

Pengju Gong

Automatic PID Tuning Based on Genetic

Algorithm for Botnia Soccer Robots

Technology and Communication

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/38061097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF APPLIED SCIENCES

Information Technology

FOREWORD

I would like to thank all the people who helped me and inspired me during my

study.

At the beginning, I would like to give my honest thanks to my thesis’s supervisor,

Mr. Yang Liu. He not only instructs me the academic knowledge, but also offers

me a lot of precious opportunities. He gave me the opportunity to study in Vaasa

University of Applied Sciences and to be a member of Botnia Soccer Robot Team.

Those opportunities help me to grow from everyman to an embedded system en-

gineer.

Secondly, I would like to thank associate professor Jun Shu, who is an associate

professor in Hubei University of Technology. He is fully skillful and patient, even

the very basic questions, he also explained to me meticulous.

I am indebted as well to all the members of our Botnia robot teams past and pre-

sent. Dong Liu, Jiangtao Zhang, Bing Feng, Yuan Gao, I learned not only skills

but also how to be a real engineer from you.

In the end, thanks to all the staff of Vaasa University of Applied Sciences, thanks

for all the helps from you.

Here are my deepest thanks again for all of you I mentioned above.

Vaasa, 5/7/2012

Gong Pengju

VAASAN AMMATTIKORKEAKOULU

5

Keyword Genetic Algorithm, PID, Robotics

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Pengju Gong

Title Automatic PID Tuning Based on Genetic Algorithm for

Botnia Soccer Robots

Year 2012

Language English

Pages 61 + 1 Appendices

Name of Supervisor Yang Liu

Current PID parameters of botnia soccer robot are experiential predefined. Those

PID parameters are fixed on different field surface, which make the PID controller

cannot perform very well. To get appropriate PID parameters based on the specif-

ic field, the genetic algorithm was used to tune the PID parameters automatically.

In this thesis, a genetic algorithm program used to tune botnia soccer robot PID

parameters has been designed. Meanwhile, this design has been simulated with

Matlab and implemented with C language in ARM platform. Furthermore, an im-

proved PID controller was designed and simulated to overcome current PID con-

troller’s disadvantages.

The simulation results are satisfactory, and the testing results are acceptable for

practical environment. Several problems were found in the testing and the perfor-

mance of this program can be improved in the future.

CONTENTS

ABSTRACT

1 INTRODUCTION .. 9

1.1 Background ... 9

1.1 Objective ... 10

2 BOTNIA SOCCER ROBOT ... 11

2.1 RoboCup ... 11

2.2 Botnia Soccer Robot Team .. 11

2.3 Botnia Soccer Robot Overview ... 11

2.4 Robot Motors Layout ... 12

2.5 Robot Electronic System .. 14

3 PID CONTROLLER .. 16

3.1 Overview ... 16

3.2 Proportional... 17

3.3 Integral .. 17

3.4 Derivative .. 17

3.5 Botnia Robot PID Controller ... 18

3.6 Improved Botnia Robot PID Controller .. 19

4 GENETIC ALGORITHM ... 22

4.1 Overview ... 22

4.2 Terminology .. 25

4.3 Genetic Representation .. 26

4.4 Fitness Evaluation... 27

4.5 Genetic Operator ... 27

4.5.1 Selection.. 27

4.5.2 Crossover .. 28

4.5.3 Mutation .. 29

4.6 Elitism ... 30

4.7 Terminal Condition .. 30

4.8 Genetic Parameters ... 31

5

4.8.1 Maximum Generation .. 31

4.8.2 Population Size ... 31

4.8.3 Crossover Probability... 31

4.8.4 Mutation Probability .. 32

5 SIMULATION AND IMPLEMENTATION ... 33

5.1 The Main Function ... 33

5.2 Genetic Representation .. 39

5.3 Fitness Evaluation... 40

5.4 Genetic Operator ... 43

5.4.1 Selection.. 43

5.4.2 Crossover .. 46

5.4.3 Mutation .. 47

5.5 Genetic Parameters ... 48

5.5.1 Maximum Generation .. 49

5.5.2 Population Size ... 49

5.5.3 Crossover Probability... 50

5.5.4 Mutation Probability .. 51

5.6 Simulation Result ... 52

6 TESTING .. 57

7 CONCLUSION .. 59

REFERENCES .. 60

APPENDICES

6

LIST OF FIGURES AND TABLES

Figure . SR6 soccer p.12

Figure . SR6 soccer robot motors p.12

Figure 3. SR6 motherboard overview p.17

Figure . Block diagram of PID p.16

Figure . Botnia robot PID controller p.18

Figure . Flow chart of genetic p.24

Figure . Individuals’ distribution in start population p.34

Figure . Evaluation illustration p.41

Figure . Fitness roulette p.44

Figure . Average fitness in each p.53

Figure . Best fitness in each p.54

Figure . Four wheels p.54

Figure . Robot speed p.55

Figure . Wheels speed result of PID without GA p.55

Figure . Robot speed result of PID without GA p.56

Figure . The watcher result of fitness array p.58

7

LIST OF APPENDICES

APPENDIX 1. The Embedded Software Development Environment of Botnia

Robot

8

LIST OF ABBREVIATION

GA : Genetic Algorithm

SGA : Simple Genetic Algorithm

PID: Proportional–Integral–Derivative

SR6 : 6
th

 generation soccer robot

ARM: Advanced RISC Machine

FPGA: Field-Programmable Gate Array

9

1 INTRODUCTION

1.1 Background

The RoboCup competition is one of most famous robot competitions in the world.

It uses the robots as footballers to simulate the real football game and requires

every team is able to “steadily, rapidly, accurately” control their soccer robots.

Because only the robots are controlled precisely, they have capability to complete

a series of complex movements and team cooperation. Such as robot quick startup,

fast steering, precise passing, accurate navigation. Otherwise all the data calculat-

ed by strategy server would be meaningless, for instance, strategy server has fig-

ured out precise pass route and passes time, but the robot cannot arrive at the pre-

determined coordinates, or cannot arrive on time, this means we will lose posses-

sion of the ball.

For now, most RoboCup teams are using PID controller as the robot motor con-

troller, which means appropriate PID parameters need to be found to achieve pre-

cise control of the robots, but on different field surface, the appropriate PID pa-

rameters are different. Calculating corresponding PID parameter separately and

manually setting those parameters to robots is very laborious or even impossible

60 PID parameters need to be set for one filed (every robot has four motors which

need twelve PID parameters and every team has five robots).The ideal situation is

that robots are able to automatically calculate and adjust their PID parameters ac-

cording to specific field conditions.

Automatic PID tuning is significative not only for RoboCup competition but also

for real life. Normally, mobile robots will work in different environments, which

require robots to automatically adjust their PID parameters (if they are using PID

controller) according to the different environments, otherwise, the mobile robot

has no practicality.

Precise motor control is so important that Botnia Soccer Robot team keeps think-

ing about how to get better PID parameters and how to automatically tune the PID

parameters of the robot. Traditional PID calculations requires the accurate model-

10

ing of the robot, but detailed modeling lead to a rapid increase in computation

while too rough modeling is not reliable. The main advantages of the genetic algo-

rithm are an unnecessary robot modeling to calculate the PID parameters and its

fully proven global optimization capability in the decades of research. Although

robot motor control is a real-time system, the calculating of PID parameters does

not need to be real-time. Once the PID parameters are calculated in certain cir-

cumstances, it can be kept using until the environment is changed, for example, in

RoboCup competition, we can let robots calculate their PID parameters according

to competitive field before the competition, and then use this set of parameters in

the competition.

1.1 Objective

The purpose of this thesis was to design a genetic algorithm program that is suita-

ble for botnia soccer robot. This genetic algorithm program is used to tuning PID

parameters of botnia soccer robot to obtain a better performance motor controller.

The requirements of this program are as following:

- Good capability of global optimization

- Time consuming is within one hour, and should be as short as possible.

In order to achieve those requirements, below should be notice:

- A set of appropriate genetic operators

- A set of appropriate genetic parameters

11

2 BOTNIA SOCCER ROBOT

2.1 RoboCup

RoboCup is an international scientific initiative with the goal to advance the state

of the art of intelligent robots. When established in 1997, the original mission was

to field a team of robots capable of winning against the human soccer World Cup

champions by 2050. While that mission remains, RoboCup has since expanded

into other relevant application domains based on the needs of modern society /1/.

2.2 Botnia Soccer Robot Team

Botnia soccer robot team is one of the most competitive teams in the RoboCup

competition, until now, Botnia team has designed six generations soccer robot and

has been in the RoboCup world championship since 2006 and ranked top 10 in

Small-Size League. Botnia team was competed with top universities in the world

such as Harvard, MIT, Carnegie Mellon, Georgia Tech, etc. and beat some of

them.

2.3 Botnia Soccer Robot Overview

The introduced robot is the 6
th

 generation robot, so called “SR6”. Figure shows a

picture of SR6.

SR6 robot consists of the electronic system, mechanical component, motor com-

ponent and battery component.

Motor component contains four wheels and one dribble motor. The wheels are

using single omni directional wheel structure. This structure can make robot to

move in 360 degree, and also make the control easier and more accurate.

12

Figure . SR6 soccer robot

2.4 Robot Motors Layout

Figure . SR6 soccer robot motors layout /2/

13

There are three robot velocity parameters are received from strategy server, rv ,
xv

and yv , which respectively represent the rotation velocity and x, y translational

velocity based on robot coordinate system. The robot coordinate system regards

the robot center as origin, the robot kicking direction as the X-axis positive direc-

tion, and the left as the Y-axis positive direction. In Figure , 1v 、 2v 、
3v 、 4v

represent respectively linear velocity of four motors based on the robot coordinate

system, and the direction of the arrow shows the rotation positive direction.  is

the half of front wheels angle and  is the half of back wheel angle.

From above motors layout information, the following formulas can be obtained /2/:

ryx vvvv   cossin1 ()

ryx vvvv   cossin2 ()

ryx vvvv   cossin3 ()

ryx vvvv   cossin4 ()

Convert above formulas to matrix:





























































r

y

x

v

v

v

v

v

v

v

1cossin

1cossin

1cossin

1cossin

4

3

2

1









 ()

If we need calculate Vx and Vy from V1, V2, V3 and V4, the following formulas

can be used.
























































4

3

2

1

)cos(cos

1

)cos(cos

1

)cos(cos

1

)cos(cos

1
sin4

1

sin4

1

sin4

1

sin4

1

v

v

v

v

v

v

y

x





 ()

14

2.5 Robot Electronic System

Figure . SR6 motherboard overview

Figure shows the motherboard of SR6, its main components and features are

listed below:

Red Frame: The ARM (STM32) chip is the CPU of robot, which is responsible

for receiving commands from strategy server and control FPGA according to

those commands through SPI bus.

Blue Frame: The FPGA (cyclone III) is responsible for controlling robot sensors

and motors depended on commands from ARM chip. The FPGA contains 3-loop

feedback PID (position, velocity and current) controller, current protection etc.

functions.

Orange Frames: Four MOSFET driver modules, which are in charge of driving

the robot.

Yellow frame: The dribble motor driver module that is responsible for dribbling.

15

Purple Frame: The power module. SR6 is powered by a four core battery.

Pink Frame: Mode selection panel, used to select different mode of robot.

Embedded system also contains LCD display, wireless module etc.

16

3 PID CONTROLLER

3.1 Overview

The PID controller is the one of most popular feedback controller in the world. It

contains three types of terms, the proportional term, integral term and derivative

term. The aim of PID controller is to continuous decrease the difference between

expected value and real value. Figure shows PID block diagram in following:

Figure . Block diagram of PID controller /3/

)(tu is an expected value,)(ty is the actual output value of the system,)(te is the

error value, which means the difference between expected value and actual value,

and)(tc is the control value, which can be got by below formulas :

)()()(tytute  ()

]
)(

)(
1

)([)(d
0 dt

tde
Tdtte

T
teKtc

t

i

p  
 ()

pk is the proportional factor

17

iT is the integral time,
i

p
T

k
1

* is the integral factor

dT is the derivative time, dp Tk * is the derivative factor

3.2 Proportional

The proportional term expression is)(* teK p

The role of proportional term is to respond to the error immediately. Once the er-

rors appear, proportional term wills immediately take action to decrease the error.

The strength of the proportional control depends on the proportional factor pK , the

greater proportional factor, the stronger control action, and then the faster transi-

tion process, but if the proportional control is too stronger, the system will be

more prone to oscillatory and destabilized.

3.3 Integral

The integral term expression is dtte
T

K
t

i

p 0)(
1

*

From the mathematical expression of the integral term can know, the integral term

will keep increasing until the error = 0, therefore, integral term is used to elimi-

nate steady state error.

Although integral term can eliminate the steady state error, it will reduce the re-

sponse speed of the system. Increasing iT will slow down the PID process but can

reduce the overshoot, and improve system stability. Decreasing iT will make the

integral action stronger, then the system may produce oscillations, but adjusting

period will be shorter.

3.4 Derivative

The derivative term expression is
dt

tde
TK p

)(
* d

18

The actual control system is always required to accelerate the adjusting process.

When error happened, it not only needs to make an immediate response (the effect

of proportional term), but also need to predict the error according to the trend of

error. In order to achieve this target, derivative term is used.

The derivative term effect is determined by the derivative time constant, Td, the

greater Td, the stronger inhibition of error changing. Derivative term has an obvi-

ously great effect on system stability.

The effect of the derivative term is to prevent the changing of error. It controls the

system based on the trend of changing (rate of changing). If error changing be

faster, the output of the derivative controller will increase, and then, the error can

be corrected before it becomes larger. Derivative term helps the system to reduce

the overshoot, overcome the oscillation, and make the system stabilized.

But the derivative term is very sensitive to noise existed in systems. Generally, do

not have derivative term, or filtering the input signal first if you want to use deriv-

ative term in the system.

3.5 Botnia Robot PID Controller

Figure . Botnia robot PID controller

Figure shows the block diagram of botnia robot PID controller. The derivative

term was not used because it is easily affected by noise, and unfortunately, robot

system is full of kinds of noise, for example, the motors will generate substantive

noise. In this way, the parameters number can be simplify from 12 to 8 in each

19

robot, reducing the complexity of the optimized parameters. The control formula

is listed in following:

)(*)(1d
0





  kk

k

j
jikp eeKeKeKkc

 ()

Where

i

pi
T

T
KK *

T

T
KK d
pd *

The disadvantage of this algorithm is 


k

j
ji eK

0

term will slow down speed adjust-

ing. For example, when robots need quick startup, fast changing direction or stop

immediately, this term will reduce the performance of robots.

Another disadvantage is the output of this algorithm is absolute position of the

motor. If the calculation fails, the output)(kc will significantly change, this will

cause a substantial position change of motor, which is not allowed in RoboCup

competition.

3.6 Improved Botnia Robot PID Controller

To solve above problems, those formula can be evolved as following:

20

][)1(21
d

1

0
1

T

ee
Te

T

T
eKkc kk

k

j
j

i

kp









 

 ()

]
2

[)1()()(21
d1

T

eee
Te

T

T
eeKkckckc kkk

k

i

kkp







21)
2

1(]1[  k
d

pk
d

pk
d

i

p e
T

T
Ke

T

T
Ke

T

T

T

T
K

21   kkk CeBeAe ()

Where

dip
d

i

p KKK
T

T

T

T
KA ]1[

dp
d

p KK
T

T
KB 2)

2
1(

dK
T

T
KC d
p 

And

)()1()(kckckc  ()

For PI controller, following formula can be got:

21

1)()1()( kpkip eKeKKkckc
 ()

The



k

j
ji eK

0 term has been removed in formula 13, the delay problem are solved.

When relative position of motor is required, then just need formula 11 to calculate

)(kc , the absolution position problem can be solved.

This improved PI controller has been simulated in Matlab, but not be implement-

ed yet, this will be a part of future work.

The following code is the Matlab simulation code of improved PID controller.

function [VWheelCtrlOut,ek] = Robo_Pid_Main(VWheel-

Hope,VWheelReal,VWheelCtrlOut,ek1)
global KpKi;

for i=1:1:4
 A = KpKi(i,1) + KpKi(i,2); % A = kp+ki+kd
 B = KpKi(i,1); % B = kp+2*kd
 %C = 0 ; % C = Kd Kd=0 -> C =0
 ek=VWheelHope(i)-VWheelReal(i);
 VWheelCtrlOut(i)=VWheelCtrlOut(i)+A*ek-

B*ek1(i); %A*ek+B*ek1+C*ek2
end
end

22

4 GENETIC ALGORITHM

4.1 Overview

Genetic Algorithm is one of heuristic random search methods that inspired from

Darwin's evolution theory. It was invented by Professor J. Holland of the United

States in 1975 /4/.The basic idea of genetic algorithm is “naturally select, fitter

survive” . It is a kind of mathematical simulation of real natural evolutionary pro-

cess, and it is often applied as an approach to solve global optimization problems.

The advantage of genetic algorithm is that genetic algorithm itself do not need

know anything about the problem, it needs only evaluate each chromosome gen-

erated by the algorithm, encodes the solution of the problem into a chromosome,

and select the chromosomes based on fitness, so that the good adaptability chro-

mosomes have more chance to reproduce offspring.

Normally, genetic algorithm begins with a group of solutions (represented

by chromosomes) called population. Solutions from one population are taken and

used to form a new population. This is motivated by a hope, that the new popula-

tion will be better than the old one. Solutions which are used to form new solu-

tions (offspring) are selected according to their fitness - the more suitable, the

more chances they have to reproduce.

A typical genetic algorithm requires:

- A genetic representation method of all the possible solutions

- A appropriate fitness evaluation function to evaluate the fitness of all so-

lutions

- A set of appropriate genetic operator chosen according to the project-

specified situation

The genetic algorithm does not have certain procedure, which means the proce-

dure of genetic algorithm can be changed according to different situation. This is a

23

challenge of genetic algorithm, the genetic operators and parameters have to be

selected according to the specific project and there do not have a clearly criterion

can tell us how to select genetic operators and parameters.

And unfortunately, the simple genetic algorithm (SGA) invented by Professor J.

Hollan is not convergent, so elitism is often used. That means, at least one best

solution is copied without changes to the new population, in this way; the best so-

lution can survive to the end of algorithm.

Nowadays, the genetic algorithm has been widely used in combination optimiza-

tion, machine learning, signal processing, adaptive control and artificial intelli-

gence. It is a key technology in modern intelligent computing.

24

Figure shows the flow chart of genetic algorithm used in this article.

Figure . Flow chart of genetic algorithm

25

4.2 Terminology

Chromosome

The chromosome is also called individuals, which are used to represent the solu-

tions in state space.

Population

The population is a group of individuals. Numbers of individuals make up the

population, and the number of individuals in the population is called the popula-

tion size.

Fitness

In the theory of evolution, fitness indicates a particular individual adaptive capaci-

ty to the environment. The higher fitness means the greater probability to be se-

lected.

Elite

It is the best individual in each generation, or say, the individual that owns highest

fitness in current population.

26

4.3 Genetic Representation

Genetic representation is the first challenge when the genetic algorithm is applied

and it is a critical step in the genetic algorithm design. The representation method

decides which operators will be used and how to design the fitness evaluation

function, largely determines the performance of genetic algorithm.

So far people have many different representation methods. In general, these en-

coding methods can be divided into three categories: binary encoding method,

floating encoding method and symbol encoding method. Normally, the binary en-

coding is the first choice because following reasons:

- Decoding operation is faster than others

- Crossover and mutation operation is easy to achieve with binary encoding

method

The binary encoding method is used in botnia robot genetic algorithm and all the

discussion in this article is based on the binary encoding method.

The general binary encoding means convert the possible solutions to a string of

binary. Each solution contains at least one variable, for instance, in PID controller,

normally, each solution contains three variables, Kp, Ki and Kd. Assume the

length of solution is fixed 16 bit, 0-4 bit can be assigned to Kd, 5-9 bit to Ki, 10-

15 bit to Kp. If the individual is 12332 (001100 00001 01100), then Kd is 01100,

Ki is 00001, Kp is 001100, but integer is not enough to present solution, decimal

value is needed to present more accurate numbers, such as Ki, the value of Ki

should from 0 to 1, not just 0 or 1, to solve this problem, Ki can be divided by

31(the maximum value of Ki is 11111, which means 31 in decimal form), then the

value from 0 to 1 can be achieve. If Ki is required from 0 to 2, let Ki*2/31, then

the value of Ki will be from 0 to 2.

The botnia robot encoding method will be introduced in details in simulation and

implementation chapter.

27

4.4 Fitness Evaluation

The genetic fitness function that also called object function is used to calculate the

fitness of individuals. The fitness function is always problem dependent, for dif-

ferent project, the reasonable fitness function need to be selected depend on analy-

sis the specify problem. If this is designed wrongly, the algorithm will either con-

verge on an inappropriate solution, or will have difficulty converging at all /5/.

In other words, the fitness function plays a very important role in genetic algo-

rithm to obtain the best solutions within a large search space. Good fitness func-

tions will help genetic algorithm to explore the search space more effectively and

efficiently. Bad fitness functions, on the other hand, can easily make genetic algo-

rithm get trapped in a local optimum solution and lose the discovery power /6/.

4.5 Genetic Operator

Selection, Crossover and Mutation are called Genetic operators, they are the vital

components of genetic algorithm, which can decide the performance of genetic

algorithm.

But for specific situation, it is possible to not only use those three operators, but

also use other operators like regrouping to improve the genetic algorithm global

optimization capability.

4.5.1 Selection

Selection operator is used to choose individuals from the current generation’s

population according to the fitness of individuals.

The local optimum problem has to be noticed in selection operator. Selection op-

erator usually devotes a lot of effort to maintaining the diversity of the population

to prevent premature convergence. Generally, the harder the problem, the more

such local optimum there are /7/. Do not only select the best individuals because

selecting other individuals in addition to the best ones maintains the diversity of

the population, the solutions are spread further out in the search space, and if a

28

part of the population is stuck in a local optimum, a different part of the popula-

tion can still make progress.

Several often used selecting methods are listed in the following:

Roulette - A selection operator in which the chance of a individual getting select-

ed is proportional to its fitness. This is where the concept of survival of the fit test

comes into play.

Tournament - A selection operator which uses roulette selection N times to pro-

duce a tournament subset of individuals. The best individuals in this subset are

then chosen as the selected individuals. This method of selection applies addition

selective pressure over plain roulette selection.

Random - A selection operator randomly selects an individual from current popu-

lation.

4.5.2 Crossover

The central role of biological evolution is the reorganization of the biological ge-

netic, so the key operation of the genetic algorithm is the crossover operator.

Crossover operator will randomly choose points every time to splice parent genes.

There are several ways to achieve the crossover:

Single-Point Crossover

Select a certain single point of both parent individuals. Binary string from begin-

ning of individual to the crossover point is copied from one parent; the rest is cop-

ied from another parent.

For example,

Before crossover:

Father 00000|01110000000010000

Mother 11100|00000111111000101

29

After crossover:

Offspring 00000|00000111111000101

Offspring 11100|01110000000010000

Two-Point Crossover

Two crossover points are selected, binary string from beginning of individual to

the first crossover point is copied from one parent, the part from the first to the

second crossover point is copied from the second parent and the rest is copied

from the first parent.

For example,

Before crossover:

Father 01 |0010| 11

Mother 11 |0111| 01

After crossover:

Offspring 11 |0010| 01

Offspring 01 |0111| 11

4.5.3 Mutation

Mutation operator will alter one or more gene values in an individual from its ini-

tial state. It is an aiding method to generate new individuals, which determines the

local optimization ability of genetic algorithm, while maintaining the diversity of

the population.

The basic bit mutation operator refers to the individual encoded strings randomly

assigned one or a few genes to mutation operator. If those genes is 0, then the mu-

tation operator turn it to 1, on other hand, if the original gene value is 1, the muta-

tion operator turns it to 0.

30

For example,

Before Mutation:

00000111000 0 000010000

After Mutation:

00000111000 1 000010000

4.6 Elitism

Only selecting genes from the generated offspring to form a new population may

lose a lot of information in the previous generation populations. In other words,

when crossover operator and mutation operator is used to produce a new genera-

tion, it is very likely to destroy the optimal solution. In each new generation, at

least one best individual are exactly copied to the new generation. In this way, the

optimal solution can survive to the end of the genetic algorithm.

Another reason why the elitism is used is that the studies found the simple genetic

algorithm is not convergent, but the genetic algorithm with elitism will converge

for sure. But genetic algorithm with elitism is possible to convergence in local op-

timal solution; thoughtful genetic parameters have to be selected to avoid this

problem.

4.7 Terminal Condition

The genetic loop is repeated until terminal conditions are reached. The reasonable

terminal conditions can shorten the time of the genetic algorithm. In general, the

terminal conditions are following terms:

- Reach the maximal generation

- Found the satisfied individual

- Could not find a better individual for many generations

31

4.8 Genetic Parameters

Like the genetic operators, genetic parameters also have vital effect of the perfor-

mance of genetic algorithm. The unreasonable parameters will lead to the failure

of genetic algorithm.

The extreme important parameters are maximum generation, population size,

crossover probability and mutation probability.

4.8.1 Maximum Generation

Maximum generation is the maximum number of generation, for instance, if the

maximum generation is 50, which mean the genetic loop will be repeated for 50

times. Too small maximum generation will reduce the global optimization capa-

bility and too big maximum generation will increase the time consuming of genet-

ic algorithm. The genetic algorithm will converge after numbers of generations,

and then the maximum generation can be chosen as convergent generation number.

4.8.2 Population Size

The population size is the number of individuals in the population.

It is difficult to find the optimal solution when the population size is too small, on

another hand, too large population will slow down the genetic algorithm, and

study was found that the bigger population size is helpless to optimize the results.

Different problems may have their appropriate population size.

Normally, population size is usually 30-160. Some studies suggest that choose the

population size depends on the coding method.

4.8.3 Crossover Probability

Probability of crossover operator used in genetic algorithm, Crossover probability

generally take a value from 0.6 to 0.95, if this value is small, it will be very diffi-

cult to find a better individual, but if this value is big, it will be easy to destroy the

high fitness individual.

32

4.8.4 Mutation Probability

Mutation probability, generally take a value from 0.01 to 0.03.

If the mutation probability is too small, it is difficult to produce a new gene struc-

ture, thus reduce the global optimization capability.

Mutation probability cannot be more than 0.5; otherwise genetic algorithm will

become a complete random search algorithm.

33

5 SIMULATION AND IMPLEMENTATION

The genetic algorithm for botnia soccer robot is explained in this chapter, the al-

gorithm is introduced first, then the Matlab code in and C code will be revealed to

make the introduction more clear and understandable.

The genetic algorithm used in botnia soccer robot is based on SGA, which has

been introduced in above chapter; the reason why advanced genetic algorithm did

not be used is the CPU of robot is ARM chip, which is not as powerful as PC’s

CPU. The calculation have to be reduced to make it is possible to run genetic al-

gorithm in robot, in other words, the genetic algorithm used in robot has to be

computationally efficient. But elitism that not belongs to SGA still need to be

used to ensure the genetic algorithm is convergent.

5.1 The Main Function

From the main function, the main genetic loop used in botnia soccer robot can be

known.

In the beginning, initialize genetic parameters. Those genetic parameters are glob-

al variable, which can make parameters tuning faster and easier. Those values are

empirical values. The selection of genetic parameters will be introduced in the fol-

lowing subsection.

Matlab Code:

MAX_GENERATION = 60;
POPULATION_SIZE = 101;
PERFECT_FITNESS = 5500;
P_MUTATION= 0.002;
P_CROSSOVER = 0.80;

34

C Code:

After initialization, we start genetic algorithm process.

Step 1

Creating initial population randomly, the population has to cover the whole state

space and the individuals have to keep enough diversity. It is can be seen from

Figure that the individuals distribute in whole state space and different with each

other in the initial population.

Figure . Individuals’ distribution in start population

#define POPULATION_SIZE 101 //POPULATION_SIZE

#define P_CROSSOVER 3435973837

//probability of crossover 3435973837/2^32=0.8

#define P_MUTATION 8589935

//probability of mutation 8589935/2^32=0.002

#define MAX_GENERATION 60

#define BEST_FITNESS 5500

35

Matlab Code:

C Code:

Step 2

Evaluate each individual. Before evaluation, individuals need to be decoded, then

obtain individual’s fitness by evaluate function, the details of evaluate function

will be introduced in following subsection.

Matlab Code:

C Code:

%random create initial population individuals range 0-2^32
population = round(rand(1,POPULATION_SIZE)*(2^32));
start_pop = population;

%evaluate each individual
 for i =1:1:POPULATION_SIZE
 KpKi = Robo_Ga_Decode(population(1,i));
 fitness(1,i) = Robo_Ga_Evaluate();
 fprintf(fid,'fitness=%4.3f\n',fitness(1,i));
 end

 //**********create the initial population*********//

 srand(time(NULL));

 for(population_index=0;population_index<POPULATION_SIZE

;population_index++)

 {

 population[population_index]=rand();

 }

for(population_index=0;population_index<POPULATION_SIZE;popula

tion_index++)

{Decode(population[population_index]);

//get kp,ki values

fitness[population_index] = Evaluate(execpt_wheel_v);

//kp,ki -> fitness

}

36

Step 3

Preserve the elitist, the Robo_Ga_Max function is used to get the maximum fit-

ness from fitness array.

Matlab Code:

C Code:

Step 4

Check if the ideal fitness value is got, if it is got, stop genetic process, output cor-

responding individual, else start population reproduction process.

Matlab Code:

Step 5

The first step of reproduction is selection. Two parents are chosen according to its

fitness. The individuals who have the higher fitness have more changes to be se-

lected.

%elitist
[max_fitness, max_fitness_index]= Robo_Ga_Max(fitness(1,:));
fprintf('max_fitness=%4.3f\n',max_fitness);
fprintf(fid,'max_fitness=%4.3f\n',max_fitness);
population(1,POPULATION_SIZE)= popula-

tion(1,max_fitness_index);

if max_fitness>PERFECT_FITNESS
 KpKi = Robo_Ga_Decode(population(1,max_fitness_index));
 break
else
 for i=1:1:((POPULATION_SIZE-1)/2)

// elitist strategy elitist rate: 1.25% elitist number: 1

max_fitness = Max(fitness); //get max_fitness and

max_fitness_index population[0] =

population[max_fitness_index];// population[0] is the elitist

37

Matlab Code:

C Code:

Step 6

Crossover operation, Robo_Ga_Crossover function uses two parent selected by

selection operator as the inputs to generate two offspring, the offspring variable is

a matrix, which contains two values.

Matlab Code:

C Code:

Step 7

After crossover operation, execute mutation operation to import new gene to pop-

ulation.

%select
f = Robo_Ga_Select(fitness);
fprintf(fid,'father index=%4.3f\n',f);
m = Robo_Ga_Select(fitness);
fprintf(fid,'mother index=%4.3f\n',m);
parent(1) = population(1,f);
fprintf(fid,'father=%4.3f\n',parent(1));
parent(2) = population(1,m);
fprintf(fid,'mother=%4.3f\n',parent(2));

%crossover
offspring = Robo_Ga_Crossover(parent);
fprintf(fid,'offspring 1 =%4.3f\n',offspring(1));
fprintf(fid,'offspring 2 =%4.3f\n',offspring(2));

//select

f = Select(fitness);

m = Select(fitness);

parent[0] = population[f];

parent[1] = population[m];

//crossover

offspring[0] = *(Crossover(parent));

offspring[1] = *(Crossover(parent)+1);

38

Matlab Code:

C Code:

Step 8

Form the new population with offspring.

Matlab Code:

C Code:

Until now, one generation process has been finished, this process need to be re-

peated until the terminal conditions are reached.

When genetic terminal conditions are reached, output the final result.

Matlab Code:

%mutate
offspring(1) = Robo_Ga_Mutate(offspring(1));
offspring(2) = Robo_Ga_Mutate(offspring(2));
fprintf(fid,'offspring 1 =%4.3f\n',offspring(1));
fprintf(fid,'offspring 2 =%4.3f\n',offspring(2));

%reproduction
population(1,i) = offspring(1);
population(1,POPULATION_SIZE-i) = offspring(2);

%the end of main loop of ga
[max_fitness, max_fitness_index]= Robo_Ga_Max(fitness(1,:));
KpKi = Robo_Ga_Decode(population(1,max_fitness_index));

//mutate

offspring[0] = Mutate(offspring[0]);

offspring[1] = Mutate(offspring[1]);

//reproduction

population[population_index] = offspring[0];

population[POPULATION_SIZE-population_index+1] = offspring[1];

39

C Code:

In the following subsection, the corresponding functions used in above genetic

loop will be introduced in details.

5.2 Genetic Representation

As mentioned in introduction of botnia soccer robot, one botnia robot has four

motors, each motor requires two PID parameters, Kp and Ki, to achieve the PID

control, which means, one robot need eight parameters, so eight parameters need

to be encoded to one individual that length is 32 bit, thus, 4 bit for each PID pa-

rameter.

For motors of botnia robot, the lower bound of Kp and Ki is 0 and the upper

bound is 2.

Following is the individual decoding function, which can give an account of en-

coding method.

num2str(bitget(uint32(individual),29:32)) means extract 28 to 31 bit from indi-

vidual’s binary string.

then divide extracted 4 bit binary string by 15, then the value from 0 to 1 can be

achieve, the reason is extracted binary string is 4 bit, if

num2str(bitget(uint32(individual),29:32)) = 15, divide by 15, the result will be 1,

otherwise, the result will less than 1. Multiplying the result by 2.0, the value from

0 to 2 can be got.

//*******the end of main loop of ga******************//

Max(fitness); //get max_fitness_index

Decode(population[max_fitness_index]); //get kp,ki values

40

Matlab Code:

C Code:

5.3 Fitness Evaluation

When an automatic control system is evaluated, there are three primary figures of

merit is very important: overshoot, settling time, steady-state error. Among them,

the overshoot is the system stability indicator, settling time is the system efficien-

cy indicator and steady-state error is the system accuracy indicator, the smaller

value of these three parameters, the better performance of the automatic control

system.

void Decode(u32 individual)

//chromsome decoding range: kp 0-2 ki 0-2

{

 kp[0] = ((individual&0xF0000000)>>28)*128.0/15.0;

 ki[0] = ((individual&0x0F000000)>>24)*128.0/15.0;

 kp[1] = ((individual&0x00F00000)>>20)*128.0/15.0;

 ki[1] = ((individual&0x000F0000)>>16)*128.0/15.0;

 kp[2] = ((individual&0x0000F000)>>12)*128.0/15.0;

 ki[2] = ((individual&0x00000F00)>>8)*128.0/15.0;

 kp[3] = ((individual&0x000000F0)>>4)*128.0/15.0;

 ki[3] = ((individual&0x0000000F)>>0)*128.0/15.0;

}

function [KpKi] = Robo_Ga_Decode(individual)
KpKi(1,1) =

bin2dec(num2str(bitget(uint32(individual),29:32)))*2.0/15.0;%

extract 4 bit(31-28) as kp0 range 0~2 resolution 128.0/15.0 =

8.533
KpKi(1,2) =

bin2dec(num2str(bitget(uint32(individual),25:28)))*2.0/15.0;
KpKi(2,1) =

bin2dec(num2str(bitget(uint32(individual),21:24)))*2.0/15.0;
KpKi(2,2) =

bin2dec(num2str(bitget(uint32(individual),17:20)))*2.0/15.0;
KpKi(3,1) =

bin2dec(num2str(bitget(uint32(individual),13:16)))*2.0/15.0;
KpKi(3,2) =

bin2dec(num2str(bitget(uint32(individual),9:12)))*2.0/15.0;
KpKi(4,1) =

bin2dec(num2str(bitget(uint32(individual),5:8)))*2.0/15.0;
KpKi(4,2) =

bin2dec(num2str(bitget(uint32(individual),1:4)))*2.0/15.0;
end

41

For individual motor, the actual speed of the motor need to be read from the robot

motor encoder per 0.01s. According to equation 7, the e(t) can be got. For each

PID process, 250 times sampling will be achieve because after 250 times sam-

pling, the PID process is stabilized. ∑e(t) is the sum of the value of overshoot, set-

tling time, steady state error. Square ∑e(t) to make following calculation easier.

For instance, the area of the curve in the following figure is the ∑e(t).

Figure . Evaluation illustration

For the entire robot, due to the interaction between the robot four wheels, even if

the single motor parameters have been optimal, the entire robot may not be able to

achieve the best performance. Therefore, the fitness evaluation function must

evaluate four wheels together for PID tuning. The desired speed of the four motor

and the robot is different, the desired motor speeds should be convert from desired

robot speed by equation 6, and then calculate the difference of the actual speed

and desired speed of the four motors separately, after that, accumulate four motors

differences to get the ∑e(t) of robot. This ∑e(t) can reflect the control perfor-

mance of robot motor control system. The smaller ∑e(t) means the better control

42

performance. Fitness is the reciprocal of ∑e(t), that means greater fitness reflect

the controller performance is better.

Matlab Code:

for i=2:1:PIDIndex
[VWheelCtrlOut(i,:),ek(i,:)]

=Robo_Pid_Main(VWheelHope,VWheelFeedBack(i-

1,:),VWheelCtrlOut(i-1,:),ek(i-1,:));

VWheelReal(i,:)=Robo_WheelCtrlOutToRealV(VWheelReal(i-

1,:),VWheelCtrlOut(i,:));

VWheelFeedBack(i,1)=VWheelReal(i,1)*1;
VWheelFeedBack(i,2)=VWheelReal(i,2)*1;
VWheelFeedBack(i,3)=VWheelReal(i,3)*1;
VWheelFeedBack(i,4)=VWheelReal(i,4)*1;

VRobotReal(i,:)=Robo_WheelVToRobotV(VWheelReal(i,:));
end

 Eval=0;
 EvalE=[0,0,0,0];
 for i=1:1:PIDIndex
 e=VWheelHope-VWheelFeedBack(i,:);
 for j=1:1:4
 EvalE(j)=EvalE(j)+e(j)*e(j);
 end
 end
 Eval=Eval+(EvalE(1)+EvalE(2)+EvalE(3)+EvalE(4))/PIDIndex;
 %KpKi
 Eval=1000000/Eval;
end

43

C Code:

5.4 Genetic Operator

5.4.1 Selection

Roulette algorithm is used in selection operator. Assume the fitness of every indi-

vidual is represented by a pie chart and this pie chart is used as a gambling wheel.

Figure shows this gambling wheel. In this gambling wheel, each piece represents

an individual in population. The piece size is proportional to the fitness of the in-

dividual, the higher fitness, the bigger piece size in this pie chart. To select an in-

dividual, what you need to do is to throw a ball into the gambling wheels, then

rotate it, after the wheel stops, checking the ball stop in which piece, then corre-

sponding individual can be selected.

u32 Evaluate(long* execpt_wheel_v)//input kp[4] ki[4]

{

float fitness = 0.0;

u8 eva_num = 200;

//maybe after 200 times, the pid can be stable

u8 i;

float err;

for(i= 0;i<eva_num;i++)

{

u8 index;

for(index=0;index<4;index++) //4 movement motors

{

MotorSetPidParameter(index,0 ,kp[index]);

//send kp parameter to each motor

MotorSetPidParameter(index,1 ,ki[index]);

//send ki parameter to each motor

iDelay(175); //1750=1ms 175=0.1ms

err = execpt_wheel_v[index] - RD_MotorSpeed(index);

fitness += err*err;

}

}

fitness = fitness/eva_num;

fitness = 1000000/fitness;

return fitness;

}

44

Figure . Fitness roulette

How could the roulette be implemented in programming? Randomly select a

number as threshold according to the population, then start to accumulate the fi t-

ness of every individual. When the threshold is reached, output the index of corre-

sponding individual, otherwise, keep accumulating fitness until the threshold is

reached. With roulette algorithm, the fitter individuals have more chance to be

selected, and the worse individuals also have chance to be selected. The worse

individuals need have chance to be selected since event worst individual, there

still may be good gene. If only the best individuals in the population are selected,

the genetic algorithm is very likely to get stuck on a local optimum. Our purpose

is to get the global optimum, once the genetic algorithm gets stuck on a local op-

timum, and then it is very hard to get out.

45

Matlab Code:

C Code:

function [index] = Robo_Ga_Select(fitness)
global POPULATION_SIZE;

temp = 0;
i= 1;
threshold = 400000*rand(); %400000 general fitness is

between 2000 to 3000
while 1
 temp = temp+fitness(1,i);
 if temp > threshold
 index = i;
 break
 else
 i=i+1;
 end

 if temp < threshold && i == (POPULATION_SIZE-2)
 i = 1;
 end
end

u8 Select(u32* fitness) //roulette wheel selection

{

 u32 filtered_fitness = 0;

 u32 temp=0;

 u8 i = 0;

 u32 threshold = 0;

 seed++;

 srand(seed);

 threshold = rand()%1500000; //threshold: 0-400000

 while(1)

 {

 filtered_fitness = *(fitness+i);

 if(filtered_fitness>8000&&filtered_fitness<20000)

 {

 temp += *(fitness+i);

//accumulate fitness values

 }

 else

 temp += 9000;

 if (temp>threshold)

 {

 return (i);

 }

 else

 i++;

 if (temp < threshold && i == (POPULATION_SIZE-1))

 i = 0;

 }

}

46

5.4.2 Crossover

The single-point crossover is used in genetic algorithm for botnia robot.

A gene locus is randomly chosen, offspring 1 gets the genes before this locus of

father and the genes after this locus of mother. Offspring 2 gets the genes before

this locus of its mother and the genes after this locus of its father.

Matlab Code:

function [offspring] = Robo_Ga_Crossover(parent)
global P_CROSSOVER;
global fid;
global cro_counter;

j = 0;
while j==0
 j=rand;
end
if (rand < P_CROSSOVER)
 offspring(1) = parent(1)*j + parent(2)*(1-j);
 offspring(2) = parent(1)*(1-j) + parent(2)*j;
else
 offspring(1)= parent(1);
 offspring(2)= parent(2);
 fprintf(fid,'omg! crossover did not happan!\n');
end
end

47

C Code:

5.4.3 Mutation

The single-point mutation is used in genetic algorithm for botnia robot.

A gene locus in individual is randomly selected, XOR the value in this locus to

generate a new individual.

u32* Crossover(u32 *parent) //single-point crossover

{

 u8 i = 0;

 u32 father = 0;

 u32 mother = 0;

 u32 offspring[2];

 father = parent[0];

 mother = parent[1];

 offspring[2] = 0;

 i = 0;

 seed++;

 srand(seed);

 if(rand()<P_CROSSOVER)

 {

 i = rand()%32; //0-32 random choose crossover

point

 offspring[0] = father&(0xFFFFFFFF<<i);

 offspring[0] |= mother&(0xFFFFFFFF>>(32-i));

 offspring[1] = mother&(0xFFFFFFFF<<i);

 offspring[1] |= father&(0xFFFFFFFF>>(32-i));

 }

 else

 {

 offspring[0] = father;

 offspring[1] = mother;

 }

 return offspring;

}

48

Matlab Code:

C Code:

5.5 Genetic Parameters

More than one hundred times testing were made to select the genetic parameters,

a part of testing results are listed in following tables, which typically shows the

influence each parameters on genetic algorithm.

function [newoffspring] = Robo_Ga_Mutate(oldoffspring)
global P_MUTATION;
global fid;
global mut_counter;

j = 0;
while j == 0
j=round(rand()*32);

end
if (rand < P_MUTATION)
 newoffspring = xor(1,bitget(uint32(oldoffspring),j));
 fprintf(fid,'lol,Mutate!\n');
else
 newoffspring = oldoffspring;

end

u32 Mutate(u32 offspring) //chromosome mutate

{

 u8 i = rand()%32; //random choose mutation point

 if(rand()<P_MUTATION)

 {

 offspring ^= (1<<i); //0->1 or

1->0

// if(0==(offspring&(1<<i)))

// {

// offspring|=(1<<i); //0->1

// }

// else offspring&=~(1<<i); //1->0

 }

 return offspring;

}

49

The maximum fitness is used to be the indicator of genetic algorithm performance

since the purpose of genetic algorithm is to get a greater fitness.

5.5.1 Maximum Generation

The maximum generation parameter was tested under following conditions:

Each maximum generation parameter was tested for three times. The 30, 40, 50

and 60 are been chosen as population size and some typical results are listed for

each maximum generation parameter in the following table.

Table Maximum Generation Comparison

Maximum

Generation

Maximum Fitness

1 2 3 Average

30 4005.810 4288.340 4154.165 4149.438

40 3911.637 4218.150 3730.095 3953.294

50 5172.546 5149.048 5064.781 5128.792

60 5117.902 5372.736 5012.553 5167.730

From Table 1 can found that normally after 50 generations, the fitness does not

increase any more, that means, the genetic algorithm for botnia robot will con-

verge in 50 generations, so 50 is chosen as the value of maximum generation.

5.5.2 Population Size

The population size parameter was tested under following conditions:

POPULATION_SIZE = 101;
PERFECT_FITNESS = 5500;
P_MUTATION= 0.002;
P_CROSSOVER = 0.80;

MAX_GENERATION = 50;
PERFECT_FITNESS = 5500;
P_MUTATION= 0.002;
P_CROSSOVER = 0.80;

50

Each population size parameter was tested for three times. The 61, 81, 91, 101,

and 121 are chosen as population size and typical results are listed for each popu-

lation size in the following table.

Table Population Size Comparison

Population

Size

Maximum Fitness

1 2 3 Average

61 3146.725 3263.189 3106.155 3172.023

81 4741.174 4607.987 4941.537 4763.566

91 5318.148 4781.858 4881.958 4993.988

101 5172.546 5149.048 5064.781 5128.792

121 4820.625 5137.821 4964.057 4974.168

Table can obtain two conclusions:

- When population size less than 91, the genetic algorithm will meet local

optimum problem, the maximum fitness did not increase in following gen-

erations.

- When population size is greater than 101, the performance of genetic algo-

rithm does not rise with the incensement of population size. More individ-

uals will consume more time but will not improve the performance of ge-

netic algorithm.

Through the comparison of each population size, I chose 101 as population size.

5.5.3 Crossover Probability

The population size parameter was tested under following conditions:

POPULATION_SIZE = 101;

MAX_GENERATION = 50;
PERFECT_FITNESS = 5500;
P_MUTATION= 0.002;

51

Table Crossover Probability Comparison

Crossover

Probability

Maximum Fitness

1 2 3 Average

0.7 5075.598 3053.558 4932.342 4353.833

0.75 5253.152 5021.422 4323.432 4866.002

0.8 5172.546 5149.048 5064.781 5128.792

In the second testing of crossover probability = 0.7, the maximum fitness only

have 3053.558, the population’s fitness did not increase in the genetic process,

that means the genetic algorithm fallen into local optimum in this testing, the rea-

son is the value of crossover probability is too small lead to solutions converge

very soon.

I chose 0.8 as the value of crossover probability, because in numbers of testing,

this value can avoid genetic algorithm falling into the local optimum.

5.5.4 Mutation Probability

The population size parameter was tested under following conditions:

Table Mutation Probability Comparison

Mutation

Probability

Maximum Fitness

1 2 3 Average

0.001 4541.758 5048.739 4454.836 4681.778

0.0015 5065.538 5264.798 5113.118 5147.818

POPULATION_SIZE = 101;

MAX_GENERATION = 50;
PERFECT_FITNESS = 5500;
P_CROSSOVER = 0.80;

52

0.002 5172.546 5149.048 5064.781 5147.818

Although the results in Table are not very different with each other, the 0.002 is

still selected as the mutation probability to improve the global optimization ability

of genetic algorithm.

5.6 Simulation Result

The population size parameter testing is under following conditions:

The below diagrams show one of best results, which get satisfied fitness in 16
th

generation, the summary of final result is listed in the following (those results are

saved automatically by Matlab program):

max_fitness=5966.967

population (1,POPULATION_SIZE)=604801152.233

Kp Ki Results

0.533, 0.000 (motor 1)

0.133, 0.133(motor 2)

0.267, 0.400(motor 3)

0.133, 0.000(motor 4)

Figure shows the average fitness in each generation. Figure shows best fitness in

each generation. Figure shows four wheel’s speed curve. And Figure shows the

robot speed curve.

POPULATION_SIZE = 101;

MAX_GENERATION = 50;
PERFECT_FITNESS = 5500;
P_CROSSOVER = 0.80;

P_MUTATION= 0.002;

53

Figure . Average fitness in each generation

0 5 10 15 20 25 30 35 40 45 50
1200

1400

1600

1800

2000

2200

2400

2600
Average fitness in each generation

Generation

F
it
n
e
s
s

0 5 10 15 20 25 30 35 40 45 50
3000

3500

4000

4500

5000

5500

6000
Best fitness in each generation

Generation

F
it
n
e
s
s

54

Figure . Best fitness in each generation

Figure . Four wheels speed

0 50 100 150 200 250
-100

-80

-60

-40

-20

0

20

40

60

80

100

PID Times(0.01s)

S
p
e
e
d
(m

m
/s

)
4 wheels speed

wheel 1

wheel 2

wheel 3

wheel 4

0 50 100 150 200 250
-20

0

20

40

60

80

100

PID Times(0.01s)

S
p
e
e
d
(m

m
/s

)

Robot speed

Vx

Vy

Vr

55

Figure . Robot speed

Figure and Figure shows the simulation results of the PID controller without

genetic algorithm result in the below to compare with above results.

Figure . Wheels speed result of PID without GA

0 50 100 150 200 250
-120

-100

-80

-60

-40

-20

0

20

40

60

80

PID Times(0.01s)

S
p
e
e
d
(m

m
/s

)

4 wheels speed

wheel 1

wheel 2

wheel 3

wheel 4

56

Figure . Robot speed result of PID without GA

The performance of PID controller with genetic algorithm is significantly better

than the PID controller without genetic algorithm. The value of overshoot and set-

ting time of former is obviously less than the latter. The genetic algorithm suc-

cessful offers reasonable PID parameters to PID controller according to specific

situation.

0 50 100 150 200 250
-20

0

20

40

60

80

100

120

PID Times(0.01s)

S
p
e
e
d
(m

m
/s

)

Robot speed

Vx

Vy

Vr

57

6 TESTING

In the practical testing, all the results can be observed through the debugger of

IDE. The functions of genetic algorithm program work as predefined, but there

are three problems were found, which are listed below:

- Speed of motors become uncontrolled with unfavorable PID parameters

- The evaluation process is very time consuming

- Some values in the memory of ARM are unreasonable.

The uncontrolled speed problem is that the velocity of wheels is not convergence

or the overshoot of speed is unacceptable when the PID parameters are unfavora-

ble. This problem will lead to the speed of motor become uncontrolled and motors

run at breakneck speed. To solve this problem, the speed protection was set, once

the speed of wheels are over the threshold, the wheels are stopped immediately.

One thing should be noticed, MotorSetspeed function could not be used to stop

the motors now, because the motors are out of control under the unfavorable PID

parameters, in this situation, the motors can be stopped through set the kp and ki

to zero.

 C Code:

//speed protect

if(realv>100)

{

//MotorSetspeed(0,0);//no effect

MotorSetPidParameter(0,0,0);

MotorSetPidParameter(0,1,0);

MotorSetPidParameter(1,0,0);

MotorSetPidParameter(1,1,0);

MotorSetPidParameter(2,0,0);

MotorSetPidParameter(2,1,0);

MotorSetPidParameter(3,0,0);

MotorSetPidParameter(3,1,0);

break;

}

58

Although the speed limitation was set to protect motors, it takes around 2s before

the speed is limited. The reason is not clear yet for now, but the solutions will be

tried to solve this problem.

Another problem is the time consuming problem. The evaluation should occur

only after the speed of motor is steady. Otherwise the next evaluation result was

affected by pervious evaluation process. It takes around 2s to wait for the speed

become steady, which means, each evaluation takes around 2s. For each genera-

tion, there are 101 evaluations, so the evaluation will be very time consuming. A

solution should be found to reduce the time of evaluation. The answer is not ob-

tained yet, but it will be a future work.

The third problem is some values in the memory of ARM are unreasonable. Fig-

ure show the watcher result of fitness array, the fitness array is initialized to 0, all

values in the array should be 0, but the value of fitness [15] and fitness [30] is un-

reasonable. The reason of this problem is not very clear, might be the noise lead to

this problem. Some value filters are used in program to filter those unreasonable

values.

Figure . The watcher result of fitness array

59

7 CONCLUSION

In the thesis, a genetic algorithm program used to tune botnia soccer robot PID

parameters has been designed. Meanwhile, this design has been simulated with

Matlab and implemented with C language in ARM platform. Furthermore, an im-

proved PID controller also was designed and simulated to overcome current PID

controller’s disadvantages.

Most of simulation tastings can obtain ideal PID parameters, which make the

overshoot is within 30mm, settling time is within 0.3s, and there is no steady state

error, so, the simulation results are satisfactory,

In practical testing, although it is time-consuming, it is unnecessary to tuning PID

parameters very fast, so this problem can be skipped temporarily. Another prob-

lem is that the velocity of wheels is not convergence when the PID parameters are

unfavorable. Although the speed limitation was set to protect motors, it takes

around 2s before the speed is limited. So, the results in practical environment are

not perfect but still acceptable.

In the future, the genetic algorithm program can be moved to strategy sever, be-

cause the computational capability of strategy sever is much better than botnia

robot and the vision data also can be used in genetic algorithm program to aid PID

tuning if the genetic algorithm is running in strategy sever. And the improved PID

controller will be implemented to instead of current PID controller.

60

REFERENCES

/1/ RoboCup Call for Participation. Accessed1.3.2012.

http://www.ai.rug.nl/robocupathome/cfp2012.html

/2/ Luo Zhong, Li Yang, Jun Shu, 2012, unpublished. Accessed 1.3.2012.

On the Combined Automatic Four Wheel PI Parameter Setting Algorithm for Rob

oCup

/3/ PID controller – Wikipedia. Accessed1.4.2012.

http://en.wikipedia.org/wiki/PID_controller

/4/ Genetic algorithm – Wikipedia. Accessed1.4.2012.

http://en.wikipedia.org/wiki/Genetic_algorithm

/5/ Fitness function – Wikipedia

Accessed13.4.2012.http://en.wikipedia.org/wiki/Fitness_(genetic_algorithm)

/6/ Harris Wu, The Effects of Fitness Functions on Genetic Programming-Based

Ranking Discovery For Web Search. Accessed19.4.2012. The Effects of Fitness

Functions on Genetic Programming-Based Ranking Discovery For Web

Search.pdf>

/7/ Selection (genetic algorithm) – Wikipedia. Accessed1.4.2012.

http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)

/8/ Jin-Sung Kim, Jin-Hwan Kim, Ji-Mo Park, Sung-Man Park, Won-Yong Choe

And Hoon Heo, Auto Tuning PID Controller based on Improved Genetic

Algorithm for Reverse Osmosis Plant. World Academy of Science, Engineering

and Technology. Accessed23.4.2012.

http://www.waset.org/journals/waset/v47/v47-70.pdf>

/9/ Artificial intelligence - Genetic Algorithm selection and crossover - Stack

Overflow. Accessed20.4.2012.

http://stackoverflow.com/questions/8106111/genetic-algorithm-selection-and-

crossover

http://en.wikipedia.org/wiki/PID_controller
http://en.wikipedia.org/wiki/Genetic_algorithm

APPENDIX 1 1()

The Embedded Software Development Environment of Botnia

Robot

FPGA development IDE: Quartus II 9.0sp2 Web Edition

ARM development IDE and toolchain Information:

IDE-Version: uision V4.23.00.0

Toolchain: MDK-ARM Standard Version: 4.23

Toolchain Path: C:\Keil\ARM\BIN40

C Compiler: Armcc.Exe V4.1.0.894

Assembler: Armasm.Exe V4.1.0.894

Linker/Locator: ArmLink.Exe V4.1.0.894

Librarian: ArmAr.Exe V4.1.0.894

Hex Converter: FromElf.Exe V4.1.0.894

CPU DLL: SARMCM3.DLL V4.23

Dialog DLL: DARMSTM.DLL V1.63.0.0

Target DLL: Segger\JL2CM3.dll

Dialog DLL: TARMSTM.DLL V1.60

