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Autonomous Deployment for Load Balancing
k-Surface Coverage in Sensor Networks

Feng Li, Jun Luo, Wenping Wang, and Ying He

Abstract—Although the problem of k-area coverage has been
intensively investigated for dense wireless sensor networks (WSNs),
how to arrive at a k-coverage sensor deployment that optimizes
certain objectives in relatively sparse WSNs still faces both the-
oretical and practical difficulties. Moreover, only a handful of
centralized algorithms have been proposed to elevate 2-D area
coverage to 3-D surface coverage. In this paper, we present a
practical algorithm, i.e., the Autonomous dePlOyment for Load
baLancing k-surface cOverage (APOLLO), to move sensor nodes
toward k-surface coverage, aiming at minimizing the maximum
sensing range required by the nodes. APOLLO enables purely
autonomous node deployment as it only entails localized compu-
tations. We prove the termination of the algorithm and the (local)
optimality of the output. We also show that our optimization ob-
jective is closely related to other frequently considered objectives
for 2-D area coverage. Therefore, our practical algorithm design
also contributes to the theoretical understanding of the 2-D k-area
coverage problem. Finally, we use extensive simulation results to
both confirm our theoretical claims and demonstrate the efficacy
of APOLLO.

Index Terms—Wireless sensor networks (WSNs), autonomous
deployment, k-area/surface coverage, load balancing.

I. INTRODUCTION

ONE of the major functions of wireless sensor networks
(WSNs) is to monitor a certain area in terms of whatever

physical quantities demanded by applications [2]. In achieving
this goal, a basic requirement imposed onto WSNs is their area/
surface coverage:1 it indicates the monitoring quality of WSNs.
Whereas many research proposals focus on either analyzing
the performance of static sensor deployments (e.g., [5], [25])
or scheduling sensor activity to retain the coverage of given
deployments (e.g., [33], [45]), there exists an unfailing trend
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1For WSNs deployed on 2-D planes, we only focus on approaches concern-
ing area coverage (e.g., [5], [25]), as opposed to the point coverage (e.g., [8],
[14], [44]). Surface coverage is an elevation of area coverage from 2-D planes
to 3-D surfaces (terrains), making the deployment more useful in practice (e.g.,
for monitoring volcanos).

in seeking autonomous deployments assisted by mobile sensor
nodes to arrive at certain predefined objectives (e.g., [6], [34]).
Our proposal in this paper falls into this later trend.

Due to the vulnerability of sensor nodes, multiple-coverage
(k-coverage) is often applied to enhance the fault tolerance in
face of node failures (e.g., [5], [45]). In addition, k-coverage
may yield higher sensing accuracy through data fusion [13].
Existing approaches in achieving k-coverage rely on either
randomized (e.g., [15], [25]) or regular (e.g., [3], [5]) deploy-
ments. Whereas randomized deployments require a substan-
tially denser network (e.g., [15], [25]), regular deployments
serve only as theoretical guidelines [3], [5] as they often require
centralized coordinations and may not accommodate irregu-
lar network regions. Also, if the physical phenomena under
surveillance change, the cost for re-deployment can be huge.
Therefore, autonomous deployments, when movable nodes [10]
are available, are good complements to the randomized or
regular deployments: they may achieve a density comparable
to that of regular deployments, while being more adaptive to
irregularity and variations of the network regions.

However, existing techniques for autonomous deployments
may only handle 1-coverage, and extending them to k-coverage
is highly nontrivial. First of all, autonomous deployments
through (node) motion control require each node to compute
its coverage in a localized manner (i.e., relying as much as
possible on close-by nodes). Although quite a few localized
algorithms have been proposed to perform such computations
for 1-coverage (e.g., [7], [34]), no algorithm, to the best of
our knowledge, exists for localized k-coverage computations.
Secondly, even if the k-coverage computations can be per-
formed locally, there is no guarantee whether a motion control
strategy may converge, due to the significant difference be-
tween 1-coverage and k-coverage. Thirdly, existing approaches
are almost heuristics that offer no provable guarantee on the
quality of the eventual deployment. Finally, as indicated in
[43], extending 2-D area coverage (e.g., [28]) to 3-D surface
coverage for coverage for WSNs deployed on 3-D terrains
may incur new challenges even for 1-coverage. By far, only a
handful of proposals employ (partially) centralized algorithms
to handle the deployment for 1-surface coverage [18], [43];
no purely autonomous deployment mechanism has ever been
proposed. These are exactly the problems we want to tackle in
our paper.

In this paper, we consider the problem of moving sen-
sor nodes towards k-coverage. In particular, we assume that
nodes have tunable sensing ranges and are randomly deployed
initially. Our goal is to cover a certain monitored area or
surface to the extent that every point in this area/surface is
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at least monitored by k sensor nodes and that the maximum
sensing range used by the nodes is minimized. As a larger
sensing range implies a larger energy consumption of a node,
our APOLLO (Autonomous dePlOyment for Load baLancing
k-surface cOverage) approach aims at balancing the sensing
load (thus prolonging network lifetime) while guaranteeing
k-coverage, with the help of mobile nodes. The main contri-
butions we are making in this paper are:

• We design the APOLLO algorithm such that it executes in
a localized manner, i.e., relying only on information from
close-by nodes.

• We prove the termination of APOLLO as well as the
(local) optimality of its output.

• We discuss the relation between APOLLO and other com-
monly used optimization objectives for 2-D area cover-
age, which provides a better understanding of optimal
k-coverage deployments whose theoretical characteriza-
tions are hard to obtain under general settings.

• We show that, by using geodesic distance [9] to replace
the conventional Euclidean metric, APOLLO can be natu-
rally extended to handle autonomous deployments on 3-D
surfaces.

• Since motion and communication cost cannot be ne-
glected, our algorithm allows for a tradeoff between the
two factors. Through extensive simulations driven by re-
alistic power consumption data, we show that the existing
hardware platform can afford the energy consumption of
our algorithm in terms of motion and communication.

To the best of our knowledge, we are the first to tackle the
problem of k-coverage autonomous deployment, for both 2-D
areas and 3-D surfaces.

The remaining of our paper is organized as follows. We
briefly survey the closely related literature in Section II. We
formally define our model and problem in Section III, in
which we also review the basic mathematical tools we need
in our later algorithm design. In Section IV, we present our
APOLLO algorithm for 2-D k-area coverage and analyze its
performance, we also interpret our solution with respect to other
optimization frameworks. We then extend APOLLO to handle
3-D k-surface coverage in Section V. The efficacy of APOLLO
is further confirmed by extensive simulation results reported in
Section VI. We finally conclude our paper in Section VII.

II. RELATED WORK

Before surveying the proposals related to area/surface cov-
erage and mobile assisted autonomous deployment, we first
review another interesting topics, point (or target) coverage and
area coverage with random deployments, from which we may
gain some hints for our proposal. Point coverage problem has
been extensively studied in the past decade. Besides providing
coverage service, their another concern is the limited energy
supply of sensor nodes. Given a random deployment with static
sensor nodes, they either divide the nodes into multiple sets and
schedule the duties of these set (e.g. [8], [11], [44]), or minimize
the number of the active sensor nodes (e.g., [14]), to guarantee
the network lifetime. The energy limitation is also taken into

account in area coverage with random deployments, e.g. [21],
[25], [38], [41], [45]. Inspired by them, maximizing the network
lifetime is also one of the main objectives of our proposal but
in a quite different way.

The static and deterministic area coverage problem is es-
sentially a geometry problem; the results for 1-coverage with
a minimum number of nodes can be directly taken from pure
mathematical research [22]. In later research proposals for
WSN coverage, the focus is more on minimum node 1-coverage
with certain connectivity requirement (e.g., [4], [5], [19]).
While it is known that a 1-covered WSN is also connected
if the transmission range Rt and the sensing range Rs satisfy
Rt ≥

√
3Rs, a strip-based deployment strategy is proposed in

[19] for other values of Rt, which is proven to be asymptotically
optimal in [4]. In fact, more strips allows higher degree of
connectivity (or k-connectivity).

Compared with k-connectivity, the progress on k-coverage
appears to be relatively slower. A few 3-coverage heuristics
that aim at bounding the minimum separation among sensor
nodes is proposed in [23]; the paper also shows that bounding
the min-separation may lead to lower coverage redundancy and
is hence a good approximation to minimum node 3-coverage.
To the best of our knowledge, the only optimality result in
terms of minimum node k-coverage is presented in [5], where
k = 2. It appears that minimum node k-coverage (for k > 2) is
better to be tackled indirectly due to its hardness. As we will
show in Section IV-C, our objective of a k-coverage with mini-
max sensing range may also imply minimum node k-coverage.
Deploying WSNs for k-coverage using mobile nodes is also
reported in [3], [36], but their approaches are not autonomous
as they all rely on a “blueprint” to guide the node mobility.

Considering that a WSN can be deployed on a 3-D terrain for
some application scenario, the surface coverage problem has
also been investigated. Zhao et al. [24], [43] show that extend-
ing just 1-area coverage to 1-surface coverage already poses
great challenges, and they provide approximation algorithms
to the resulting NP-complete problem. Recently, Jin et al.
[18] applies Centroid Voronoi Tessellation (CVT) [12] and
discrete Ricci flow [17] to obtain some form of optimal surface
1-coverage by defining sensing range upon geodesic distance.
However, the discrete Ricci flow is a global parametrization
process, so the motion control cannot be implemented in a
distributed manner using only local information.

Our work is also related to the sensing heterogeneity issue
[6], [35]. Unlike the previous proposals that aim to cope with
sensing heterogeneity or evaluate its impact, we actively exploit
the sensing heterogeneity to construct our algorithm that guides
the autonomous deployment.

III. PROBLEM DEFINITION AND

MATHEMATICAL BACKGROUND

In this section, we first present the system model and define
our optimization problem, and then introduce the relevant math-
ematical basics. To simplify the exposition, the above discus-
sions are all for 2-D plane with Euclidean metric. We then show
that a 2-D plane can be straightforwardly generalized to a 3-D
surface by replacing Euclidean metric with geodesic distance,
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and we also introduce the mathematical tools to perform this
map locally.

A. System Model

We assume a WSN consisting of a set N = {n1, · · · , nN}
of sensor nodes, and |N | = N . Let U = {u1, · · · , uN} denote
the locations of sensor nodes. The nodes are initially deployed
arbitrarily on a 2-D targeted area A. Each node ni is equipped
with certain mechanisms (e.g., motors plus wheels) that allow
it to gradually change its location ui [10]. We also suppose
that nodes are equipped with bumper sensors to detect and
avoid obstacles in the targeted area [30]. All nodes have an
identical transmission range γ, and we denote by N (ni) =
{nj‖ui − uj‖2 ≤ γ, i �= j} the one-hop neighbors of ni.

We define the omnidirectional sensing model as a disk cen-
tered at ui with sensing range ri. We assume the sensing ranges
are adjustable according to different application requirements
[42], [45]. A point v ∈ A is said to be covered by node ni iff the
Euclidean distance between v and node location ui is no longer
than ri, i.e., ‖v − ui‖2 ≤ ri. We use f(v, ui, ri) to indicate
if v is covered by node ni: f(v, ui, ri) = 1 if v is covered
by ni; otherwise, f(v, ui, ri) = 0. We apply the MDS-based
technique [32] that relies on the ranging ability of each node to
construct a local coordinate system for motion control, but we
do not require global location information as it is immaterial to
our algorithm.

In terms of energy cost, we consider only the cost induced
by the sensing activities of a node. Because our network de-
ployment strategy aims to achieve a constant (and long-term)
coverage by moving sensor nodes in the initial phase, the com-
munication cost becomes negligible as the data transmission
activities only take place sporadically, while the energy spent
in moving is only a one-time investment. We assume that the
energy consumed by a sensor node ni is an increasing function
E(ri) of its sensing range ri, and this function is identical for all
nodes. In other words, with a certain amount of energy E(ri),
ni can only cover the points {v ∈ A‖v − ui‖2 ≤ ri}.

B. Problem Formulation

The node locations and sensing ranges define a network
deployment with a certain coverage.

Definition: A network deployment {ui, ri} is said to achieve
k-coverage iff for any point v ∈ A, there exist at least k sensor
nodes covering it, or

∑
i f(v, ui, ri) ≥ k.

To allow the sensor nodes k-cover the targeted area, we
divide A into several disjoint areas {Ak

j }j=1,2,...
, and at least

k sensor nodes are allocated to take care of each area. In other
words, each sensor node ni takes care of multiple subareas, and
we indicate this covering relation by ni(Ak

j ): it equals 1 if ni

covers Ak
j ; otherwise 0. We also denote by Ak

ni
the area covered

by ni: we have Ak
ni

=
⋃

ni(Ak
j
)=1 Ak

j . The sensing range ri

of ni is determined by the farthest point in Ak
ni

from ui, i.e.,
ri = maxv∈Ak

ni
‖v − ui‖2, so that Ak

ni
can be totally covered

by ni.

Our k-coverage sensor deployment problem (k-CSDP) can
be formulated as follows.

minimize
{ui},{Ak

j},{ni(Ak
j )}

R (1)

subject to
N∑
i=1

f(v, ui, ri) ≥ k, ∀v ∈ A (2)

‖v − ui‖2 ≤ R, ∀i, v ∈ Ak
ni

(3)

Ak
j1

⋂
Ak

j2
= ∅,

⋃
j

Ak
j = A. (4)

Literally, k-CSDP aims at determining the node locations {ui},
the area partition {Ak

j }, and the covering relations {ni(Ak
j )},

such that the targeted area A is k-covered, while the maximum
sensing range among all nodes is minimized. As energy con-
sumption is an increasing function of sensing range, k-CSDP
is equivalently balancing the energy consumption over a whole
WSN and hence maximizing the lifetime of the WSN. As the
problem is generally not convex due to its non-convex feasible
region, we have to be contented with local minimum (i.e., a
locally minimized maximum sensing range).

C. High Order Voronoi Diagram

We hereby briefly introduce the ideas and theories on high
order Voronoi diagram [31]. They are key to our autonomous
deployment strategy.

In a k-order Voronoi diagram, the targeted area A is seg-
mented into N̂k disjoint areas {Vk

j }j=1,...,N̂k ,2 each of which is
associated with k closest generators (sensor nodes in our case),
i.e., a subset N k

j ⊆ N with |N k
j | = k. The k-order Voronoi cell

Vk
j is defined as

Vk
j =

{
v ∈ A

∣∣∣∣∣ ‖v − ui‖2 ≤ ‖v − ui′‖2,
∀ni ∈ N k

j , ni′ ∈ N/N k
j

}
. (5)

The set N k
j is called the generator set of Vk

j . It is straightfor-
ward to see that each sensor node ni is associated with multiple
Voronoi cells. Let Vk

ni
denote the union of the Voronoi cells for

which ni serves as a generator; we term Vk
ni

the dominating
region of ni (hence ni the dominator of Vk

ni
). We also have the

following proposition.
Proposition 1: A point v ∈ A is said to belong to Vk

ni
iff

there exist at most k − 1 other generators such that their
distance to v is less than ‖v − ui‖2.

Proof: Assume v ∈ Vk
ni

but there were another k nodes
{nj}j∈J,i�∈J,|J |=k such that ‖uj − v‖2 < ‖ui − v‖2. Then the
point v would strictly belong to the set of k-order Voronoi cells
generated by {nj}, which does not include ni as a generator;

2In 1-order Voronoi diagram, the number of Voronoi cells equals the number
of generators (i.e., N̂1 = N ), while in generalized k-order Voronoi diagram
(k ≥ 1), N̂k is O(k(N − k)) [31].
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Fig. 1. k-order Voronoi partition for k = 1, 2, 3, 4. The disks at the back-
drop represent the (overlapping) sensing ranges of individual sensor nodes.
(a) 1-order (b) 2-order (c) 3-order (d) 4-order.

a contradiction. Conversely, if there are at most k − 1 nodes,
{nj}j∈J,i�∈J,|J |≤k−1, closer to v than ni, we can find the set of
v’s k-nearest nodes (which obviously contains {nj}

⋃
{ni}) to

generate a set of k-order Voronoi cells containing v. As ni is a
generator, v ∈ Vk

ni
.

Based on the above proposition, assuming Sk
ni
(v) = {nj ∈

N|‖uj − v‖2 < ‖ui − v‖2, j �= i}, we can re-define the domi-
nating region of ni as

Vk
ni

=
{
v ∈ A

∣∣ ∣∣Sk
ni
(v)

∣∣ ≤ k − 1
}
. (6)

We illustrate k-order Voronoi partition (k = 1, 2, 3, 4) gener-
ated by 30 nodes in Fig. 1. The cells shown in each figure are
{Vk

j }. Taking 2-order Voronoi partition for example, as shown
in Fig. 1(b), the area enclosed by red (resp. green) polygon
is actually the dominating region of the red node (resp. green
node). The hatched area is the Voronoi cell generated by the
two nodes, i.e., the points in this area are closer to the two nodes
than any other nodes.

D. Generalization to 3-D Surfaces

For WSN deployed on a 3-D surface, the conventional
Euclidean metric is no longer appropriate. Serving as the gener-
alization of “straight line” in curved space (e.g., 3-D surfaces),
geodesic is the shortest path between two given points on the
surface [9]. Therefore, geodesic distance metric is a natural
choice for measuring distance on a 3-D surface. By replacing
Euclidean metric with geodetic distance, we may migrate the
aforementioned model and problem definitions directly from
2-D planes to 3-D surfaces.

1) Problem Description on 3-D Surfaces: Consider the case
where a WSN N is deployed on the 3-D surface M, we
use geodesic distance as the distance metric. In particular, we
replace all the distant metric ‖u− v‖2 used for 2-D planes by
g(u, v), the geodesic distance between u and v. As a result,
all the definitions in Section III-A to III-C can be directly
migrated to 3-D surface. For example, k-CSDP and high order
Voronoi diagram can be redefined using geodesic metric. The
only difference here is that, while A does not need an explicit
characterization, M is often represented by a triangular mesh
that is given to all nodes during the initialization phase.

In order to compute geodesic distance on M, we adopt
the Improved Chen & Han’s (ICH) algorithm [39]. The ICH
algorithm handles the “single source, all destinations” geodesic
problem, aiming at computing the geodesic from the source u ∈
M to any destination point v ∈ M within a certain geodesic
radius r from near to far with a time complexity of O(n2 log n)
where n is the number of vertices of the triangular mesh M
within r. It maintains a priority queue of geodesic windows
on the edges of the triangular mesh, and outputs a poly-line
geodesic path for each pair of source and destination. The
ICH algorithm also can be extended to other types of geodesic
problem [40], e.g., “single source, single destination” and “mul-
tiple sources, any destination”. Such a package of geodesic
computation tools is sufficient for our 3-D extension.

2) Logarithm and Exponential Maps: As we need a local
coordinate system to compute k-order Voronoi diagrams in a
localized manner for every node, we cannot rely on a parame-
terization method such as Ricci flow due to its global nature and
high computational cost. We instead apply the ICH algorithm
to compute an logarithm/exponential map [9] around a certain
node, which constructs a (local) geodesic polar coordinate
system on the curved surface as follows.

Given a point u ∈ M, we designate a local coordinate system
on its tangent plane Tu centered at u. A logarithm map exp−1

u :
M → Tu maps the points on M to Tu. In particular, for any
other point v ∈ M in a sufficiently small neighborhood of u,
there is a unique geodesic Gu(v) extending from u to v. As
G′

u(v), the tangent of Gu(v), is obviously tangent to M at u,
G′

u(v) ∈ Tu. Therefore, v can be mapped to Tu with geodesic
polar coordinates {g(u, v), θu,v} where g(u, v) is the geodesic
distance between u and v and θu,v is the polar angle of G′

u(v)
on Tu. Consequently, the geodesic coordinates on M around u
can be transformed to normal coordinates under any orthogonal
basis {e1, e2} with origin u. The inverse of logarithm map is
called exponential map. We illustrate the log/exp map in Fig. 2.
Here the ICH algorithm [39] is used to trace the geodesic Gu(v)
such that any point v in the neighborhood of u on M can
get its geodesic polar coordinates on Tu. As mentioned above,
the ICH algorithm maintains a “wavefront” and propagates
outward from u, finally outputting a local geodesic coordinate
system within a radius r.

IV. APOLLO: LOCALIZED k-COVERAGE

NODE DEPLOYMENT ALGORITHM

In this section, we first develop two optimality conditions for
k-CSDP. Then we present the APOLLO algorithm details. The
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Fig. 2. The log/exp maps at point u introduces a mapping between a vector
originating at u on Tu and a geodesic beginning at u on M. The circles on Tu
are mapped to the contours of the geodesic function on M. (a) Coordinate
system in Tu (b) Coordinate system in M.

correctness of APOLLO is then proven, and we finally discuss
the relation between k-CSDP and other optimization problems
related to k-coverage deployment, along with the corresponding
properties of APOLLO.

A. Optimal Conditions

To motivate our algorithm, we develop two optimality condi-
tions for k-CSDP. Firstly, we show if we fix {ui}, then k-order
Voronoi diagram is the optimal solution to k-CSDP.

Proposition 2: If we fix the sensor locations {ui}, the k-order
Voronoi diagram {Vk

j } generated by {ui} is an optimal parti-
tion of A. Also, ni(Vk

j )=1 if Vk
j ⊆Vk

ni
; otherwise ni(Vk

j )=0.
Proof: The proof is by contradiction. Suppose for fixed

{ui}i=1,...,N , there exists an optimal solution to k-CSDP de-
noted by R∗, {Āk

j }, {ni(Āk
j )}. Let r∗i = maxv∈Āk

ni
‖v − ui‖2

and rVi = maxv∈Vk
ni

‖v − ui‖2. Also assume that the optimal

value is obtained for nî, i.e., R∗ = r∗
î
. If rV

î
= r∗

î
, then it

is straightforward to see that rV
î
= maxi{rVi }, otherwise a

contradiction to the definition of Vk
ni

: some regions are not
covered by the k-closest nodes. Therefore, in this case the
k-order Voronoi diagram is equally optimal. If rV

î
> r∗

î
, it

means that nî could cede a certain region to have it covered
by other nodes while reducing maxi{rVi }. However, this again
contradicts the definition of Vk

ni
: as nî is already one of the k-

closest nodes that can cover the ceded region, ceding this region
to some other nodes would increase maxi{rVi }. �

Before stating the second optimality condition, we need the
following definition.

Definition 2: Given an arbitrary set S in Euclidean space,
the Chebyshev center uc is defined as uc = argminû
(maxu∈S ‖u− û‖2).

Given an area partition {Ak
j } and its dominator allocation (or

covering relations) {ni(Ak
j )}, the optimal locations of {ni} can

be obtained according to the following proposition.
Proposition 3: If we fix the partition {Ak

j } and its domi-
nator allocation {ni(Ak

j )}, the optimal sensor location u∗
i for

k-CSDP is given by the Chebyshev center of Ak
ni

.
Proof: As ni needs to cover Ak

ni
and the objective of

k-CSDP is to minimize the maximum sensing range among all
sensors, the optimal solution under a fixed partition is achieved
if each sensor individually minimizes its own sensing range.

This exactly coincides with the property of Chebyshev center,
hence the proposition follows. �

B. The Algorithm

Given the two optimality conditions stated in Section IV-A,
we immediately have an iterative algorithm to solve k-CSDP.
The pseudo-codes of our APOLLO algorithm are presented
in Algorithm 1. The algorithm proceeds in rounds. At the
beginning of each round, the k-order Voronoi diagram is com-
puted for the whole WSN, resulting in {Vk

1 , . . . ,Vk
N̂k

} along

with {Vk
n1
, . . . ,Vk

nN
} (Line 2). Then each node computes the

Chebyshev center of its dominating region (Line 3), and moves
to that location to end this round (Line 4–6). The algorithm
terminates if each node is indeed located at the Chebyshev
center of its dominating region. As a perfect matching is
impossible in face of numerical errors, we use a small value
ε as the stopping tolerance: the algorithm terminates if the
distance from the node’s current location to the Chebyshev
center of its dominating region is smaller than ε. Also, in order
to avoid oscillation, a step size α < 1 is chosen to confine the
motion of the nodes. At the termination, each node tunes its
sensing range to be the minimum value (the circumradius of
its dominating region) that covers its dominating region. As a
dominating region is a polygon, we apply Welzl’s algorithm
[37] to compute the Chebysehev center by taking the vertices
of the region as the input.

Similar algorithms have been applied in [6], [34], but they
were used to indirectly optimize a different objective (see our
discussions in Section IV-C). Consequently, their approaches
do not abide by the optimality conditions and employ a very
different termination condition. Therefore, their termination
proofs do not apply to our case even for k = 1. Most impor-
tantly, as our algorithm deals with a more general k-coverage,
we are facing the following new challenges in understanding
our algorithm: 1) How to compute Vk

ni
in a localized manner

without involving all nodes? 2) Does the algorithm terminate
for k ≥ 1? 3) What is the complexity of computations? We
tackle these challenges in the following.

1) Localized Algorithm for Computing Vk
ni

: Unlike 1-order
Voronoi diagram that can be computed (mostly) by only in-
teracting with one-hop neighbors N (ni) of a given node ni,
N (ni) may not be sufficient to obtain k-order Voronoi cells,
especially when k is large. The reason is simple: at least k + 1
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nodes should be involved to compute a dominating region of ni

[26]. Therefore, we propose Algorithm 2 to locally calculate
Vk
ni

in an expanding ring manner.

Basically, we expand the search ring ρ with a granularity of
the transmission range γ (line 2). As expending ρ beyond γ will
need multi-hop communication and the hop number is always
an integer, it makes no sense to apply a smaller granularity.
We use the embedding algorithm proposed in [32] to construct
a local coordinate system (line 4). If the location information
is available, this step is not necessary. Under the constructed
coordinate system, we check whether the circle centered at ui

with a radius ρ/2 is not dominated by ni anymore (lines 5 to 8,
based on Proposition 1). Because the Voronoi edges computed
given N (ni, ρ) divide the circle with radius ρ/2 into a finite
number of arcs, each of which either fully dominated by ni or
not at all, we only need to check an arbitrary point on each arc
in the actual implementation. The ring expending terminates if
the answer becomes true. Finally, we compute Vk

ni
using only

nodes falling into the current search ring (line 10).
We need another lemma to show that Vk

ni
computed by

Algorithm 2 is indeed the one that would be computed in a
centralized manner using global information.

Lemma 1: If the dominating region of ni is enclosed by a
circle centered at ui with a radius of ρ/2, then it is fully deter-
mined by all the nodes located within another circle centered at
ui with a radius of ρ.

Proof: For a disk �(ui, ρ/2) centered at ui with radius
ρ/2, if Vk

ni
⊂ �(ui, ρ/2), the boundary of Vk

ni
also belongs to

�(ui, ρ/2). According to the definition of Voronoi cells, the
cell boundary consists of bisectors, each of which is determined
by two generators. For Vk

ni
, one generator is ni, and all other

generators can be obtained by going through each segment
(or bisectors) on the boundary of Vk

ni
and identifying another

generator that determines this bisector along with ni. Since the
boundary of Vk

ni
belongs to �(ui, ρ/2), all generators of Vk

ni

belong to �(ui, ρ). �
The correctness of our algorithm is immediate from this

lemma: as the algorithm terminates when ni is not dominating
the circle centered at ui with a radius ρ/2 anymore, the nodes
falling into �(ui, ρ) are sufficient to compute Vk

ni
. In Fig. 4, we

demonstrate this sufficiency using k-order dominating region
(k = 1 to 12) in a regularly deployed WSN. The regular deploy-
ment is chosen to facilitate exposition, our algorithm works for
any arbitrary deployments.

Fig. 3. Recognizing the network boundary (the green dashed curve), a bound-
ary node (dark) determines a searching ring (the outer circle) and check the half-
radius arc within the network coverage area (the inner red arc). It then calculates
its dominating region (the blue area) with N (ni, ρ), while the searching ring
helps to determine part of the boundary.

For a node ni on the boundary, the search ring will never
stop expanding, as the arc that is out of the network coverage
will always need the domination of ni. To cope with this issue,
we first refer to our previous work [29] for an on-line boundary
detection service. Sine each sensor node can identify if it is on
the network boundary only relying on local positions of it one-
hop neighbors, this boundary detection is highly efficient and
thus is quite suitable for our autonomous deployment. Based on
the boundary awareness, the boundary node executes the circle
checking procedure (lines 5 to 8) only for the arc that lies within
the network coverage area, as shown in Fig. 3. Finally, the
boundary node calculates its dominating region, using N (ni, ρ)
as well as the searching ring to determine the boundary of the
dominating region. For an initial random deployment in which
nodes only occupy a small fraction of A, this procedure has the
effect of “pushing” boundary nodes outwards, hence expanding
the network coverage to the whole A. In fact, such a constrained
checking procedure should always be used by nodes on the
boundary of A, the difference is that A’s boundary, known
in advance to the nodes, serves as a natural boundary for a
dominating region.

2) Termination Analysis: Showing the termination of
Algorithm 1 appears to be highly non-trivial, as many k-order
Voronoi cells are concerning a certain node, and the dominating
region of a node is mostly probably a non-convex region.
Fortunately, the termination can be shown by focusing on the
boundary of a dominating region.

Proposition 4: Algorithm 1 terminates for α ∈ (0, 1].
Proof: As shown in Fig. 5, ul

i and Vk,l
ni

are the location
and dominating region of node ni at the beginning of the l-th
round, respectively. We also denote by cli and Rl

i the Chebyshev
center and the circumradius of Vk,l

ni
computed by ni during

the l-round. Let R̂l
i = maxu∈Vk,l

ni

‖u− ul
i‖2 be the farthest dis-

tance from ul
i in Vk,l

ni
. Finally, we define Rl = maxi{Rl

i} and

R̂l = maxi{R̂l
i}.

We first prove the termination for α = 1 by contradiction.
For each ni, we put a disk �(cli, R

l) centered at cli with radius
Rl. Obviously,

⋃N
i=1 �(cli, R

l) form a k-coverage over the
targeted area A. The termination is naturally justified if we can
prove that Vk,l+1

ni
is inside �(cli, R

l) after ul
i is updated to cli
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Fig. 4. The dominating region of the central node in k-order Voronoi diagram k = 1, . . . , 12. The central node needs to collect location (or range) information
from its neighboring nodes (the dark nodes) via multi-hop communication according to Algorithm 2. Additionally, we illustrate multi-hop transmission range
using red circles in (a). While the cases for k = 1 can be handled by involving only the 6 closest nodes (1-hop neighbors) to the central node, computing the
2-, 3-, and 4-order dominating regions requires 2-hop neighbors. When k > 4, all sensor nodes within 3 hops are involved. (a) 1-order; (b) 2-order; (c) 3-order;
(d) 4-order; (e) 5-order; (f) 6-order; (g) 7-order; (h) 8-order; (i) 9-order; (j) 10-order; (k) 11-order; (l) 12-order.

(i.e., ul+1
i = cli). For each point q on the boundary of Vk,l+1

ni
,

it is straightforward to see that cli is the location of the k-th
nearest nodes. Assume that q is outside �(cli, R

l), there would
be only k − 1 disks covering q, which contradicts the fact that⋃N

i=1 �(cli, R
l) constitute a k-coverage over A.

We then prove the termination for 0 < α < 1. According
to line 5 of Algorithm 1, during the l-th round, ul+1

i =

ul
i + α(cli − ul

i). We put disks �(ul
i, R̂

l) and �(cli, R̂
l) cen-

tered at ul
i and cli, respectively. Obviously, Vk,l

ni
is inside

�(ul
i, R̂

l)
⋂

�(cli, R̂
l), which implies Vk,l

ni
⊂ �(ul+1

i , R̂l).

Hence,
⋃N

i=1 �(ul+1
i , R̂l) constitute a k-coverage over A. Fol-

lowing a similar argument as for α = 1, we have Vk,l+1
ni

is

involved in �(ul+1
i , R̂l), which completes the proof. �

In summary, our APOLLO algorithm terminates for any
α ∈ (0, 1]. Usually, smaller α leads to slower convergence but
smoother moving locus. As a byproduct of the proof, we also
conclude that R̂ is non-increasing iteratively and finally equiv-
alent to R. Especially, when α = 1, R is also non-increasing in
the iterative process. Therefore,

Corollary 1: Algorithm 1 terminates at a local minimum of
k-CSDP.

It is important to note that Rl and R̂l are introduced only
for our proof. During the algorithm execution, each node ni

can only compute its own Rl
i and R̂l

i. According to our earlier
discussion in Section IV-B1 (see Fig. 3 also), the evolution of
the node positions often takes two phases: an expanding phase
and a converging phase. The expanding phase exists if the initial
node distribution is non-uniform, our APOLLO algorithm will
force the node to spread out during this phase, as discussed at
the end of Section IV-B1. During this phase, both Rl and R̂l

are most probably achieved by boundary nodes. The expanding
phase ends when all the boundary nodes are at the boundary of
A, this is when the converging phase starts.

3) Computational Complexity Analysis: Each iteration of
APOLLO consists of two major steps: computing dominating
regions and Chebyshev centers. The dominating regions are
calculated in an expanding ring manner (see Algorithm 2).

Fig. 5. Notations in the proof for Proposition 4.

We suppose Ni(ρ) = |N (ni, ρ)| is the number of the neighbor-
ing nodes of ni within the searching ring ρ. According to [26],
each sensor node computes local k-order Voronoi edges (as well
as vertices) with a complexity of O(k2Ni(ρ) logNi(ρ)). Recall
that Ni(ρ) leads to O(k(Ni(ρ)− k)) Voronoi edges [31], the
following checking operation has a complexity of O(kNi(ρ)
(Ni(ρ)− k)) in the worst case. The underlying boundary de-
tection service requires only one-hop neighbors, thus merely
results in a negligible cost of O(Ni(γ) logNi(γ)) [29]. Assum-
ing up to H-hop neighbors are required (i.e., ρ expands from γ
to Hγ with a granularity of γ), Algorithm 2 has a complex-
ity of O(k2HNi(Hγ) logNi(Hγ) + kHNi(Hγ)(Ni(Hγ)−
k)). For certain coverage order k, the overall complexity of
Algorithm 2 is highly limited by the number of required
communication hops H . According to our experiments shown
in Fig. 4, even the transmission range is restricted (only
available for computing 1-order Voronoi dominating region),
nodes within two or three hops are sufficient in most cases.
Finally, given O(k(Ni(Hγ)− k)) Voronoi vertices outputted
by Algorithm 2, we spend O(k(Ni(Hγ)− k)) on computing
their Chebyshev center [37].

The total number of iterations of APOLLO depends on
individual cases, and thus cannot be derived by exiting analysis
techniques. Similar with [6], [18], we will employ extensive
simulations to reveal APOLLO’s convergence rate as well as
the induced time cost in Section VI.
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C. Discussions

In this section, we show the relations between the output of
our APOLLO algorithm and other optimization objectives often
considered for area coverage problems in WSNs.

Min-Node k-Coverage: One type of problem that is com-
monly tackled in the research community is to achieve
k-coverage using a minimum number of nodes (e.g., [3], [5],
[43]). As this problem often assumes that all nodes have a fixed
and identical sensing range rs, it appears that APOLLO may
not suggest a direct solution to it. However, we can transform
our algorithm to deliver a good approximation to this min-node
k-coverage problem as follows. APOLLO is called iteratively3

and R∗ is compared with rs at the end of each iteration.
Nodes are added (resp. reduced) if R∗ > rs (resp. R∗ < rs),
until R∗ ≤ rs but adding one more node would make R∗ > rs.
Although the solution may not be optimal, it yields very good
approximation to the optimal solution, as we will demonstrate
in Section VI. If fact, as the up-to-date algorithms are all
approximations for k > 2 and they are not autonomous (e.g.,
[3]), our algorithm is also the first autonomous deployment for
approximating min-node k-coverage with an arbitrary k.

Maximum k-Coverage: Another type of problem aims at
maximizing coverage under fixed sensing ranges, but existing
proposals only focus on 1-coverage [6], [18], [34]. A natural
definition of the general maximum k coverage problem is to
maximize the area that is k-covered under a fixed sensing
range. The major difference between k = 1 and k > 1 is that
the former achieves maximum coverage if nodes are far apart
from each other whereas the same principle does not apply to
the latter. An obvious example is the following: assume only
3 nodes are used to 3-cover an area, the maximum coverage
is achieved only if all three nodes are put at the same lo-
cation. Consequently, the heuristic of bounding the minimum
separation among nodes [23] fails. Intuitively, APOLLO may
deliver a good approximation to the maximum k-coverage
problem, e.g., APOLLO terminates at the optimal solution for
the aforementioned 3-node case.

Connectivity: Although maintaining network connectivity is
not our concern in designing APOLLO, it appears to be a
natural outcome of achieving k-coverage for k ≥ 2. Under
k-coverage, it is easy to see that there should be at least k nodes
in the sensing range ri of a node ni (including ni), otherwise
ui is not k-covered. In reality, as shown in Fig. 4, there are at
least 7 nodes in a certain sensing range for k ≥ 2. Given the
common assumption in the literature that γ ≥ ri (e.g., [6], [34],
[44]), each node in a WSN has at least a degree of 6, which is
sufficient to guarantee connectivity in the WSN.

Min-Max Fair: While our k-CSDP only requires that the
maximum sensing range is minimized and hence does not
concern nodes with non-maximum sensing ranges, the min-
max fair utility (a Pareto optimal point) requires that a node ni

cannot further reduce its sensing ranges ri without increasing
the sensing range rj (rj ≥ ri) of another node nj . According
to the property of k-order Voronoi diagram, the output of

3If an application only requires a one-time (rather than autonomous) deploy-
ment, we may use APOLLO in a centralized fashion.

APOLLO is at least locally optimal with respect to the min-
max fair utility, i.e., if we reduce ri, another node nj that
shares dominating region boundary with ni should increase rj
to maintain k-coverage, but we know rj ≥ ri before ri gets
reduced. In fact, our simulation results in Section VI show that,
after APOLLO terminates, the maximum and minimum sensing
ranges are almost the same for k > 2.

V. APOLLO ON 3D SURFACES

Though replacing Euclidean metric by geodesic distance
yields a straightforward extension of our problem from 2-D
planes to 3-D surfaces (as we discussed in Section III-D), our
APOLLO algorithm has to be slightly tuned to adapt to the
local coordinate maps (i.e., the log/exp maps). As APOLLO
(Algorithm 1) involves two main computations: dominating
region and Chebyshev center, we present the APOLLO 3-D
extension with respect to these two separately.

A. Computing Dominating Regions

By redefining the k-order Voronoi diagram based on
geodesic distance. Algorithm 2 could be extended to handle
computations on 3-D surfaces, while still guaranteeing the lo-
cality of the computations. After constructing a local coordinate
system on the 3-D surface (see Section III-D2), each node ni

expands its searching ring ρ with a granularity of transmission
range γ, until the geodesic disk �i = {v ∈ M|g(ui, v) ≤ ρ/2}
is not dominated by ni anymore. ni needs only to communicate
with N (ni, ρ) = {nj |g(ui, uj) ≤ ρ} if its dominating region
lies in �i, according to Lemma 1. This extension is pretty
straightforward; the only difference is that, while we compute
‖ui − uj‖2 on 2-D planes, we use the ICH algorithm to obtain
g(ui, uj) on 3-D surfaces.

A seeming discrepancy here is that, while the sensing range
is mostly determined by Euclidean metric, APOLLO operates
on geodesic distance. Fortunately, based on [16], it can be de-
rived that 1 ≤ (g(ui, v)/‖ui − v‖2) ≤ β, where β is a constant
determined by the geometric properties of a 3-D surface (i.e., its
maximum Gaussian curvature). Consequently, the sensor nodes
simply assign the geodesic distance g(ui, v) (the upper bound
of the Euclidean distance) to their Euclidean sensing ranges
(i.e., ri = g(ui, v)). This leads to a feasible solution that does
not compromise much of the optimality. For brevity, we omit
this step in the later presentations.

B. Computing Chebyshev Centers

After determining the dominating region Vk
ni

, the next step
is for ni to compute the Chebyshev center of its dominating
region. The problem is reduced to that, given a set of points (i.e.,
the vertices of Vk

ni
in our case) on a surface, how to compute

their Chebyshev center. Unfortunately, compared with its 2-D
counterpart, computing Chebyshev centers on 3-D surface (i.e.,
under geodesic destance) appears to be highly non-trivial; it
has not been addressed in the literature to the best of our
knowledge. We thus propose an iterative algorithm to calculate
an approximate Chebyshev center c′i ∈ M of Vk

ni
using log/exp
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map (see the pseudo-codes in Algorithm 3): the basic idea is to
first compute the mass center of the dominating region by itera-
tively applying log/exp map (lines 1–6), and then determine the
Chebyshev center (lines 7–8).

As the difficulty in computing the Chebyshev center is the
local shape distortion resulting from any 3-D-to-2-D map,
we want to find a log/exp map that yields the smallest dis-
tortion within Vk

ni
. Intuitively, the mass center of Vk

ni
, ωi =

argminu
∫
Vk
ni

g2(u, v)dv, may yield a log/exp map that has

the smallest shape distortion. Therefore, we take Vk
ni

to the
tangent plane Tωi

by applying the logarithm map to Vk
ni

at
ωi, and we compute the Chebyshev center of exp−1

ωi
(Vk

ni
)

(line 7), and we finally determine the Chebyshev center of Vk
ni

using the exponential map (line 8). As the shape distortion
has been suppressed as far as possible, we believe that c′i is
a good approximation to the real Chebyshev center of Vk

ni
.

Here δ[expωi
(ω̃i)− ωi] in line 5 is computed with respect to

a geodesic from expωi
(ω̃i) to ωi on the 3-D surface.

The question is whether replacing{ci}by{c′i} in Algorithm 1
still allows terminate. Fortunately, we have

Proposition 5: Algorithm 1 terminates with {c′i} if the step
size α is sufficiently small.

Proof: Let V on M be contained in a geodesic ball
B(y, r) centered at y ∈ M with radius r < (π/2max{0, κ}),
where κ is the maximal Gaussian curvature of points in-
side B(y, r). It is proven in [20] that the function Φ(ω) =∫
V g

2(ω, v)dv for ω ∈ V is convex and achieves a unique
minimum ω∗ ∈ B(y, r). A simple computation shows that 0 =
∇Φ(ω∗) = 2

∫
V exp

−1
ω∗(v)dv. In other words, the mass center

of V is uniquely defined and independent of the initial value,
hence the iterative computation (lines 1–6) converges to the
mass center. With the exponential map at the mass center ω∗, a
tangent plane Tω∗ is constructed and the Chebyshev center c̃ is
computed on that plane. This ends one round for Algorithm 1.
Suppose we take a sufficiently small step size α, the next round
for Algorithm 1 will be done on almost the same tangent
plane Tω∗ . Therefore, from a node ni’s point of view, the
computations involved in two consecutive rounds l and l + 1
are done in 2-D. So we can apply the proving method for
Proposition 4 to show Ṽk,l+1

ni
⊂ �̃(cli, R

l). As the log/exp
map is a bijection within B(y, r), we have Vk,l+1

ni
⊂ �(cli, R

l),
which completes the proof. �

The computations of Algorithm 3 are done by individual
nodes with neither communications nor motions. Since Φ(ω)
has C2 smoothness, the algorithm has a quadratic convergence
rate, causing a negligible computational cost. α < 1 almost
always guarantees the overall convergence.

VI. SIMULATIONS

In this section, we report our simulation results. We first
present the convergence of APOLLO. Studying the energy
consumptions during and after the autonomous deployments,
we also evaluate the performance of APOLLO in Min-Node
k-Coverage and Maximum k-Coverage, followed by the adapt-
ability to network irregularities. Finally, we validate the effec-
tiveness of APOLLO 3-D extension.

A. Convergence

As convergence results we obtain from our extensive experi-
ments are all similar, we present only two cases to demonstrate
the convergence of our algorithm. We consider a targeted
area of 1 km2, and initially deploy 100 sensor nodes either
at the bottom-left corner (see Fig. 6(a)), or separated into
two disjoint groups located at the bottom-left and upper-right
corners (see Fig. 6(f)). According to the following four sub-
figures for both cases, our algorithm apparently leads to an
“even” node distribution in the sense of multiple coverage.
Specifically, in the multiple coverage cases with k = 2, 3, 4,
nodes tend to cluster in groups of size k, in contrast to the
pure even distribution for k = 1. This is not a surprise as such
an “even clustering” distribution yields more overlaps of the
dominating regions among every cluster, which in turn reduces
the required sensing range. Interestingly, this appears to also
meet the needs of maximum k-coverage. As we discussed
in Section IV-C, APOLLO leads to a co-location deployment
for the extreme example of using three nodes to achieve
3-coverage. The second case also shows that two disconnected
clusters will eventually merge into a concocted network. Our
extensive simulations show that the initial deployment does not
have significant impact on the algorithm output.

We show the convergence process of APOLLO in Fig. 7.
Since a sensor node finally reaches the Chebyshev center of
its dominating region and the sensing range is equivalent to
the circumradius of the dominating region, we illustrate the
relationship between execution rounds (of length τ ms each)
and the maximum/minimum circumradii. As the nodes are de-
ployed at the corner of the targeted area initially, the maximum
circumcicle usually appears on the network boundary, which is
mainly determined by the searching ring (Fig. 3). Consequently,
the maximum circumradii for k = 1, 2, 3, 4 are almost the same
at the beginning. Corresponding to our proof of termination,
the maximum circumradius is monotonically decreasing with
the execution rounds of APOLLO, while the minimum radius
is increasing in general. In the end, the maximum and minimum
radii are very close to each other, especially for larger k.
While the monotonic decreasing in maximum circumradius
shows the termination of APOLLO, the fact that the minimum
circumradius coincides with the maximum one further confirms
the balanced sensing load.
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Fig. 6. Initial deployments and k-coverage (k = 1, 2, 3, 4) deployments as the output of APOLLO. (a) Initial deployment I (b) 1-coverage I (c) 2-coverage I
(d) 3-coverage I (e) 4-coverage I (f) Initial deployment II (g) 1-coverage II (h) 2-coverage II (i) 3-coverage II (j) 4-coverage II.

Fig. 7. The convergence of APOLLO.

B. Energy Consumption During Deployments

In this section, we use TOSSIM [27] simulations driven
by realistic power consumption data to evaluate the energy
consumption of the whole deployment process. We assume
that a mobile sensor node is equipped with a Micromo core-
less DC motor (www.micromo.com/coreless-dc-motors-data-
sheets.aspx). It moves a MicaZ Mote in a speed of 0.2 m/s with
an energy consumption of 120 mW. We get the communication
cost data from the specification of the popular CC2420 radio
[1]: transmit power 52.5 mW and receiving (or idle-listening)
power 56.4 mW. We assume that, during the i-th round, the
radios are disabled when nodes move, and the communication
(and computation) session starts only when nodes have moved
to their new locations {u+

i } (see Algorithm 1).
Based on the same scenario studied in Section VI-A (i.e., 100

nodes on 1 km2 area), Fig. 8 demonstrates the actual energy
consumption of six autonomous deployments. It is evident that
a smaller step size α results in more rounds but shorter total
moving distances; this is shown by a decreasing communication
consumption in Fig. 8(a) and an increasing motion consumption

in Fig. 8(b) as functions of α. Therefore, given certain power
consumption specifications for motion and communication, we
may tune α to obtain an energy efficient deployment. For
our current settings, the best step size shown by Fig. 8(c) is
around 0.3 to 0.7. We also pick up nodes that consume the
highest energy in each WSN to illustrate the energy consumed
by individual nodes in Fig. 8(d). To put these consumptions
into perspective, a 2450 mAh Energizer (www.energizer.com)
AA battery contains 13kJ, so the (maximum) individual node
consumption of 200J only accounts from a small part of the
node’s energy storage.

We also report the time cost of APOLLO in Fig. 9. As the
time cost stems from both communication and motion, the
general trend is similar to the total combined consumption
shown by Fig. 8(c): the time cost is minimized around α ∈
[0.3, 0.7] as well, for which APOLLO terminates within around
25 minutes and is reasonable for practical applications.

C. Energy Consumption After Deployments

In this section, we show the sensing energy consumption
after APOLLO completes the deployments. We again consider
a targeted area of 1 km2, while scaling the network size from
20 to 180. As data processing and memory accessing consume
most of power in sensing and their frequency depends on the
covered area, we model the energy consumption in sensing
to be proportional to the area of the sensing disk centered at
the sensor node with a radius ri. In particular, we define the
energy consumption function as E(ri) = πr2i : an increasing
function of ri

We illustrate the sensing energy consumption in terms
of maximum load max {E(ri)}i=1,...,N and total load∑N

i=1 E(ri) in Fig. 10. As we deploy more sensor nodes to
a given targeted area, each node takes care of less area when
achieving a certain coverage. The maximum sensing load is
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Fig. 8. Energy consumption during the autonomous deployments. (a) Total communication consumption (b) total motion consumption (c) total combined
consumption (d) node combined consumption.

Fig. 9. Total time cost.

thus decreasing with the increasing number of nodes. Given a
certain number of nodes, to achieve higher coverage degree,
each sensor node is supposed to cover larger area thereby
enhancing the maximum sensing load. We also observe that
for k1-coverage and k2-coverage, the ratio of maximum loads
between them is roughly k1/k2, which can be explained as
follows. Since APOLLO makes the minimum sensing range
very close to the maximum one, each sensor node roughly
covers the same area k|A|/N , i.e., E(ri) = k|A|/N where |A|
is the area of the targeted region. Nevertheless, increasing the
number of nodes does decrease the total sensing load of the
WSN, shown by Fig. 10(b). Since using a less number of nodes
implies a larger sensing disk for each node, this in turn yields
more overlap between sensing ranges (i.e., a larger sensing
redundance), thus a higher total load.

D. Comparisons With Min-Node k-Coverage

As mentioned in Section IV-C, our APOLLO algorithm
results in a good approximation to min-node k-coverage prob-
lem (where all nodes have the same sensing range and the
objective is to minimize the number of nodes used to achieve

k-coverage). In this section, we compare our algorithm with the
deployment strategies proposed in [5] and [3], in terms of the
required number of nodes guaranteeing k-coverage (k ≥ 2). As
we can increase the minimum sensing range to the maximum
one in the output of APOLLO without compromising coverage,
we assign an identical sensing range to every node as the
maximum sensing range R∗ in our case.

Bai et al. have proven in [5] that, without considering bound-
ary effect and with an identical sensing range r, the optimal
congruent deployment density4 for 2-coverage is 4π/3

√
3.

Given a targeted area A, we thus compute the minimum
number of sensor nodes N ∗

k=2 for 2-coverage as: N ∗
k=2 =

|A|(4π/3
√
3)/πr2 = 4|A|/3

√
3R∗2, here we use |A| to re-

place the area of Voronoi polygons generated by sensor nodes,
which leads to an under-estimation of N ∗

k=2 due to the bound-
ary effect. We simulate large-scale WSNs with size ranging
from 1000 to 1600 in a 1 km2 targeted area. The result is
shown in Table I. In general, the number of nodes deployed by
APOLLO is about 15% higher than the minimum value, and
it is obvious that the boundary effect is the main reason for
this difference. As the boundary effect is not considered in [5],
extra nodes are needed to cover the vacancies on the boundary
due to the mismatch between the congruent deployment and
an arbitrarily shaped targeted area. Therefore, we conclude that
APOLLO actually leads to a very good approximation of the
min-node 2-coverage problem.

In [3], Ammari et al. propose to decompose a targeted area
into adjacent Reuleaux triangles, and nodes are deployed in the
intersection areas between these triangles (so-called lens in [3]).
According to their derivation, 6k|A|/(4π − 3

√
3)r2 nodes are

required to k-cover A where k ≥ 3 and r is the sensing range.

4Deployment density is defined as a ratio of the area of sensing disks to the
area of Voronoi polygons generated by sensor nodes [5].
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Fig. 10. Energy consumption in the final deployments of 100 nodes. (a) Maximum sensing load (b) Total sensing load.

TABLE I
THE MINIMUM NUMBER OF SENSOR NODES TO ACHIEVE 2-COVERAGE

TABLE II
THE NUMBER OF SENSOR NODES TO ACHIEVE k-COVERAGE

WITH THE STRATEGY PROPOSED IN [3] FOR k = 3, 4, . . . , 8

Here we compare this feasible deployment with APOLLO. We
deploy 180 nodes in a 1 km2 area and let all nodes have the
same sensing range R∗

k. We also compte the number of nodes
that deployed according to the strategy proposed in [3] as N ∗

k =
6k/(4π − 3

√
3)R∗2

k . From the results shown in Table II, it is
very clear that APOLLO can use much less nodes to achieve
the same level of coverage compared with [3].

E. Performance in Maximum k-Coverage

In addition to the analysis in Section IV-C, we evaluate
the performance of APOLLO in solving maximum k-coverage
problem. Due to space limitation, we only illustrate the results
of 4-coverage. We assume sensor nodes have fixed sensing
ranges of 135m and are deployed in a square targeted region
of 1 km2. We also vary the network scale from 80 to 110 with
a step of 10. The 4-coverage ratio (i.e., the ratio between the
4-covered area and the whole targeted region) in each round
is demonstrated in Fig. 11. It is shown the area 4-covered by
the sensor nodes is increased with the execution of APOLLO,
and reaches maximum when APOLLO converges. Since the
sensing ranges of the sensor nodes are fixed, a network with
small scale may not be able to fully 4-cover the targeted region,
e.g., 80, 90 or 100 nodes in our case. By gradually deploying
more sensor nodes (e.g., 110 nodes), we can have the whole
targeted area 4-covered. Recall that N=110 sensor nodes with
a fixed sensing range of r=135 m can 4-cover (hence k=4)
an area of up to N(4π−

√
(3))r2/6k=0.9 km2. Therefore, we

believe that, APOLLO provides a good approximation to the
maximum k-coverage problem.

F. Adaptability to Obstacles

We demonstrate the autonomous adaptability of APOLLO
to arbitrarily shaped targeted area (with obstacles inside) in

Fig. 11. 4-coverage ratio.

Fig. 12. The “holes” within the network region represent ob-
stacles that mobile sensor nodes cannot move upon. Obviously,
APOLLO adapts well to these irregularities and again achieves
the even clustering distribution as if the area were regular.

G. Extension to 3-D Surfaces

We apply the 3-D APOLLO extension discussed in Section V
for WSN deployments on various 3-D terrain surface models.
The three terrain models are approximated by 5k, 20k and
130k triangles, respectively. In Fig. 13, each row shows one
terrain where we deploy the sensor nodes. Since a large-scale
sensor network are usually air-dropped in the applications of
terrain monitoring, we initially deploy 400, 400 and 800 mobile
sensor nodes for these three terrains respectively in a random
manner. Fig. 13 shows the outputs also reflect clustering dis-
tributions in the multiple coverage cases with k = 2, 3, 4. The
similarity between Fig. 13 and Fig. 6 clearly demonstrates that
our deployment algorithm designed for 2-D deployments has
been successfully extended to handle 3-D surface deployments.
Considering space limit, we hereby omit the illustration of the
convergence process of APOLLO in 3-D deployment, as it is
very similar to its 2-D counterpart.

In Table III, we use the maximum and minimum (Euclidean)
sensing ranges resulted from the autonomous deployments to
show the quality (in terms of load balancing) of the coverage.
In order to make the numbers comparable to each other, we
normalize the three surfaces such that their 2-D projections are
all on a 1 km2 area. A direction interpretation, by comparing
Table III with Fig. 7, the differences between the maximum
sensing ranges and the minimum sensing ranges in 3-D de-
ployments are a little larger than the ones delivered by 2-D
deployments. In another word, quality of APOLLO’s output



LI et al.: AUTONOMOUS DEPLOYMENT FOR LOAD BALANCING k-SURFACE COVERAGE IN SENSOR NETWORKS 291

Fig. 12. Adaptability of APOLLO to arbitrarily shaped areas and obstacles as well. (a) Initial deployment I (b) 2-coverage I (c) 4-coverage I (d) 6-coverage I
(e) 8-coverage I (f) Initial deployment II (g) 2-coverage II (h) 4-coverage II (i) 6-coverage II (j) 8-coverage II.

Fig. 13. k-coverage deployments on 3-D surfaces, k = 2, 3, 4. (a) Initial deployment (b) 2-coverage deployment (c) 3-coverage deployment (d) 4-coverage
deployment.

TABLE III
THE MAXIMUM AND MINIMUM SENSING RANGES FOR THREE SURFACE DEPLOYMENTS

in terms of load balancing is worse in 3-D than in 2-D. This
is expectable as the problem becomes significantly harder to
handle on 3-D surfaces. However, the results in Table III do
not indicate a worse performance of APOLLO in terms of
solving the k-coverage optimization problem, because it has
never been proven that an optimal k-coverage solution (for

k > 2) for either 2-D planes or 3-D surfaces can be or have
to be achieved by disks with an identical radius. It is highly
possible that, on 3-D surfaces, an optimal k-coverage solution
indeed accommodates variable radii. Another reason is that, we
employ an approximated Chebyshev centers in 3-D APOLLO
which may lead to compromise in terms of load balancing.
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VII. CONCLUSION

In this paper, we have focused on minimizing the maximum
sensing range to achieve load balancing k-coverage through
autonomous deployments (i.e., relying on mobile sensors nodes
and the wireless communications among them). We have inno-
vated in applying the k-order Voronoi diagram in a localized
manner, and proposed APOLLO to solve the optimization
problem through a distributed and localized procedure. Our
approach is the first to tackle the problem of k-coverage au-
tonomous deployment, for WSNs on both 2-D planes and 3-D
surfaces. We have proven the termination of APOLLO as well
as the (local) optimality of its output. We have also explained
the close relations between the output of APOLLO and other
commonly used optimization objectives, which provides a bet-
ter understanding of optimal k-coverage deployments whose
theoretical characterizations are hard to obtain under general
settings. Finally, our simulation results strongly confirm our
theoretical claims, as well as the adaptability of APOLLO
to the irregularities of the targeted sensing regions and the
effectiveness of its 3-D surface extension.

This paper currently takes into account only omnidirectional
sensing model, while some types of real sensors may have
certain directional features (e.g., radar or acoustic sensors). We
are on the way of extending APOLLO to deal with directional
sensing model.
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