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Planar Hexagonal Meshing for Architecture
Yufei Li, Yang Liu, and Wenping Wang

Abstract—Mesh surfaces with planar hexagonal faces, what we refer to as PH meshes, offer an elegant way of paneling freeform

architectural surfaces due to their node simplicity (i.e., valence-3 nodes) and naturally appealing layout. We investigate PH

meshes to understand how the shape, size, and pattern of PH faces are constrained by surface geometry. This understanding

enables us to develop an effective method for paneling freeform architectural surfaces with PH meshes. Our method first

constructs an ideal triangulation of a given smooth surface, guided by surface geometry. We show that such an ideal triangulation

leads to a Dupin-regular PH mesh via tangent duality on the surface. We have developed several novel and effective techniques

for improving undesirable mesh layouts caused by singular behaviors of surface curvature. We compute support structures

associated with PH meshes, including exact vertex offsets and approximate edge offsets, as demanded in panel manufacturing.

The efficacy of our method is validated by a number of architectural examples.

Index Terms—Planar hexagonal mesh, ideal triangulation, mesh offset, architectural geometry

Ç

1 INTRODUCTION

MESHES with planar faces, i.e., polyhedral meshes, have
attracted a great deal of attention recently due to the

increasing demand in architecture for modeling freeform
surfaces with planar panels [1], [2], [3], [4]. Tiling a surface
with planar faces is an extension of the classical plane tiling
problem, which has been well studied and reviewed [5]. To
tile a plane with only congruent copies of a regular poly-
gon, there are only three possible shape choices: equilateral
triangle, square, or regular hexagon (or their affine copies).
However, the problem of tiling a surface with the same
type of polygons is more challenging. In general, the mesh
faces can no longer have identical shapes as they are con-
strained by the surface geometry. For example, as we shall
demonstrate, a negatively curved surface cannot be tiled
with a mesh of planar convex polygons that have only
valence-3 vertices.

Freeform surfaces in architectural construction are usu-
ally rationalized by panels (planar mesh faces) that are
framed by beams (mesh edges) joined at nodes/junctions
(mesh vertices). A major consideration of the fabrication
cost is to reduce node complexity, i.e., vertex valence. There-
fore, triangle meshes are not optimal structures because of
their high vertex valences. Another disadvantage of triangle
meshes is they do not possess exact offsets, which are
important for modeling multi-layer structures [6]. These
drawbacks motivated the study of meshes with planar
quadrilateral faces (PQ meshes). The geometric properties
and effective computation methods of PQ meshes have
been studied and developed in [2], [6], [7], [8], [9].

A mesh surface with planar hexagonal faces, PH mesh for
short, is an appealing surface representation for a number
of reasons. The hexagonal tiling is omnipresent in nature
and is the layout with the tightest circle packing in the plane
[10]. Moreover, compared to PQ meshes, PH meshes offer a
simple solution for paneling and have a lower fabrication
cost because they have the simplest valence-3 nodes and
possess the exact face offset property [6], [11], [12]. Finally,
PH meshes provide a useful shape representation in dis-
crete differential geometry as their offset property facilitates
various surface modeling, e.g., minimal surfaces and con-
stant mean curvature surfaces [3], [13], [14]. Fig. 17 shows
two architectural shapes covered by PH panels.

Despite all these advantages, there has been little study
in the literature about the geometry or computation of PH
meshes. Existing methods for computing PH meshes either
work only for simple shapes [12], [15] or do not take into
account mesh aesthetics [11], [16], [17], [18] (see Fig. 1-right),
which includes mesh fairness, vertex valence regularity
(regular vertex in PH meshes has valence 3), and face shape
regularity (see Dupin-Regular in Section 3.2). Mesh aes-
thetics is an important criterion in architectural design. In
this paper, we shall investigate the geometry of PH meshes
to provide insights into the construction of aesthetic PH
meshes for architectural design.

Our contributions are summarized as follows.

� We investigate the geometry of PH meshes by
revealing how the shape, size, and pattern of PH
faces are constrained by surface geometry and iden-
tify the ideal triangulation for a given freeform surface
that corresponds to an anisotropic regular PH mesh.

� We present a framework for computing such ideal
triangulations for given freeform surfaces.

� We provide an effective technique for improving the
mesh layout in degenerate regions of a freeform sur-
face, i.e., umbilical and parabolic regions.

� We present methods for computing face offsets, ver-
tex offsets, and approximate edge offsets for PH
meshes by optimization.

� Y. Li and W. Wang are with the Department of Computer Science, The
University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
E-mail: liyufei.ustc@gmail.com, wenping@cs.hku.hk.

� Y. Liu is with Microsoft Research Asia, No. 5 Dan Ling Street, Haidian
District, Beijing 100080, P.R. China. E-mail: yangliu@microsoft.com.

Manuscript received 8 Oct. 2013; revised 28 Apr. 2014; accepted 2 May 2014.
Date of publication 29 June 2014; date of current version 26 Nov. 2014.
Recommended for acceptance by S. Takahashi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2014.2322367

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 21, NO. 1, JANUARY 2015 95

1077-2626� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2 RELATED WORK

Surface tiling. Tiling a freeform surface with polygonal faces
is an extension of the classic plane-tiling problem. Plane til-
ing with various patterns is well studied in [5], [10]. For sur-
faces, polygonal meshes can serve different purposes, such
as surface mosaic by quad elements [19], pattern synthesis
by hexagonal elements [20], and texture mapping via trian-
gle/quad elements [21]. In these applications, the planarity
of the mesh faces is not required in general. However, in
architecture, especially when constructing glazed/metal
structures, planar panels are important for reducing fabrica-
tion costs and complexity [1]. There is a series of works on
paneling surfaces with planar quadrilateral faces [2], [4], [9].
Designing and discretizing a conjugate curve network on
the surface is the key to successful PQ meshing.

Planar polygonal meshing. In addition to PQ meshes, gen-
eral planar polygonal meshes have recently been introduced
in architecture. Cutler and Whiting [11] employed the varia-
tional surface approximation approach [22] to compute pla-
nar panels for a given surface. The resulting planar
polygonal mesh generally contains valence-3 vertices but
the approximation quality can be poor and neither the
shape nor the number of sides of the faces can be controlled.
Pottmann et al. [6] presented an elegant method for comput-
ing the dual of a Koebe polyhedron for a planar polygonal
mesh. However, their method is a restricted form-finding
process and does not work for general shapes. Almegaard
et al. [23] computed a piecewise linear supporting function
of a surface to construct a PH mesh based on projective
duality. These results may contain self-intersecting faces
that ruin the aesthetics and utility of the mesh.

For dealing with general freeform surfaces, Troche [16]
proposed the construction of PH meshes through tangent
duality, i.e., by intersecting tangent planes defined on sam-
ple points over the surface. This approach is straightfor-
ward and easy to implement, but there are no appropriate
rules to guide the sampling of the points, which is impor-
tant for avoiding hexagonal face self-intersections and
interpenetrations. Moreover, the intersection of tangent
planes becomes numerically unstable in the parabolic
regions or regions of small curvature. To improve the
intersection stability and mesh fairness, Zimmer et al. [17]
introduced additional degrees of freedom into the tangent
plane intersection by formulating it as an optimization
problem. Poranne et al. [18] also provided an efficient
solver for planarizing the faces of a given polygonal mesh.
Both these methods are very effective at producing planar
faces yet still have difficulties in achieving mesh aesthetics,
although a fairing energy is integrated in the optimization.
The reason is that the geometric optimization/planariza-
tion based methods can only perturb the vertex positions
locally, while the topology (i.e., mesh connectivity) and
vertices location of the input mesh plays a more critical
role for determining an aesthetic output mesh. For exam-
ple in Fig. 1, performing the planarization method pro-
posed in [18] on a hexagonal mesh (left) produces a PH
mesh (right), where the mesh loses aesthetics and contains
irregularly shaped and self-intersecting faces. This indi-
cates that the shape of the PH faces is significantly con-
strained by the underlying surface geometry, and face

planarity and mesh aesthetics might be contradicting goals
if the given surface is not properly discretized.

To explicitly control the shape of PH faces, Wang
et al. proposed the concept of Dupin duality for studying
the relationship between triangular meshes and PH meshes
in their technical report [12]. They first sample a triangle
mesh from a conjugate curve network, then dualize the tri-
angle mesh to a PHmesh using Dupin duality and planarity
optimization. The main limitations of their methods are: (1)
they only work for simple surface shapes due to the use of a
progressive sampling strategy; (2) the design and mesh lay-
out of the conjugate curve network are missing, which is
important to the quality of the resulting PH meshes; (3) the
choice of the step size in handling parabolic region requires
careful design; (4) the method is not able to deal with free-
form surfaces with umbilical regions. Wang and Liu also
propose another method for generating a PH mesh from a
conjugate curvature network directly in [15]. However, their
method also suffers the above problems. In this paper, we
overcome these issues by proposing ideal triangulation and
developing novel techniques to improve the mesh aesthetic
in parabolic and umbilical regions.

Parallel mesh and mesh offset. In architectural construction,
torsion-free nodes and beams are preferable for easy fabri-
cation. Pottmann et al. [6] presented an elegant concept—
parallel mesh to achieve torsion-free structures. Mesh paral-
lelism means that two meshes have the same connectivity
and the corresponding edges are parallel to each other.
Mesh parallelism is closely related to discrete differential
geometry [8] and provides the basis for deriving several
kinds of offset meshes, such as vertex offset, face offset, and
edge offset.

3 PH FACES WITH DUPIN-REGULARITY

In this section, we first investigate how the shape of PH
faces is constrained by the underlying surface geometry
and introduce the optimal shape for PH faces under these
constraints. Then, by studying the local property of tan-
gent duality, we identify the ideal triangles that corre-
spond to Dupin-regular PH faces under the tangent
duality transformation.

3.1 Constrained Shapes of PH Faces

An important concept in our investigation is the Dupin indi-
catrix [24]: given a surface S and a point p 2 S, the Dupin
indicatrix is the collection of conics defined by k1x

2 þ k2y
2 ¼

�1, where k1, k2 are the principal curvatures of S at p (Fig. 2-
left). As shown in Fig. 2-middle, the Dupin indicatrix is an
ellipse when the Gaussian curvature K ¼ k1k2 > 0 at p, or a

Fig. 1. Left: an input hexagonal mesh with fairing but non-planar faces.
Right: a PH mesh obtained by performing the planarization method in
[18] on the left input.
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pair of hyperbolas when K < 0 at p, or a pair of lines when
K ¼ 0 at p (assuming k1 6¼ 0 and k2 ¼ 0). Throughout the
paper we shall frequently refer to a conic homothetic as the
Dupin indicatrix. For brevitys sake, we call it a Dupin conic,
or Dupin ellipse or Dupin hyperbola if we need to be specific.
Thus, with a Dupin conic on surface S at p, we mean a homo-
thetic copy of the Dupin indicatrix of S at p.

Intuitively, at a point p 2 S, a plane that is near and paral-
lel to the tangent plane TpðSÞ cuts S in a shape that is in the
first-order approximation similar to the Dupin indicatrix
[25] in a local region of S (Fig. 2-left). The face f is a convex
hexagon at an elliptic point of S, since it is approximately
inscribed in an ellipse, and a concave hexagon at a hyperbolic
point of S, since it is approximately inscribed in a hyperbola.
Fig. 3 illustrates these cases. The case ofK ¼ 0 (i.e., parabolic
points) deserves special attention. When the parabolic points
are isolated or form a parabolic curve on S, then the PH face
at the point or the curve can assume a variety of shapes, as
influenced by the neighboring PH faceswhereK 6¼ 0.

3.2 Dupin-Regularity

As discussed, paneling a given surface S with PH faces is a
highly constrained problem and it is difficult to directly dis-
cretize S into a hexagonal tiling that has faces with exact
planarity. A natural choice would be to first compute a tri-
angulation T of S, and then convert T to a PH mesh H via
tangent duality, as explained below.

Consider a triangle t of T with vertices va; vb; vc 2 S. Then,
in general, the three tangent planes of S at va, vb, and vc inter-
sect at a point. Let us denote this intersection point as ut and
associate it with triangle t. If we do this for every triangle t of
T and connect the points ut of triangles adjacent to T , thenwe
obtain a hexagonalmeshH combinatorially dual toT . Clearly,
each face ofH is a planar hexagon lying on a plane that is tan-
gent to S at a vertex of T . Hence,H is a PHmesh approximat-
ing S. Conversely, a PH mesh H with its faces tangent to the
surface S corresponds to a triangle mesh whose vertices are at
the tangency points of the faces H with S. This correspon-
dence between T andH is known as tangent duality.

Although the tangent duality involves only a straightfor-
ward geometric construction, its behavior can be rather
complex. Fig. 4 shows three triangulations on the same
shape and their corresponding PH meshes under tangent
duality. As demonstrated, the faces of a PH mesh may take
various shapes, even self-intersecting ones, depending on
the layout of the triangulation. Without properly triangulat-
ing the surface, the dual PH faces might be of awkward
shapes (Fig. 4-middle) or even with self-intersection (Fig. 4-
left). These faces would destroy the aesthetics of an architec-
tural design or even make it useless.

A PH face inscribed in a Dupin conic has the flexibility to
take various shapes. For hexagonal tiling on a plane, a natu-
ral choice is to have the tiles be regular hexagons as much
as possible. However, when approximating freeform surfa-
ces, PH faces in general can no longer have the shape of a
regular hexagon, as they have to be approximately inscribed
in the local Dupin conics as discussed above. Thus, at a
point of K > 0, a natural criterion is to have, as much as
possible, a hexagon that transforms into a regular hexagon
when scaling the Dupin ellipse back to a circle (Fig. 5b). In
the concave case, we introduce the quasi-regular hexagon that
is formed by juxtaposing the two halves of a regular hexa-
gon (see the upper and lower quadrilaterals of the hexagon
in Fig. 5d). Hence, at the point of K < 0, we would like to
have, as much as possible, a hexagon that transforms into a
quasi-regular hexagon when scaling the Dupin hyperbola
back to a unit hyperbola (Fig. 5d). A PH mesh is called
Dupin-regular, if its faces are all in the optimal shapes as
defined above.

Fig. 3. A PH face approximating S is in an approximation inscribed in a
Dupin conic.

Fig. 2. Dupin indicatrix. Left: A point p and its tangent plane TpðsÞ on sur-
face S. The gray plane (which is near and parallel to TpðsÞ) cuts S in a
Dupin conic. Middle: three possible Dupin conics (ellipse (K > 0), paral-
lel lines (K ¼ 0), hyperbolic (K < 0)). Right: a convex hexagon f at an
elliptic point p inscribed in an ellipse.

Fig. 4. Three triangulations on the same shape and their corresponding
PH meshes under tangent duality. Left: a PH mesh with self-intersecting
faces. Middle: a PH mesh with nearly self-intersecting faces. Right: a PH
mesh with nicely shaped faces.

(a) (b) (c) (d)

Fig. 5. Left: K > 0. Right: K < 0. (a)&(c): Dupin regular hexagons. (b):
a regular hexagon. (d): a quasi-regular hexagon.
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Remark. Given a Dupin ellipse, there are infinite choices
for a Dupin regular hexagon (see the inset for an example).
However, for preserving the features of a surface, in our
application we further require the hexagons to be axially
symmetric, i.e., aligned with one of the principal directions
(e.g., Fig. 5a).

3.3 Ideal Triangles

Next, we shall study the local property of tangent duality
and identify for a given surface S the ideal triangles that
would be dualized to PH faces with the previously defined
optimal shapes.

Suppose T is a triangulation of a smooth surface S with
face size OðhÞ (h is the average edge length). At a vertex
vc 2 S of T (Fig. 6), we may approximate S on the tangent
plane Gc at vc by its second order Taylor expansion
z ¼ gðx; yÞ � 1

2 ðk1x2 þ k2y
2Þ with Oðh3Þ error, where k1 and

k2 are the principal curvatures of S at vc associated with the
two principal directions along x-axis and y-axis, respec-
tively. Consider a centrally symmetric hexagon v0v1v2v3v4v5
on the tangent plane Gc with the triangles ~vcviviþ1 congru-
ent to each other, i ¼ 0; 1; . . . ; 5 modulo 6 (Fig. 6-bottom
left). Let vi ¼ gðviÞ, and denote f : u0u1u2u3u4u5 as the hexa-
gon on the plane Gc obtained by applying the tangent dual-
ity to the vertices vi on z ¼ gðx; yÞ, where every vertex ui is
given by the triangle~vcviviþ1.

We conclude that whenK > 0 at vc, the hexagon f under
tangent duality is a Dupin regular hexagon, if and only if the
triangles ~vcviviþ1 (i ¼ 0; 1; . . . ; 5 modulo 6) take the shape
as shown in Fig. 7-left (see the derivation in the supplemental

material, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2014.2322367); such a triangle is called an ideal triangle.
Similarly, whenK < 0 at p, the ideal triangle for obtaining a
Dupin quasi-regular hexagon should take the shape as shown
in Fig. 7-right. Note that, the shape of an ideal triangle is free
up to a uniform scaling, depending on the desired density of
the PH mesh. Due to the smoothness assumption on the sur-
face and the second order approximation of the surface, it is
easy to see that the vertices of T that are adjacent to vc can be
moved to points vi, i ¼ 0; 1; . . . ; 5, on surface S, with a pertur-
bations of Oðh2Þ. Thus, in an approximation, the definition of
ideal triangles also applies to the triangles of T .

4 COMPUTING AN IDEAL TRIANGULATION

In this section, we present a framework for computing an
ideal triangulation T of a given surface S, whose faces are as
close to ideal triangles as possible. An ideal triangulation is
in fact an anisotropic triangle mesh with the triangles
aligned with principal directions and properly scaled with
principal curvatures. To compute such a mesh T of a dis-
crete surface S, we need to: (1) compute a smooth and faith-
ful principal direction field of S; (2) generate an anisotropic
quad mesh aligned with the principal direction field by
parameterization; (3) convert the quad mesh into a triangu-
lation containing ideal triangles. These steps will be detailed
in the subsequent subsections.

4.1 Principal Direction Field

A challenge in computing the principal direction field on a
triangulated surface S is that the estimation of principal
directions becomes numerically unstable in the umbilical
regions (K � 0) of S. This will lead to a noisy and unreliable
field with redundant singularities (Fig. 8-left). To handle this
problem, we adapt the trivial connectionmethod proposed in
[26], as it offers full control over field singularities (locations
and indices). The basic idea is that the field smoothness can
be recovered by re-computing the directions in umbilical
regions, which is formulated as a least-square optimization
problem. During the optimization, the salient principal
directions (where

ffiffiffiffiffiffiffiffiffiffiffiffijkmaxj
p

> 1:5
ffiffiffiffiffiffiffiffiffiffiffiffijkminj

p
in our experiments)

are fixed as hard constraints. Moreover, for each identified
umbilical region of S, we prescribe a singularity of specific
index (12 or� 1

2) at its center according to the type of the umbil-
ical, which is also treated as a hard constraint. The existence
of the solution for this linearly constrained least-square prob-
lem has been well studied in [26], and it guarantees an as-
smooth-as-possible field with faithful singularities and well-
preserved salient principal directions (Fig. 8-right).

Fig. 6. Tangent duality on the local quadratic approximation of S in the
case ofK > 0.

Fig. 7. Ideal triangle in the case ofK > 0 (left) andK < 0 (right).

Fig. 8. (Left): The estimation of principal directions becomes numerically
unstable in the circled umbilical region, leading to a noisy field with
redundant singularities (white dots). (Right): A smooth field with a speci-
fied singularity of index 1=2 is recovered by optimizing the directions in
the umbilical region.
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In this paper, for a principal direction field, we assume
there are two kinds of singularities, i.e., umbilical points,
with index 1

2 and � 1
2, respectively. High order singularities

[27] are rare and we assume they do not appear. Thus, it is
always possible to de-couple the principal direction field
into two smooth line fields, which are locally orthogonal to
each other. We may choose one of them as the direction to
scale the triangles (e.g., the x-axis in Fig. 7), i.e., to align the
PH faces. Fig. 9-left shows such a line field computed by
our method on an ellipsoidal shape.

4.2 Anisotropic Quad Meshing

Next, we construct an anisotropic quad mesh Q of S by
means of global parameterization similar to [7], [9], [28],
[29], [30], i.e., a piecewise linear map from the input triangle
mesh to some disk-like parameter domain, which assigns a
ðu; vÞ parameter value for each vertex of the mesh.

The edges of Q should be aligned with the computed
principal direction field, and the faces of Q should take a
proper aspect ratio so that they can split into two ideal trian-
gles in the next step. See the inset for such a quad face.
Clearly, the quad face ABCD can split into two ideal trian-
gles ~ABE and ~CDE, if

ffiffiffiffiffiffiffiffiffiffi
3jk2j

p kABk ¼ ffiffiffiffiffiffiffijk1j
p kBCk,

where k1 and k2 are the principal curvatures of S at E asso-
ciated with the principal directions. When constructing
such a Q, the gradients of the two piecewise linear scalar
fields u and v should minimize the energy:

Ef ¼ kh
ffiffiffiffiffiffiffi
jk1j

p
Ïu� nk2 þ kh

ffiffiffiffiffiffiffiffiffiffi
3jk2j

p
Ïv� n?k2;

for each face f of the input triangle mesh. Here h is a global
scaling parameter that controls the edge length of the result-
ing quad mesh. The unit vector n is the line direction in f
and n? is the counter-clockwise rotation of n by 90 degrees
in the plane of the face f , and k1 and k2 are the principal cur-
vatures at f associated with n and n?, respectively, repre-
senting anisotropy. The minimization of the energy
ET ¼ P

f areaðfÞEf is solved with a mixed-integer solver
[30]. The iso-parameter curves of u and v induce a quad
mesh (see Fig. 9-middle, for example), where the mesh

edges are aligned with principal directions of the surface
and the edge sizes take the desired anisotropy. To obtain a
mesh with a simple quad patch layout, we impose addi-
tional constraints in the parameterization for aligning the
singularities as much as possible, i.e., enforcing some pair
of field singularities to have the same u� or v� parameter.

4.3 Quad Mesh Triangulation

In Fig. 10, splitting each face of the anisotropic quad mesh at
its center will produce a triangulation, which is an ideal tri-
angulation by construction (see Fig. 9-right for example).
Note that this simple splitting rule leads to a topologically
valid triangulation as long as the quad mesh does not con-
tain interior odd-valence vertices. Our quad mesh always
splits into a valid triangulation, as its interior vertices can
only be of three types, i.e., valence-2 at singularity of index
1
2, valence-4 (regular vertex), and valence-6 at singularity of
index � 1

2. Fig. 10-middle shows the triangulation around
these two kinds of singularities.

5 COMPUTING DUPIN-REGULAR PH MESHES

Theoretically, once an ideal triangulation T of the surface S
is computed, it can easily be converted to a Dupin-regular
PH mesh via tangent duality, as any valence-6 vertex of T
corresponds to a planar hexagon under the duality transfor-
mation. However, there are two degenerate cases that have
to be addressed in practice.

5.1 Handling Umbilical Regions (k1 � k2)

As one might have noticed, in each umbilical region, T con-
tains a valence-3 (resp. valence-9) vertex at the field singular-
ity of index 1

2 (resp. � 1
2), as shown in Fig. 10-middle, which

would result in a triangle (resp. nonagon) in the final PH
mesh. By collapsing the triangle (resp. splitting the nonagon),
we obtain a trio of pentagons (resp. heptagons), indicated by
the faces in red in Fig. 10-right. These non-hexagonal faces are
necessary for compensating the Gaussian curvature of the
surface and in general cannot be avoided. For example, when
paneling a closed genus-0 surface (Euler characteristic x ¼ 2)
with a hexagonal mesh H containing only valence-3 vertices,

Fig. 9. Computing an ideal triangulation. (Left): A smooth and faithful
principal direction field is computed on an ellipsoidal shape. (Middle): An
anisotropic quad mesh aligned with the principal direction field is com-
puted by means of surface parametrization. (Right): The quad mesh is
converted into a triangulation.

Fig. 10. Quad-to-hex conversion in the vicinity of field singularities with
index 1

2 (top) and � 1
2 (bottom), respectively. Left: splitting each face of

the quad mesh along the computed line field. Middle: the resulting trian-
gulation. Right: a PH mesh is obtained by performing the tangent duality
on the triangulation. Collapsing the triangle (top) result in a triple of pen-
tagons (in red), while splitting the 9-polygon (bottom) result in a triple of
heptagons (in red).
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H cannot be free of non-hexagonal faces. If we further require
the non-hexagonal faces to be pentagons or heptagons, it is
not difficult to see that the number of pentagons N5 and hep-
tagons N7 in H are subject to N5 �N7 ¼ 12, according to
Euler’s polyhedral formula. In the viewpoint of an N-symmetry
field [20], [31], [32], a pentagon (resp. heptagon) characterizes
the field singularity of index 1

6 (resp.� 1
6). Given anN-symme-

try field on a closed surface S, the sum of the singularity indi-
ces equals the Euler characteristic of S. This also indicates that
hexagonal tiling H (with valence-3 vertices only) of genus-0
surface S has a minimum of 12 pentagons (e.g., a soccer ball
has 12 pentagons and 20 hexagons).

However, the faces of a PH mesh H present a non-uni-
form pattern in the umbilical regions: see Fig. 11-left, the
faces are either very small and cluttered around the singular-
ity of index 1

2 (top), or very big and sparse around the singu-
larity of index � 1

2 (bottom). Such non-uniform face patterns
are desirable. Moreover, they bring about difficulties in the
physical fabrication. To deal with these non-uniform face
patterns in the umbilical regions, we propose two novel
topological operators, pentagon diverging and heptagon diverg-
ing, for locally editing the connectivity ofH.

Pentagon diverging. Around a singularity of index 1
2, we

have developed a topological operator for collapsing the
cluttered small hexagons. Fig. 11-top illustrates the operator
on H: we first identify the region R surrounded by a trio of
pentagons; we then collapse the hexagons and the three
pentagons located at R’s boundary, and re-tile the interior
of R to construct topologically valid hexagon tiling. This
operator amounts to collapsing a number of hexagons and
pushing the trio of pentagons to diverge by one more ring
of faces - hence the name.

Heptagon diverging. Likewise, around a singularity of
index � 1

2, we have developed an operator for splitting the
sparse big hexagons. Fig. 11-bottom illustrates the operator

on H: we first identify the region R surrounded by a triple
of heptagons; we then split the hexagons and the three hep-
tagons located at R’s boundary, and re-tile the interior of R
to construct a topologically valid hexagon tiling. This opera-
tor amounts to padding a number of hexagons into R’s
boundary and pushing the triple of heptagons to diverge by
one more ring of faces - hence the name.

Remark. These two operators are local operators that mod-
ify the mesh connectivity only around the field singularities
without introducing additional non-hexagonal faces. Execut-
ing them a few times, followed by graph-based Laplacian
smoothing, leads to a hexagonal mesh with more uniform
face patterns (see Fig. 11-right). One might be concerned
with face planarity after performing these operators. We
stress that the affected faces are located at the umbilical
regions of the surface where the PH faces have more rota-
tional freedom, as the Dupin conics are nearly circles
(k1 � k2). Thus, it is not difficult to obtain the face planarity
by locally perturbing the vertices via optimization (discussed
in Section 5.3). See the planarity error (PE) of the optimized
mesh in Table 1.

Fig. 11. (Top): Performing seven iterations of the pentagon diverging operator produces hexagon tiling with more uniform faces (pentagons are
shaded in red). (Bottom): Performing three iterations of the heptagon diverging operator produces hexagon tiling with more uniform faces (heptagons
are shaded in red). The planarity error of the mesh is retrieved via optimization.

TABLE 1
Planarity Error of the PH Meshes

Model #face PEmax PEavg

Fig. 11-top right 817 7:84� 10�9 1:08� 10�10

Fig. 11-bottom right 241 1:45� 10�4 8:46� 10�5

Fig. 12-right 1248 2:09� 10�14 3:78� 10�16

Fig. 13-right 330 4:10� 10�4 1:21� 10�4

Fig. 16 1120 8:71� 10�14 5:03� 10�15

Fig. 17-left 1557 1:22� 10�4 5:97� 10�7

Fig. 17-right 1316 4:16� 10�14 2:33� 10�16

Fig. 18-left 2124 1:05� 10�4 2:08� 10�5

Fig. 18-right 1377 3:38� 10�4 7:34� 10�5

Fig. 20 1302 4:18� 10�3 2:99� 10�4
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5.2 Handling Parabolic Regions (K � 0)

Freeform surfaces often contain parabolic curves (formed by
parabolic points K ¼ 0), and a numerical issue arises in con-
structing the tangent dual for the triangles (e.g., the red trian-
gles in Fig. 12-left) in the parabolic regions, i.e., in the vicinity
of those curves. For such a triangle t, the three tangent planes
G1, G2, and G3 at its vertices are nearly parallel and computing
their intersection point becomes numerically unstable. As a
result, awfully-shaped or even self-intersecting PH faces arise
(Fig. 12-middle). In this case, it is very difficult to recover a
Dupin-regular PHmesh from such an initialization. A practi-
cal way of dealing with this problem is to take the centroid of
t as its dual point, which is a reasonable approximation to the
tangent dual of t, since the plane to which t belongs almost
coincides with G1, G2, or G3. Fig. 12-right shows that a fairing
convex-concave hexagon transition is recovered due to the
employment of face centroids.

Another issue is that the parabolic lines of surface S, sep-
arating the K > 0 and K < 0 regions of S (Fig. 13-left), do
not generally align with the curvature lines of S. As a result,
the transition between convex and concave hexagons is aes-
thetically unpleasant (Fig. 13-middle). In this case, for the
triangles within the region (the quad patch highlighted in
Fig. 13-left) where the parabolic line crosses curvature lines,
we also replace the tangent dual with the face centroid so as
to achieve a better convex/concave hexagon transition
(Fig. 13-right). In our implementation, we manually select
the regions affected by parabolic lines for easy control.

Remark. In parabolic regions, due to the employment of
centroids, the planarity of the dualized hexagons in general
cannot be guaranteed. However, we stress that the affected
faces are not far from being planar since K � 0. In
Section 5.3, we shall present an optimization framework for
locally perturbing the vertices so as to achieve exact face
planarity.

Hybrid PH-PQ meshes. In the areas of a surface where
K < 0, the PH faces are constrained to take concave shapes,
which are sometimes not preferred in the fabrication of
architectural surfaces, as they may cause cracks due to the
large stress concentration on concave vertices [33]. When

concave faces need to be avoided for such reasons, we pro-
pose re-tiling theK < 0 regions with planar quad faces and
construct a so-called hybrid PH-PQ mesh (see the inset). The
operation is as follows: (1) identify any concave hex and
split it into 2 quads at the vertex whose included angle is
bigger than p (Fig. 14a) automatically; (2) smooth the gener-
ated quads by applying the mesh fairing algorithm [34]
(Fig. 14b); (3) coarsen the quads by removing a half number
of grid lines along the splitting direction (Fig. 14c). The pla-
narity of the hybrid mesh can be easily achieved by optimi-
zation (see Table 1), as the edges of the quad faces are
aligned with the principal directions of the surface. Fig. 18
shows two architectural designs paneled by such hybrid
PH-PQ meshes. The resulting hybrid mesh does not contain
any face with concave corners and hence the structural sta-
bility of the mesh is greatly improved.

5.3 Optimization

For an ideal triangulation T on surface S that contains
no umbilical or parabolic points, the tangent duality pro-
vides a fast and precise method for turning T into a
Dupin-regular PH mesh. However, as we discussed, the
face planarity is traded for mesh aesthetics, due to the
execution of topological operators in the umbilical
regions as well as the employment of centroids in the
parabolic regions. Thus, for the above initialized PH
mesh H, we shall devise an optimization framework for
reinforcing the face planarity while preserving the mesh
fairness and shape fidelity.

Face planarity. In order to have faces with exact planarity,
we propose the planarity constraint for a N-polygon
f ¼ v0v1 . . . vN�1: a plane p :¼ n̂f � xþ df ¼ 0 (n̂f is the unit
normal of p) is first identified to fit f in the least-square
sense. The planarity of f could be attained by requiring the

Fig. 12. Left: Triangles in the parabolic regions are shaded in red. Mid-
dle: The tangent duality of those triangles becomes numerically unsta-
ble, producing misshaped PH faces. Right: Centroids are taken as duals
of those triangles, producing well-shaped hexagons. The planarity error
of the mesh is retrieved via optimization, see Table 1.

Fig. 13. Left: The highlighted region shows the area where the parabolic
line (in green) crosses the curvature lines (in blue and red). Middle:
Directly constructing the tangent dual results in unpleasant hexagon
transitions. Right: Centroid duality is employed for the triangles within
the highlighted region, producing pleasant convex-concave hexagon
transitions. The planarity error of the mesh is retrieved via optimization,
see Table 1.

Fig. 14. (a): Split any concave hex at its concave vertex (included angle
> p). (b): Smooth the generated quads. (c): Coarsen the quads by
removing a half number of grid lines along the splitting direction.
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distance between every vertex of f and the fitted plane p to
be zero, which amounts to forcing:

Cf;i :¼ n̂f � vi þ df ¼ 0; i ¼ 0; 1; . . . ; N � 1: (1)

Fairness of PH meshes. In order to preserve the mesh fair-
ness during the planarization, we generalize the graph Lap-
lacian operator based on simple heuristics and introduce
the quasi-Laplacian fairing energy on PH meshes. For a vertex
v, its fairing error is naturally defined as

Efair ¼
X
i

kv� vik2;

where vi is the average position of v’s neighbors. In the case
of K > 0, the neighbors are chosen as the vertices directly
connected with v (Fig. 15-left); while in the case of K < 0, a
modification needs to be made and the neighbors involved
for computing vi are shown in Fig. 15-right. It is trivial to ver-
ify that, in K < 0 regions, this modification preserves the
hexagonal concaveness and attempts to produce Dupin
quasi-regular hexagons. In our experiments, the concavity of
a vertex on face f is detected by checking whether nf � ne is
less than 0:1. Here,nf is the face normal andne is the normal-
ized cross-product of edge vectors connected to this vertex.

Closeness term. To ensureminimal vertex perturbation and
surface distortion, we minimize the original energy Eorig and
closeness energyEdist of every vertex vi in the optimization:

Eorig ¼
X
i

kvi � vi;0k2;

Edist ¼
X
i

dist2ðvi;SÞ;

vi;0 is the initial position of vi and dist is the distance
between vi and its foot point on the underlying surface S.

In summary, the optimization framework is formulated as

min EPH ¼ wfairEfair þ worigEorig þ wdistEdist; (2)

subject to the face planarity constraints in Eq. (1) (wfair ¼
1:0; worig ¼ 0:1; wdist ¼ 0:1 in our experiments). Here the var-
iables are the positions of vertices, and fn̂f ; dfg for each
face. We solve this constrained quadratic optimization problem
by using the augmented Lagrangian method [35].

6 OFFSETS OF PH MESHES

In addition to face planarity, the offset properties are also
very useful from the view of the physical realization of
multi-layer freeform architectures since they serve as the
basis for constructing the supporting structures and geo-
metrically optimal mesh nodes. Pottmann et al. [6] propose
the concept of mesh parallelism and studied different offset
meshes. Two meshes M and M0 are parallel if M and M0

have the same combinatorics and the corresponding edges
are parallel. Mesh parallelism is only used for meshes with

planar faces, thus in this section all meshes are assumed to
have planar faces. Clearly, the corresponding faces of paral-
lel meshes lie in parallel planes. M and M0 are offset from
each other if they are parallel and the distance between
them is constant throughout the mesh. Since there are dif-
ferent ways of defining the distance, i.e., face distance, vertex
distance, and edge distance, we distinguish face, vertex, and
edge offsets according to the distance type that is used. The
face offset property of polyhedral meshes has been studied
thoroughly [2]. In this section, we are interested in develop-
ing practical optimization methods for the computation of
vertex and edge offsets, respectively.

6.1 Vertex Offset

A polygonal mesh has an exact vertex offset if and only if it
is quasi-circular [36], i.e., each face has a parallel circular
polygon inscribed in a unit circle. An equivalent angle crite-
rion is: a planar quad is quasi-circular, if and only if the
four angles enclosed by its four edges have the property
’1 þ ’3 ¼ ’2 þ ’4 ¼ p. Likewise, a planar hex is quasi-circu-
lar if and only if the six angles enclosed by its six edges
have the property ’1 þ ’3 þ ’5 ¼ ’2 þ ’4 þ ’6 ¼ 2p, which
applies to both convex and concave cases (see the right
inset). To compute a PH or PH-PQ meshM that is quasi-cir-
cular, we add this angle constraint into the constraint sys-
tem of (2) for every face of M. After obtaining a quasi-
circular PH mesh, one can construct its vertex offset mesh
by computing its Gaussian image [36].

6.2 Approximate Edge Offset

Compared to a face or vertex offset, the edge offset prop-
erty is rather restrictive: PH meshes possessing face or
vertex offsets are capable of approximating an arbitrary
shape, which is no longer the case with edge offset
meshes [6]. As a matter of fact, the possible shapes that
could be approximated by PH meshes with exact edge
offsets are still unknown at the present time. Therefore,
we provide an optimization algorithm for computing the
approximate edge offset M0 of a given mesh M, i.e., the
corresponding edges of M and M0 have an approxi-
mately constant distance.

Given a PH or PH-PQ mesh M, a mesh M0 is first con-
structed by translating each vertex v of M along the normal
direction at v by a user-specified distance d, which initializes
an edge offset mesh. We then perturb the vertex positions of
both M and M0 at the same time so that M and M0 become
edge offsets of each other as much as possible.

Parallelism constraint. During the optimization, the paral-
lelism of any directed edge e ¼ v0v1

��! ofM and its correspon-
dence e0 ¼ v00v

0
1

��!
of M0 is forced by imposing the constraints

(see the right inset for notation):

Cpara :¼ ðv1 � v0Þ �
�
v0
1 � v0

0

� ¼ 0; (3)

where ”�” stands for the cross product.

Fig. 15. Quasi-Laplacian fairing for hexagon tiling in the case of K > 0
(left) andK < 0 (right).
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Edge distance term. For any pair e and e0, their distance is
optimized as close to d as possible by minimizing:

Eedge :¼ ðv1 � v0Þ
kv1 � v0k �

�
v0
0 � v0

�� �2

þ d2 � ��v0
0 � v0

��2" #2

;

where ðv1�v0Þ
kv1�v0k � ðv0

0 � v0Þ is the projection of v0v
0
0

��!
onto v0v1

��!.
To summarize, the edge offset optimization is formu-

lated as

min EfðMÞ þEfðM0Þ þ wedgeEedge; (4)

subject to face planarity constraints (1) and edge parallel
constraints (3) on both meshes.

Compared with the optimization strategy in [6], our opti-
mization does not involve the Gaussian image and is carried
out on M0 as well as the original mesh M, producing two
planar parallel meshes with an approximately constant
edge-edge distance. The effectiveness of our method is dem-
onstrated by experiments in Section 7.

7 EXPERIMENTS

The efficacy of our method is demonstrated on a variety of
architectural shapes. All the experiments are conducted on
a 2.4 GHz Intel Xeon CPU with 4 GB of RAM and the pla-
narity errors of the PH meshes are reported in Table 1. All
the models are normalized to have a unit bounding box for
measuring numerical errors. The planarity error of each
face f is evaluated as the largest distance between any of its
vertices and its fitting plane p. PEmax and PEavg stand for
the maximum and average planarity error PE among all
faces of a mesh.

Fig. 17 demonstrates two architectural designs paneled
by PH meshes where both the face planarity (see Table 1)
and mesh aesthetics are well achieved. As demonstrated,
the PH faces are nearly Dupin regular/quasi-regular hexa-
gons aligned with the principal directions, and they present
a pleasant transition when crossing the parabolic lines.
Moreover, the PH faces in the umbilical regions exhibit a
uniform pattern thanks to our topological operations.

Subdivision based modeling. For a given surface S, comput-
ing a faithful discretization of the principal curve network on
S is the key for paneling S with aesthetic PH meshes. In
addition to paneling the given freeform shapes with PH
meshes, the modeling/design of such architecture shapes is
also in great demand. As previously mentioned, circular PQ
meshes approximating an underlying surface S are discreti-
zations of the principal curve network of S [37]. Making a
quad mesh Q circular amounts to requiring every face f of Q
to be inscribed in a circle, that is, imposing a constraint f1þ
f3 ¼ f2 þ f4 ¼ p on f into the optimization in Section 5.3.
f1 	 f4 are the four inner angles of f in consecutive order.
Inspired by this observation, we present a modeling frame-
work by combining the circular PQ mesh optimization with

a quad-based subdivision scheme like Catmull-Clark in an
alternating manner: starting from a very coarse circular PQ
mesh Q0 (optimize it if it is not circular), we subdivide it
once and then optimize the subdivided mesh Q1 to be circu-
lar. These two steps are iteratively executed to generate a
hierarchical sequence of circular PQ meshes Qi, and the itera-
tion stops if a circular PQ mesh Qn of reasonable density is
obtained, serving as the discrete principal curve network of
the resulting surface.

Note that the initial quad mesh Q0 is required to be free
of (interior) odd-valence vertices, since we would other-
wise have difficulties converting Qn to a triangulation (see
Section 4.3). Another issue we need to consider is that the
faces of Qn usually do not have the desired anisotropy. To
optimize the face anisotropy of Qn, we suggest perform-
ing the quad mesh re-sampling approach as proposed in
[38], which optimizes the sampling rate of the mesh edges
without changing their directions. This subdivision-based
approach enables the user to express and edit their design
intention at an early stage, thus facilitating the design pro-
cess. Fig. 16 demonstrates a PH mesh modeled using our
subdivision-based method.

Various offset meshes with supporting structures. Fig. 18-
right shows an example of a quasi-circular hybrid PH-PQ
mesh (i.e., each face has a parallel circular polygon inscribed
in a unit circle), thus possessing exact vertex offsets. Fig. 17-
right shows an example of a PH mesh that supports an
approximate edge offset. The beam width d is specified as
0:02 in the optimization. After the optimization converges,
the largest and smallest edge-edge distance is 0:020095 and
0:019776, respectively (the deviation is within 1:1 percent of
the specified d). We also compare our result with the exist-
ing approach of [6], where the approximate edge offset is
obtained by finding a parallel mesh approximating the unit
sphere. Fig. 19 shows the Gaussian images ðM�M0Þ=d
from these methods. Visualizing Gaussian images is an easy
way to illustrate the approximate edge-offset property. If all
the edges of a Gaussian image are tangential to the unit
sphere, the corresponding PH mesh has the exact edge-off-
set property. It is clear that the result from [6]’s method con-
tains edges that have a large edge-offset to the unit-sphere,
so our result approximates the unit sphere much better.

Fig. 16. A stadium shape designed by our subdivision-optimization
method: a sequence of circular PQ meshes are produced, and a PH
mesh is then constructed.
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8 CONCLUSION

PH meshes feature many desirable properties and have
received increasing attention in architectural design and
fabrication. Although several optimization methods have
been proposed for planarizing polygonal meshes [17], [18],
the issue of providing a proper initialization has largely
been overlooked. We stress that the face planarity and mesh
aesthetics can be conflicting goals if the initial mesh is not
properly discretized from the underlying surface. In this
paper, we solved the problem of computing proper initial
meshes for computing PH meshes by introducing the opti-
mal shape of PH faces and concluding the ideal triangula-
tion that corresponds to an aesthetic PH mesh under

tangent duality. We also provided a practical framework for
computing such ideal triangulations and addressed how to
handle umbilical regions and parabolic regions on freeform
surfaces. Finally, we discussed several practical issues in
the design and fabrication of PH meshes, e.g., providing a
subdivision-based modeling framework for facilitating the
design process of PH meshes and proposing the use of
hybrid PH-PQ meshes to improve the structural stability.

In our framework, computing an ideal triangulation with
curvature-aligned anisotropic triangles is the key to generating
a Dupin-regular PH mesh. Existing anisotropic triangulation
techniques like [39], [40] are not employed, as they often pro-
ducemeshes with an uncontrolled number of singular vertices,
whichwould be dual to non-hexes in the final PHmesh. Nieser
et al. [20] propose a hexagonal parameterization method that
can be used to compute semi-regular hexagonal meshes. How-
ever, their method does not apply to an anisotropic case and
thus has difficulties in achieving face planarity and mesh aes-
thetics at the same time.

Paneling a freeform surface with aesthetic PH meshes is
indeed a challenging problem, in that the face shapes are
highly constrained by the surface geometry. Take the shape
in Fig. 18-right for example, the faces in the umbilical region
(highlighted in the red circle) are still crowded even after
performing our topological operations. Moreover, we
assume the input surfaces in our method present smooth
curvature fields (that is usually the case in architectural
design). However, given a surface containing many inter-
sected parabolic curves, it is still hard to compute an

Fig. 18. Two architectural designs paneled by hybrid PH-PQ meshes. The right mesh possesses the vertex offset property.

Fig. 19. Left: the Gaussian image generated by our method:
ðM�M0Þ=d. Right: the Gaussian image computed by the algorithm of
[6]. The edges that have large offset distances to the unit sphere are col-
ored in blue.

Fig. 17. Architectural designs paneled by planar hexagonal (PH) meshes generated by our method. The right mesh supports an approximate edge
offset.
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aesthetic PH mesh paneling on it with our method. Fig. 20
demonstrates such a shape, which contains sharp features
(edges connecting the two holes) as well as several inter-
sected parabolic lines. In order to obtain an aesthetic PH lay-
out on it, we have tried to align the parabolic lines with the
curvature lines and increase the weight of the fairing energy
during the optimization; however the face planarity would
have to be compromised a little. See the circled region for
non-planar faces as well as the planarity error in Table 1.
Hence, how to locally perturb a surface to suppress parabolic
lines remains an interesting problem for future research.

Taking account of static equilibrium is important in real
architectural construction. For PQ meshes, Vouga
et al. propose a way of designing self-supporting PQ
meshes where the thrust network built on the mesh reaches
static equilibrium [41]. This nice self-supporting property is
well suited to a steel-glass structure, especially where steel-
beams bear forces only. It would be interesting to embed
self-supporting property into PH mesh design in the future.

It is worth mentioning that we focus on approximating a
given shape with a PH mesh in this paper and do not con-
sider how to minimize the number of different PH panels
for reducing the real construction cost. It is possible to
extend techniques presented in [4], [42], [43] and use our
PH meshes as an initialization to cut the cost while still
approximating the original shape.
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