:

∂tρ+ ∂x(ρV (w)) = 0, (3)

∂tw + ∂x(wV (w)) = β−1(V (w)− ve(ρ)), (4)

where Eq. (4) can be viewed as a pseudo-mass conservation with relaxation,
and β is associated with the relaxation time τ through β = −τV ′(w) > 0.
Eq. (4) can also be rewritten in the following transport form [33, 30]:

∂t(ρz) + ∂x(ρzv) = β−1(V (ρz)− ve(ρ)), (5)

where ρz looks like a “momentum” that should be conserved, and the ratio
z = w/ρ reflects the deviation of some ideally allowed density w (or headway
1/w) from the actual vehicular density ρ (or headway 1/ρ). See also [13, 14]
for a similar formulation and interpretation.

Remarkably, the system takes an elegant equation form, which is consis-
tent with the LWR model, such that Eqs (2)-(4) become equivalent in the
sense that they produce a weak solution when setting w ≡ ρ and V (w) ≡
ve(ρ). This suggests that in general, studying the analytical properties of the
system should be much easer than it is for other higher-order models, yet the
system is able to reproduce similar phenomena, such as stop-and-go waves,
under the same metastable mechanism. See [33] for detailed discussions of
the hyperbolicity and the physically bounded solution of system (3)-(4).

2.2. Solution for a wide moving jam

Zhang and his collaborators proposed an analytical technique to deter-
mine the characteristic parameters of a wide moving jam solution in higher-
order models [31, 32, 34, 28]. The same technique is adopted to deal with
a similar solution in system (3)-(4) (see also [7, 22] for similar techniques).
Fig. 1(a) shows the profile of the wide moving jam, which is composed of a
shock (the upstream front) and a smooth transition layer (the downstream
front). We assume that both fronts are connected approximately by two
equilibrium states, (ρA, qe(ρA)) and (ρB, qe(ρB)), in the flow-density phase
plane (Fig. 1(b)). Here, the fundamental diagram qe(ρ) ≡ ρve(ρ) is shown
as a non-convex function, and an equilibrium state is defined as a constant
solution by which the relaxation term in Eq. (4) vanishes. This suggests that
the aforementioned two equilibrium states correspond to wA and wB, which
are determined by V (wA) = ve(ρA) and V (wB) = ve(ρB).
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Fig. 1-(a) A wide moving jam composed of a shock wave (the upstream front) and a
smooth transition layer (the downstream front); (b) the corresponding phase-plot in the

density-flow plane.

To describe the upstream front or shock that is discontinuous with a jump
from ρA to ρB, the Rankine-Hugnoniot (R-H) conditions are applied to the
conservative system (3)-(4). Thus, we have

a =
ρAve(ρA)− ρBve(ρB)

ρA − ρB
=

wAve(ρA)− wBve(ρB)

wA − wB

, (6)

where a < 0 is the shock speed. In Fig. 1(b), the shock is represented by the
jump from (ρA, qe(ρA)) to (ρB, qe(ρB)).

To describe the downstream front or transition layer that smoothly links
ρA to ρB, we assume a smooth traveling wave solution (ρ, w) = (ρ(x −
at), w(x − at)) with the same wave speed a < 0. Substituting this into
system (3)-(4), we have

dρ

dX
=

ρV ′(w)

βq0

aρ+ q0 − qe(ρ)

a− V (w)− wV ′(w)
, (7)

where X = x − at, q0 is the integral constant and w is determined as an
implicit function of ρ through

V (w) = a+ q0/ρ ≥ 0. (8)

Equation (8) can be rewritten as q = aρ+ q0, which suggests that the transi-
tion layer is represented by the segment between (ρA, qe(ρA)) and (ρB, qe(ρB))
in Fig. 1(b). Fig. 1(a) shows that ρ(X) is strictly decreasing with X, thus
the term on the right side of Eq. (7) is required to be negative. As Fig. 1(b)
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shows, aρ + q0 − qe(ρ) ≶ 0, for ρ ≶ ρC , where (ρC , qe(ρC)) is intersected by
the segment q = aρ+ q0 and the fundamental diagram q = qe(ρ), with

aρC + q0 = qe(ρC). (9)

Recall that β > 0 and V ′(w) < 0, and Eq. (8) implies that q0 > 0 because
a < 0. Then, we should have a − V (w) − wV ′(w) ≶ 0, for ρ ≶ ρC . This
requirement can be satisfied because Eq. (8) implies that w is strictly in-
creasing with ρ and a − V (w) − wV ′(w) is strictly increasing with w, thus
(a− V (w)− wV ′(w))′ = −(wV (w))′′ > 0. This discussion also implies that

a = V (wC) + wCV
′(wC), (10)

where wC is associated with ρC through V (wC) = ve(ρC).
Summarizing the discussion of Eqs. (6) to (10), we have the following

three algebraic equations.

−wCV
′(wC) =

ρAρB(ve(ρA)− ve(ρB)

ρC(ρB − ρA)
= ve(ρC)−

qe(ρA)− qe(ρB)

ρA − ρB
,
wA

ρA
=

wB

ρB
,

(11)

for solving ρA, ρB, and ρC , where wχ is associated with ρχ through the
function w = V −1[ve(ρ)]. The wave speed is determined by Eq. (10).

3. Riemann solvers for the homogeneous system

System (3)-(4) is rewritten in the following vector form:

ut + f(u)x = s(u), (12)

with u = (ρ, w)T , f(u) = (f1(u), f2(u))
T , f1(u) = ρV (w), f2(u) = wV (w)

and s(u) = (0, β−1(V (w)−ve(ρ)))
T . To derive a numerical flux, the Riemann

problem in the homogeneous system

ut + f(u)x = 0, (13)

is of interest. The problem is actually set with the initial values

u(x, 0) =

{
u1, x < 0,

u2, x > 0

where u(x, 0) = (ρ(x, 0), w(x, 0))T ,u1 = (ρ1, w1)
T and u2 = (ρ2, w2)

T .
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3.1. Exact Riemann solver or the Godunov flux

The initial values of (ρ, w) are shown in the x-t upper plane (Fig. 2). In
the solution, the flow values (f1(u(0, t)), f2(u(0, t))) in the interface x = 0 are
denoted by (f̂G

1 , f̂
G
2 ), which is the exact Riemann solver that we also call the

Godunov flux. This solver is easily derived through the following discussion.

(a)

t

x

1-rarefaction 2-contact

z(0,t)=z

w wρ1 21

1

ρ2

0
(b)

t

x

1-shock 2-contact
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w wρ1 21

1

ρ2

0

Fig. 2 Two wave breaking patterns associated with the first characteristic field: (a) the
rarefaction wave for w1 ≥ w2; (b) the shock wave for w1 < w2.

First, the second equation in (13) is independent of ρ, which takes the
same form as the LWR model and can be rewritten as the characteristic
equation

∂tw + λ1∂w = 0, (14)

with the eigenvalue λ1 = V (w) + wV ′(w). It is obvious that the Riemann
problem for the second equation in (13) can be solved independently with

f̂G
2 = f̂G

2 (w1, w2), (15)

where f̂G
2 (w1, w2) is the well-known Godunov flux for a scalar conservation

law (its expression can be found in Section 3.2). For a wV (w) that is strictly
concave with (wV (w))′′ < 0, the first characteristic field associated with λ1

or Eq. (14) suggests either a rarefaction or a shock wave, as is shown in Figs
2(a) and (b), respectively.

Second, we take the second equation in (13) as a transport form that
corresponds to Eq. (5), and multiply this equation by 1/ρ and the first
equation in (13) by z/ρ. Reducing one of the resultant equations by the
other gives another characteristic equation,

∂tz + λ2∂xz = 0, (16)
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with the eigenvalue λ2 = V (w) ≥ λ1. Because the characteristic variable z in
(16) is a Riemann invariant with respect to the first characteristic field, the
value of z = w/ρ does not change through the propagation of the first charac-
teristics in the region x/t ≤ λ2(w2), which implies that z(0, t) = z(x, 0) = z1.
We note that the conclusion is also true for cases involving a shock wave (Fig.
2(b)), because the second equation in (13) can be written in a transport form
corresponding to Eq. (5).

Finally, the two flows at the interface are related by the Riemann invariant
w through the relation f1(u(0, t)) = (z(0, t))−1f2(u(0, t)) = z−1

1 f̂G
2 , so that

we have

f̂G
1 =

ρ1
w1

f̂G
2 . (17)

The characteristic variable w in Eq. (14) is a Riemann invariant with
respect to the second characteristic field, by which we always have a contact
discontinuity with the wave speed λ2 = V (w), and w is continuous across
this wave (Figs. 2(a) and (b)). This, together with the aforementioned
information, helps to form a complete solution structure for the Riemann
problem.

3.2. Extended Riemann solvers

The insight for this extension is developed from the relation f1 = z−1f2,
with z being a Riemann invariant. For a numerical flux f̂χ

2 that approximates
f2, the numerical flux that approximates f1 is taken as

f̂χ
1 = z−1

1 f̂χ
2 , z1 =

w1

ρ1
. (18)

Here, f̂χ
2 can be taken not only as the Godunov flux f̂G

2 with χ = G, as in
Eq. (17), but also as many other monotone fluxes for the scalar conservation
law (see [24, 4, 23] for the discussion and application of these fluxes). These
fluxes, together with the traffic flow (TF) flux for the LWR model (Eq. (2)
or the second equation in (13)), are given as follows.

• The Godunov flux:

f̂G
2 (w1, w2) =


min

w1≤w≤w2

f2(w), w1 ≤ w2,

max
w1≥w≥w2

f2(w), w1 > w2

(19)
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• The Engquist-Osher flux:

f̂EO
2 (w1, w2) =

∫ w1

0

max(f ′
2(w), 0)dw +

∫ w2

0

min(f ′
2(w), 0)dw + f2(0).

(20)

• The Lax-Friedrichs flux:

f̂LF
2 (w1, w2) =

1

2
[f2(w1) + f2(w2)− α(w2 − w1)], α = max

w
|f ′

2(w)|.
(21)

• The Traffic Flow flux:

f̂TF
2 (w1, w2) = w1V (w2). (22)

4. The discontinuous Galerkin finite element scheme

By dividing the computational interval (0, L) into cells, Ii = (xi−1/2, xi+1/2),
with ∆i = xi+1/2 − xi−1/2, i = 1, ..., N , we multiply system (12) by a test
function w(x) and integrate the resultant equations over Ii. By applying the
integration of the parts to the second term, we have∫

Ii

u(x, t)tw(x)dx−
∫
Ii

f(u)w′(x)dx+ f(u(xi+ 1
2
, t))w(xi+ 1

2
)

− f(u(xi− 1
2
, t))w(xi− 1

2
) =

∫
Ii

s(u)w(x)dx. (23)

4.1. Semi-discrete scheme

The spatial discretization of the DG finite element method is based on
the weak formulation (23) of system (12). Assume that uh(x, t) is an ap-
proximation to u(x, t), which belongs to the polynomial space P k(Ii) in each
cell. Then, uh(x, t) can be expressed as a linear combination,

uh(x, t)|Ii =
k∑

l=0

ui
l(t)φ

i
l(x),

where {φi
l(x)}kl=0 is a set of bases of P k(Ii). Take {φi

l(x)}kl=0 as being orthog-
onal to each other under the L2-norm, that is,

φi
l(x) = Ll(

2(x− xi)

∆i

), Ll(s) =
1

2ll!

dl

dsl
[(s2 − 1)l],
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where Ll is the Legendre polynomial. Then, replacing u(x, t) in Eq. (23)
with uh(x, t) gives the ordinary differential equation (ODE):

d

dt
ui
l(t)−

2l + 1

∆i

(

∫
Ii

f(uh(x, t))(φ
i
l(x))xdx− f̂(u−

h (xi+ 1
2
, t),u+

h (xi+ 1
2
, t))

+ (−1)lf̂(u−
h (xi− 1

2
, t),u+

h (xi− 1
2
, t))) =

2l + 1

∆i

∫
Ii

s(uh(x, t))φ
i
l(x)dx,

(24)

which is used to solve the coefficients ui
l(t). Here, the DG scheme features

the assumption that the solution uh is discontinuous at the cell boundaries.
Thus, the flow values f(uh(xi± 1

2
, t)) are replaced by the numerical fluxes

f̂(u−
h (xi± 1

2
, t),u+

h (xi± 1
2
, t)), where the function f̂ = (f̂1, f̂2) is defined by Eqs

(18)-(22). The initial values of ui
l(t) are derived by taking the equality be-

tween the integrations of uh(x, 0)φ
i
l(x) and u(x, 0)φi

l(x) over Ii, which gives

ui
l(0) =

2l + 1

∆i

∫
Ii

u0(x)φ
i
l(x)dx. (25)

Theoretically, the approximation is of the (k + 1)-th order of accuracy. To
ensure the same order of accuracy, all integrals are computed by the Gauss
formula with sufficiently high accuracy (e.g., the two-point formula in the
case of k = 1).

4.2. TVD Runge-Kutta time discretization

Equations (24)-(25) can be denoted by the following ODEs:

d

dt
uh|Ii(t) = Lh(uh), uh|Ii(0) =

k∑
l=0

ui
l(0)φ

i
l(x), i = 1, ..., N,

for which the (k+1)-th order TVD Runge-Kutta time discretization is adopt-
ed to ensure the same accuracy as that for the spatial discretization. More-
over, a slope limiter is used at each intermediate time step to ensure the TVD
stability of the integral average of the solution over the cell. The procedure
is briefed in the following.

For a division {tn}Mn=0 of the time interval [0, t], where t0 = 0, and ∆tn =
tn+1 − tn, we set u0

i = ΛΠk
hui(0). Then, for n = 0, ...,M − 1, un+1

i are
computed as follows:
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1. Set u
(0)
i = un

i ;

2. For j = 1, ..., k + 1, compute the intermediate functions:

u
(j)
i = ΛΠk

h{Σ
j−1
l=0αjlw

jl
i }, wjl

i = u
(l)
i +

βjl

αjl

∆tnL(u
(l)
i );

3. Set un+1
i = u

(k+1)
i .

The parameters αjl and βjl are given in [4]. The slope limiter ΛΠ1
h, that acts

on the piecewise linear solution vh|Ii = v̄i + (x− xi)vx,i, is defined by

uh|Ii = ΛΠ1
hvh|Ii = v̄i + (x− xi)m(vx,i,

v̄i+1 − v̄i

∆i/2
,
v̄i − v̄i−1

∆i/2
),

where the minmod function

m(a1, a2, a3) =

{
s min
1≤n≤3

|an|, ifs = sign(a1) = sign(a2) = sign(a3),

0, otherwise.

According to the definition of ΛΠ1
h, the limiter ΛΠk

h (for k > 1) can be
acquired from a standard procedure in [4].

We set k = 1 for the simulation in the following section, which suggests
that the scheme has second-order accuracy. See also [1, 27] for discussions of
the DG scheme for other applications.

5. Numerical simulation

In system (3)-(4), we generally set the relaxation time as τ = 30s, and
the velocity-density relationships as

V (ρ) = vf
1− ρ/ρjam

1 + b(ρ/ρjam) + a(ρ/ρjam)2
,

ve(ρ) = vf{[1 + exp(
ρ/ρjam − 0.25

0.06
)]−1 − 3.72× 10−6},

where vf = 25m/s, a = 4, b = −0.8, and ρjam = 0.16veh./m. Similar
settings were chosen in [30, 19]. To ensure the numerical stability of a scheme,
the time step should satisfy the following CFL condition:

∆t(n) = C
∆x

α(n)
,
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where α(n) = maxi{|λ1(ρ
(n)
i , w

(n)
i )|, |λ2(ρ

(n)
i , w

(n)
i )|}.

The computational interval is set as [0, L], with L = 16000m. However,
the results shown in figures and tables are such that x is scaled by L, ρ and
w are scaled by ρjam, and t is scaled by L/vf .

5.1. Convergence to a smooth solution

For system (3)-(4), there hardly exists a smooth and stable unsteady-state
solution. The instability is due to the coupling effect between the “pressure”
(or convection) and the “fluctuation” (or relaxation) in Eq. (4). Therefore,
we remove the “fluctuation” and actually consider the homogeneous system
(13) for deriving a smooth and stable solution.

Resorting to the discussion in the context of Eqs. (14)-(16), we assume
that initially the profile of ρ and w is smooth and identical, given by

w(x, 0) = ρ(x, 0) =
1

4
− 1

10
sin(2πx). (26)

This suggests that z(x, 0) = 1, and thus z(x, t) = 1 solves Eq. (16) exact-
ly. This solution is related to a linearly degenerate characteristic field, and
suggests that ρ(x, t) = w(x, t). For Eq. (14), which is related to a genuine-
ly nonlinear characteristic field, the solution w(x, t) is derived by parallelly
moving the initial profile of w(x, 0) a distance λ1(w(x, 0))t along x axis, thus
we have

w(x, t) = ρ(x, t) = w(x− λ1(w(x, 0))t, 0). (27)

This solution is smooth and well-posed before a distorted profile appears,
whereafter a discontinuity (shock) should be introduced. See [25, 24] for
details of the related theory.

We confirm that, for the initial conditions (26), Eq. (27) suggests a well-
posed smooth solution at t = 50s, which is before the appearance of a dis-
torted profile or shock. This solution is used for convergence test. Besides, it
provides the boundary conditions for computation. The test achieves almost
the same order of accuracy as that theoretically predicted in the discussed
DG scheme, for k = 1 and k = 2, and for applications of all extended Rie-
mann solvers. Table 1 shows the results given by the EO and TF numerical
fluxes.
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Table 1 L1(0, 1) and L∞(0, 1) errors and orders of accuracy for convergence of w(x, t) in

the DG scheme, where the exact smooth solution is given by Eqs. (26)-(27).

k = 1 C = 0.3 k = 2 C = 0.2
N L1 error order L∞ error order L1 error order L∞ error order
20 2.75E-04 4.55E-04 6.87E-06 2.23E-05
40 6.80E-05 2.02 1.12E-04 2.02 9.66E-07 2.83 3.33E-06 2.74

EO flux 80 1.70E-05 2.00 2.77E-05 2.01 1.33E-07 2.86 4.71E-07 2.82
160 4.24E-06 2.00 6.96E-06 2.00 1.77E-08 2.92 6.16E-08 2.94
320 1.06E-06 2.00 1.75E-06 1.99 2.24E-09 2.98 7.94E-09 2.96
640 2.65E-07 2.00 4.39E-07 2.00 2.81E-10 3.00 1.05E-09 2.91

k = 1 C = 0.25 k = 2 C = 0.15
N L1 error order L∞ error order L1 error order L∞ error order
20 2.74E-04 4.54E-04 1.41E-05 4.35E-05
40 6.79E-05 2.01 1.13E-04 2.01 2.50E-06 2.50 8.59E-06 2.34

TF flux 80 1.70E-05 2.00 2.82E-05 2.00 4.08E-07 2.62 1.49E-06 2.53
160 4.24E-06 2.00 7.03E-06 2.00 6.44E-08 2.66 2.33E-07 2.68
320 1.06E-06 2.00 1.76E-06 2.00 1.00E-08 2.68 3.37E-08 2.79
640 2.65E-07 2.00 4.39E-07 2.00 1.55E-09 2.69 5.26E-09 2.68

5.2. Convergence to a wide moving jam solution with discontinuity

The periodic boundary conditions are applied, and the initial values are
set as{

ρ(x, 0) = ρ0 +∆ρ0{cosh−2[160
L
(x− 3L

8
)]− 1

4
cosh−2[40

L
(x− 13L

32
)]},

w(x, 0) = V −1(ve(ρ(x, 0))).
(28)

We set ∆x = 10m in all schemes. The constant C in the CFL condition
is set as follows: C = 0.5 in the second-order accurate DG scheme, C = 0.2
in the third-order accurate DG scheme except that C = 0.1 for the TF
flux; C = 1.0 in the first-order accurate and the fifth-order accurate WENO
schemes, except that C = 0.68 for the TF flux.
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Fig. 3 Comparison of the numerical results (t = 5600s). (a) The first-order finite volume scheme. (b)
The fifth-order WENO finite volume scheme. (c) The second-order DG scheme.
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Equation (28) can be viewed as a perturbed state from the equilibrium
(ρ0, w0), where w0 = V −1(ve(ρ0)). According to Whitham [25], such an
equilibrium solution is linearly stable if the so-called kinetic wave speed q′e(ρ0)
is between the two characteristic speeds λ1(w0) and λ2(w0). We use this
argument to determine two critical densities, ρc1 = 0.1113ρjam and ρc1 =
0.4240ρjam, such that the equilibrium is linearly stable for ρ0 ≤ ρc1 or ρ0 ≥ ρc2
and unstable for ρ0 ∈ (ρc1 , ρc2). This means that the perturbed state of (28) is
expected to regress to the equilibrium state if ρ0 ≤ ρc1 or ρ0 ≥ ρc2 ; otherwise,
it is very likely to evolve into stop-and-go waves, according to the discussions
in [10, 31, 32, 7, 22] (especially in [28]). The mechanism for the stability and
instability of a phase state may also be more profoundly associated with the
physically bounded solutions of the model [33].

Table 2 Comparison between the characteristic parameters of a wide moving jam acquired

by the numerical and analytical solutions; ρA and ρB denote the minimal and maximal

densities of the solution.

Godunov flux EO flux LF flux TF flux
ρA ρB ρA ρB ρA ρB ρA ρB

First-order scheme 0.1697 0.8067 0.1697 0.8046 0.1702 0.7848 0.1703 0.7759
WENO scheme 0.1708 0.8143 0.1708 0.8140 0.1708 0.8105 0.1708 0.8093

DG scheme (k=1) 0.1708 0.8152 0.1708 0.8148 0.1708 0.8139 0.1707 0.8124
DG scheme (k=2) 0.1708 0.8166 0.1708 0.8163 0.1708 0.8155 0.1708 0.8141

Analytical results ρA = 0.1708 ρB = 0.8267

We choose ρ0 = 0.22ρjam ∈ (ρc1 , ρc2) and ∆ρ0 = 0.2ρjam, where ρ0 is
sufficiently large that we expect an evolution into a wide moving jam. As
Fig. 3 shows, we observe the wide moving jam reproduced by the first-order
accurate, the fifth-order accurate WENO and the second-order accurate DG
schemes, all of which are combined with the extended Godunov, EO, LF and
TF numerical fluxes defined by Eqs (18)-(22). In Table 2, the characteristic
parameters (the maximal and minimal densities) of these simulated solutions
are also compared with those acquired from the discussion in Section 2.2.

When this sequence is followed, the extended numerical fluxes become
simpler and the computational cost is reduced. In general, these results a-
gree well with the analytical findings determined by Eq. (11). However, the
numerical viscosities or errors increase when these fluxes are applied in the
first-order accurate scheme, as shown in Fig 3(a). In contrast, the differences
between these fluxes in generating numerical viscosity are considerably sup-
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pressed in the fifth-order accurate WENO and the second-order DG schemes,
as shown in Figs. 3(b) and (c).

Table 3 Comparison between the fifth-order accurate WENO and the DG schemes in

generating errors, with the first-order accuracy shown for convergence to the analytical

result. The Godunov flux is adopted for both schemes.

Space step ρA ρB Error Convergence order
(∆x = 10m) in ρB in ρB

∆x 0.1708 0.8143 0.0124
∆x/2 0.1708 0.8204 0.0063 0.9767

WENO scheme ∆x/4 0.1708 0.8236 0.0031 1.0231
∆x/8 0.1708 0.8251 0.0016 0.9542
∆x/16 0.1708 0.8258 0.0009 0.8301

∆x 0.1708 0.8152 0.0115
∆x/2 0.1708 0.8209 0.0058 0.9875

DG scheme (k = 1) ∆x/4 0.1708 0.8237 0.0030 0.9511
∆x/8 0.1708 0.8252 0.0015 1.0000
∆x/16 0.1708 0.8258 0.0009 0.7370

∆x 0.1708 0.8166 0.0101
∆x/2 0.1708 0.8216 0.0051 0.9858

DG scheme (k = 2) ∆x/4 0.1708 0.8241 0.0026 0.9702
∆x/8 0.1708 0.8253 0.0014 0.8931
∆x/16 0.1708 0.8259 0.0008 0.8074

Figs. 3(b) and (c), together with Table 2, indicate that the DG and
WENO schemes produce similar numerical results even though the theoreti-
cal accuracy of the latter scheme is higher than that of the former scheme. To
enhance the conclusion, the errors generated by the two schemes are indicated
in Table 3 for comparison. With refined grids, Table 3 also shows a first-order
accurate convergence to the analytical result for these schemes. We note that
the reduction in the order of accuracy is due to the shock discontinuity in
the solution profile. This indicates the efficiency of the second-order accurate
DG scheme in resolving the profile of a wide moving jam in traffic flow.

6. Conclusions

The CHO model is composed of the mass and pseudo-mass conservations,
which are favorably consistent with the LWR model. Underlying this consis-
tency is the finding that the Riemann solver for the model can be expressed
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by the classical Godunov flux, which is based on a Riemann invariant that re-
mains unchanged through propagation from the initial state on the upstream
side to the interface. Accordingly, the classical EO and LF fluxes, together
with a TF flux, are extended, allowing us to obtain a number of Riemann
solvers for solving the CHO model. In general, we find that these fluxes work
well in generating stable and convergent solutions when applied in both the
first-order scheme and the higher-order schemes.

In particular, we conclude that the second-order accurate DG scheme
is efficient for convergence to a traveling wave solution with a shock profile,
especially when combined with a simpler Riemann solver. In fact, the scheme
matches the third-order accurate DG and the fifth-order WENO scheme in
suppressing the errors or numerical viscosities between all of the extended
fluxes (Tables 2 and 3); these errors are clearly shown in the results generated
by the first-order accurate schemes (Fig. 3). The conclusion might also be
suited for other second-order accurate total variation diminishing (TVD)
schemes.

The simulated wide moving jam solution together with the evolution re-
flects many typical phenomena in traffic. Therefore, the indicated efficiency
is significant when the model is extended to simulate traffic flow on a road
network, in which case much greater computational resources is required.
The extension of the model and the corresponding numerical scheme will be
discussed in our future works.
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