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Abstract 1 

Background and Context: Abnormal somatosensory evoked potential (SEP), i.e., prolonged 2 

latency, has been associated with poor surgical prognosis of cervical spondylotic myelopathy 3 

(CSM).  4 

Purpose: To further characterize the extent of microstructural damage to the somatosensory 5 

tract in CSM patients using diffusion tensor imaging (DTI). 6 

Study Design/Setting: Retrospective study. 7 

Patient Sample: A total of 40 volunteers (25 healthy subjects and 15 CSM patients). 8 

Outcome Measures: Clinical, electrophysiological and radiological evaluations were 9 

performed using the Japanese Orthopaedic Association (JOA) scoring system, SEP and cord 10 

compression ratio in anatomic MR images respectively. Axial diffusion MR images were 11 

taken using a pulsed gradient, spin-echo-echo-planar imaging (SE-EPI) sequence with a 3T 12 

MR system. The diffusion indices in different regions of the spinal cord were measured.  13 

Methods: Comparison of diffusion indices among healthy and myelopathic spinal cord with intact and 14 

impaired SEP responses were performed using one-way ANOVA. 15 

Results: In healthy subjects, FA values were higher in the dorsal (0.73±0.11) and lateral 16 

columns (0.72±0.13) than in the ventral column of WM (0.58±0.10), e.g., at C4/5 (p<0.05). 17 

FA was dramatically dropped in the dorsal (0.54±0.16) and lateral columns (0.51±0.13) with 18 

little changes in the ventral column (0.48±0.15) at the compressive lesions in CSM patients. 19 

There were no significant differences in the JOA scores or cord compression ratios between 20 

CSM patients with or without abnormal SEP. However, patients with abnormal SEP showed a 21 

FA decrease in the dorsal column cephalic to the lesion (0.56±0.06), i.e., at C1/2, compared 22 

with healthy subjects (0.66±0.02), but the same decrease was not observed for those without a 23 

SEP abnormality (0.67±0.02). 24 

Conclusion: Spinal tracts were not uniformly affected in the myelopathic cervical cord. 25 

Changes in diffusion indices could delineate focal or extensive myelopathic lesions in CSM, 26 
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which could account for abnormal SEP. DTI analysis of spinal tracts might provide additional 1 

information not available from conventional diagnostic tools for prognosis of CSM.  2 

Key words: Cervical Spondylotic Myelopathy, Diffusion Tensor Imaging, Spinal Cord, 3 

Fractional Anisotropy, Microstructure4 
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Introduction 1 

Cervical spondylotic myelopathy (CSM) is the most common type of spinal cord 2 

dysfunction in patients older than 55 years [1-3]. The severity of somatosensory dysfunction, 3 

i.e.  the prolonged latency of somatosensory evoked potential (SEP), has been identified as an 4 

indicator for the poor prognosis in CSM patients after surgical management . However, the 5 

information regarding the extent of somatosensory tract damage in CSM patients remains to 6 

be explored. 7 

The emerging diffusion tensor imaging (DTI) technique provides in vivo detection of the 8 

microstructure of the spinal cord parenchyma [5]. Fractional anisotropy (FA) and diffusivities, 9 

e.g., mean diffusivity (MD), axial and radial diffusivities (AD and RD), were derived from 10 

the diffusion tensor matrix, which are commonly used in DTI analysis to describe the voxels’ 11 

diffusion properties [6]. Above diffusion indices are attributed to the densely packed axonal 12 

membranes in the spinal cord, and they may reflect microarchitectural changes associated 13 

with the demyelination process and axon damage in neurological injury and disease [7,8]. 14 

Feasibility of DTI has been used for CSM patients in previous studies [9-17]. However, little 15 

is known about the specific spinal tract damages in CSM due to the poor quality of diffusion 16 

MR images in previous studies under relatively lower magnetic field strengths, i.e., 0.2 and 17 

1.5 Tesla, or sagittal slicing of the cervical spinal cord [9-17]. Several approaches were 18 

employed to improve the quality of diffusion MR images, including use of a 3.0-Tesla MRI 19 

scanner, optimizing the axial slice thickness to achieve a good signal/noise ratio (SNR) and 20 

reducing motion artifacts through cardiac/respiratory gating [18,19]. The improved image 21 

quality, with a clear separation of gray and white matter structures, makes it possible to 22 

analyze the microarchitecture of the spinal tracts anatomically.  23 

        This study aimed to (1) characterize the diffusion properties of the ventral, lateral and 24 

dorsal columns in the healthy and myelopathic cervical cord using diffusion MR images and 25 

(2) correlate SEP status, i.e., normal or prolonged latency, with DTI findings in CSM patients.26 
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Materials and Methods 1 

Subjects 2 

The institutional review board of research ethics approved all experimental procedures in 3 

this study. A total of forty volunteers were recruited with informed consent (25 healthy 4 

subjects at the age of 52±7 years old and 15 CSM patients at the age of 60±9 years old). All 5 

volunteers were screened to confirm their eligibility before the study. The inclusion criteria 6 

for healthy subjects were with intact sensory and motor function and a negative Hoffman’s 7 

sign under physical examination. Those having any neurological signs or symptoms or any 8 

past history of neurological injury, disease or surgeries were excluded. Experienced spinal 9 

surgeons made clinical diagnoses based on the insidious and chronic course, neurological 10 

deficit and radiological findings of degenerative intervertebral discs and spondylosis. The 11 

CSM patients’ neurological deficits were evaluated via physical examination and the 12 

modified Japanese Orthopaedic Association (mJOA) score, with the highest score being 17 13 

[20,21]. 14 

Electrophysiological assessments 15 

The functional integrity of the spinal cord was evaluated using somatosensory evoked 16 

potential (SEP) [4]. In brief, stimulation was applied to the median nerve on the wrists, while 17 

SEP signals were recorded from the C3 in response to right limb stimulation and from the C4 18 

in response to left limb stimulation, with the reference electrode at Fz according to the 19 

international 10–20 system [6]. The data were inspected for the presence of the main peaks 20 

N19/P22 by an experienced electrophysiologist. The latency and amplitude of SEP signals 21 

from CSM patients were compared with previously published healthy criteria (latency: 22 

18.40±0.71 ms; amplitude: 1.23±0.50 µV) [4]. The impaired SEP in CSM patients were 23 

defined as delayed N19 latency (exceeding 2.5 SD),regardless of the peak-to-peak amplitude 24 

(< 0.5 µV), or waveform disappearance [4]. 25 

MRI Scanning 26 
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All images were taken via a 3.0-Tesla MRI scanner (Philips Achieva). During the 1 

acquisition process, the subject was placed in a supine position with the sense neuro-vascular 2 

(SNV) head and neck coil enclosing the cervical region and instructed not to swallow to 3 

minimize motion artifacts. The subject was then scanned to produce anatomical T1-weighted 4 

(T1W) images, T2-weighted (T2W) images and diffusion tensor images (DTI). 5 

Sagittal and axial T1W and T2W images were acquired for each subject. A fast spin echo 6 

(FSE) sequence was employed. A total of 11 sagittal images covering the whole cervical 7 

spinal cord were acquired. Cardiac vectorcardiogram (VCG) triggering was applied to 8 

minimize the pulsation artifact from CSF. A total of 12 transverse images covering the 9 

cervical spinal cord from C1 to C7, each of which was placed at the center of either a 10 

vertebrae or intervertebral disc, were acquired. Diffusion MRI images were acquired using 11 

the pulsed sequence of single-shot spin-echo echo-planar imaging (SE-EPI). Diffusion 12 

encoding was in 15 non-collinear and non-coplanar diffusion directions with a b-value = 600 13 

s/mm
2
. The image slice planning was the same as that for the anatomical axial T1W and T2W 14 

images, with 12 slices covering the cervical spinal cord from C1 to C7. The duration of 15 

diffusion tensor imaging (DTI) averaged 24 minutes per subject with an average heart rate of 16 

60 beats per minute. Spatial saturation with Spectral Presaturation with Inversion Recovery 17 

(SPIR) was applied to suppress the fold-over effect.  18 

Image analysis 19 

The morphometry of the spinal cord were analyzed using the previously reported 20 

methods [22], including measurement of cervical cord compression using the anterior-21 

posterior diameter/transverse diameter ratio in axial T2W images. Intramedullary signal 22 

changes were recorded based on both T2W and T1W images.  23 

Diffusion measurement was performed using DTIStudio software (Version 2.4.01 2003, 24 

Johns Hopkins Medical Institute, Johns Hopkins University). Image volume realignment and 25 

3D rigid body registration with different diffusion gradients were conducted using the 26 
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Automated Image Registration (AIR) program (Laboratory of Neuroimaging, UCLA) to 1 

reduce the effect of motion artifacts. The realigned and co-registered diffusion- weighted data 2 

were double checked for image quality and then used to estimate diffusion tensors, including 3 

three eigenvalues (λ1, λ2 and λ3) and the corresponding eigenvectors. Maps of the fractional 4 

anisotropy (FA) and axial and radial diffusivity (AD and RD) were derived from the diffusion 5 

matrix accordingly. 6 

The regions of interest (ROIs) were defined in different areas of the cervical spinal cord: 7 

the ventral, lateral and dorsal columns of white matter (WM) (Figure 1) [23]. The diffusion 8 

indices were calculated by averaging all selected voxels in the ROIs using ImageJ (National 9 

Institute of Health, USA).  10 

Statistical analysis 11 

        The FA, AD and RD values in different regions of the spinal cord were calculated at 12 

each vertebrae and disc level along the whole cervical spine (Figure 2). The degenerated disc 13 

level(s) and adjacent vertebrae level(s) were defined as the spondylotic myelopathic lesion 14 

segment for statistical analysis. Comparisons among healthy and myelopathic spinal cord 15 

with intact and impaired SEP responses were performed using one-way ANOVA. The level of 16 

significance was set at p<0.05. All data analyses were performed using SPSS 15.0 analysis 17 

software (SPSS Inc., Chicago, IL, USA). 18 

19 
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Results 1 

Clinical, radiological and electrophysiological data 2 

A total of fifteen CSM patients presented with severe neurological deficits as indicated 3 

by their significant mJOA scores (CSM: 9.8±1.0, full score 17) and the compression of the 4 

cervical cord (0.35±0.07) compared to healthy subjects (0.52±0.05, p<0.001) (Table 1, Figure 5 

2). 6 

Among fifteen CSM patients, five of them presented prolonged latency in SEP (latency: 7 

21.90±1.22 ms; amplitude: 0.87±0.42 µV) and were classified as the CSM_lat+ group. The 8 

remaining CSM patients, who presented normal SEP or only decreased amplitude (latency: 9 

17.81±1.06 ms; amplitude: 1.14±0.64 µV), were classified as the CSM_lat- group. There were 10 

no significant differences in the age of patients (CSM_lat+: 62±8 years, CSM_lat-: 59±10 11 

years), duration of disease (CSM_lat+: 6.1±8 years, CSM_lat-: 6.1±2.3 years) or mJOA score 12 

(CSM_lat+: 10.0±0.9, CSM_lat-: 9.4±1.1) between these two groups. Intramedullary signal 13 

changes in T2 or T1 images appeared more frequently in the CSM_lat+ group (Table 1).  14 

Regional differences in diffusion anisotropy in the healthy cervical spinal cord 15 

The tissue microarchitecture was not uniform in the cervical spinal tracts of healthy 16 

subjects. FA values were significantly higher in the dorsal (0.73±0.11) and lateral columns 17 

(0.72±0.13) than those in the ventral column of WM (0.58±0.10) (p<0.05), e.g., at C4/5. At 18 

the same level, there were no statistically significant differences in AD values between the 19 

different regions of white matter (dorsal column: 2.067±0.197×10
-3

; lateral column: 20 

2.081±0.191×10
-3

; ventral column: 2.130±0.242×10
-3

), whereas RD values were relatively 21 

lower in the somatosensory tracts (dorsal column: 0.596±0.243×10
-3

; lateral column: 22 

0.612±2.23×10
-3

; ventral column: 0.770±0.177×10
-3

) (Figure 3). 23 

Changes in diffusion anisotropy were region-dependent 24 

The diffusion indices of the myelopathic cord changed in all three columns in the white 25 

matter. For example, at the level of C4/5, the AD values were significantly higher in all 26 
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regions of the myelopathic cord (dorsal column: 3.139±0.447×10
-3

; lateral column: 1 

2.857±0.371×10
-3

; ventral column: 3.356±0.266×10
-3

) than those in the healthy cord (dorsal 2 

column: 2.067±0.197×10
-3

; lateral column: 2.081±0.191×10
-3

; ventral column: 3 

2.130±0.242×10
-3

; p<0.001). Increased RD values were also detected in the myelopathic cord 4 

(dorsal column: 1.500±0.487×10
-3

; lateral column: 1.498±0.320×10
-3

; ventral column: 5 

1.610±0.080×10
-3

) in comparison with the healthy cord (dorsal column: 0.596±0.210 ×10
-3

; 6 

lateral column: 0.612±0.223×10
-3

; ventral column: 0.770±0.177×10
-3

; p<0.001).  7 

By contrast, the FA changes in the myelopathic cord were region-dependent. As shown 8 

in Figures 1 and 2, a significant change in FA was observed in the dorsal (0.54±0.16) and 9 

lateral columns (0.51±0.13) of the myelopathic spinal cord under anterior compression; while 10 

the ventral column of myelopathic spinal cord were relatively spared (0.48±0.15). The 11 

regional differences in FA, observed in healthy spinal cord, were absent in the myelopathic 12 

cord. 13 

Diffusion anisotropy drop cephalic to the lesion 14 

        As compared to healthy subjects, CSM patients with intact SEP (normal latency) showed  15 

the decrease of FA localized at the dorsal and lateral columns of white matter in myelopathic 16 

spinal cords. By contrast, the decrease of FA was much more extensive in patients with 17 

impaired SEP (prolonged latency), involving three columns of white matter (dorsal column: 18 

0.57±0.05; lateral column: 0. 58±0.03; ventral column: 0.48±0.03) (Figure 4). In addition, it 19 

not only occurred at the compressive lesion, but also at the cephalic level to the lesion in all 20 

three columns of white matter (dorsal column: 0.57±0.06; lateral column: 0.57±0.04; ventral 21 

column: 0.53±0.02) (Figures 4, 5). 22 
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Discussion 1 

DTI was employed to evaluate regional deficits in the myelopathic spinal cord. It was 2 

found that the spinal tracts were not uniformly affected in CSM. The CSM-related changes of 3 

diffusion anisotropy were region-dependent, afflicting the dorsal and lateral columns and 4 

relatively sparing the ventral column. It was in a good agreement with histopathological 5 

findings under clinical autopsy examination [1].  6 

In consistence with previous DTI studies of CSM[11-19], the present study 7 

demonstrated FA decrease and apparent diffusion coefficient (ADC) or mean diffusivity 8 

increase in CSMThe diffusivity changes in CSM reflect the increase in the strength of water 9 

molecule movement in the enclosed spinal cord when passing through a narrow canal. This 10 

increase may be part of the spinal cord’s initial adaptation under chronic compression in a 11 

progressive stenotic canal. The unconstrained water molecules in the myelopathic cord 12 

present the decrease of diffusion anisotropy under DTI examination. 13 

    AD and RD of the myelopathic cord were elevated in all three columns, and they did not 14 

show the same regional differences as those observed for FA. By contrast, FA pattern of the 15 

myelopathic cord was more compatible with histopathological features of previously 16 

published clinical autopsy studies [4,5]. FA appeared to reflect demyelination and axon 17 

damage more appropriately in CSM cases in comparison with AD and RD, although they 18 

were once used to detect microstructural changes in other spinal cord disorders, e.g., multiple 19 

sclerosis [9,10].  20 

        21 

Clinically, the prolonged latency of SEP has been reported as an indicator for the poor 22 

prognosis of CSM after surgeries [4]. It was also found in a rat model that the normal or 23 

prolonged latency of SEP were in a good association with the severity of microstructural 24 

damages in the chronic compressive spinal cord [37]. In this study, diffusion MR imaging of 25 

spinal tracts unveiled that a decrease of FA at the cephalic level of myelopathic cord to the 26 
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compressive lesion indicated anterograde degeneration of somatosensory spinal tract, so-1 

called Wallerian degeneration. This finding specifically provided the structural basis of 2 

prolonged latency of SEP in myelopathic human spinal cord. The JOA assessment is a global 3 

assessment for myelopathic severity [28].However, spinal tracts are not uniformly affected in 4 

CSM, which cannot be reflected by a global assessment such as the JOA score. We did not 5 

find a difference in the sums of the JOA scores between CSM patients with or without 6 

prolonged latency. The value of the JOA score system in predicting surgical outcomes for 7 

CSM patients remains controversial [29]. As such, the regional analysis of diffusion MR 8 

images of the myelopathic cord might provide additional information to the current 9 

assessments, including the JOA score system, anatomic MR images and SEP, to formulate a 10 

comprehensive evaluation approach for clinical diagnosis and prognosis of CSM.  11 

The severity of cord compression did not necessarily correlate with the signs and 12 

symptoms of CSM patients [30-32]. For example, there were cases with significant cord 13 

compression but without any neurological signs, or with mild cord compression but with 14 

development of neurological signs [33,34]. We found that there was no significant difference 15 

in the compression ratio of the myelopathic cord with or without prolonged latency in SEP, 16 

although there was a difference in the extent of cord damage between the two groups. 17 

The clinical significance of T2 hyperintensity [29,35-38], and T1 hypointensity [39,40] 18 

was also documented in CSM patients. It was found that signal changes of the myelopathic 19 

cord were commonly present in CSM patients with prolonged latency of SEP. However, such 20 

signal changes in the cervical cord are non-specific, which covers a wide spectrum of 21 

pathological changes such as edema and hemorrhage (T2 hyperintensity) or cyst (T1 22 

hypointensity). In contrast, DTI might provide more specific information on demyelination 23 

and axon damage in spinal tracts of the myelopathic cord.  24 

In summary, DTI could provide a more sensitive and specific measurement for spinal 25 

tract damage in CSM than the conventional clinical, electrophysiological and radiological 26 
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assessments. Limited to a cross-sectional observation on a small number of CSM patients, the 1 

exact diagnostic and prognostic values of DTI in CSM needs to be verified in a large-scale, 2 

prospective study in the near future. 3 

4 
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Figure Legends 1 

Figure 1. The representative anatomic (A, F), diffusion MR images (B, C, G, H) and fiber 2 

tractography (D, E, I, J) of healthy (A~E) and myelopathic spinal cord (F~G). The regions of interest  3 

are defined based on the anatomy of the spinal cord in axial slices of the fractional anisotropy (FA) 4 

mapping (C, F). The gray matter (“*”) is defined as the central portion of the spinal cord with low 5 

gray scale on the FA map; then the ventral, lateral and dorsal columns of white matter are defined 6 

accordingly (C. H). Compared with the healthy cord, the tracking of water molecules movement 7 

significantly changes in the dorsal and lateral aspects of the myelopathic cord (I, J: white arrow). 8 

 9 

Figure 2. The characterization of diffusion properties of healthy (left column) and the myelopathic 10 

spinal cord (right column) in the ventral, lateral and dorsal columns of white matter by anatomic 11 

levels along the length of the cervical spine. FA values significantly drop in the dorsal and lateral 12 

columns with relative sparing in the ventral column (shown in the upper row). Yet the AD and RD 13 

values are increased in all three columns of white matter (shown in the middle and lower rows). 14 

Abbreviations: FA: fractional anisotropy; AD: axial diffusivity; RD: radial diffusivity. 15 

 16 

Figure 3. Gross morphometry of the spinal cord was evaluated via measurement of the compression 17 

ratio (anterior-posterior distance divided by transverse distance of the spinal cord). Generally, the 18 

compression ratio decreases in the myelopathic spinal cord. There is no statistically significant 19 

difference in the compression ratio between the myelopathic cord with (CSM_lat+) or without 20 

prolonged latency (CSM_lat-). (“*” Indicates statistical significance at p<0.05 with one-way ANOVA 21 

and post-hoc test). 22 

 23 

Figure 4. The representative anatomic (A, E, I), diffusion MR images (B, F, J) and fiber tractography 24 

(C, D, G, H, K and M) of healthy (A~D) and the myelopathic spinal cord with (I~M) or without 25 

prolonged latency (E~H) at C1/2 level cephalic to myelopathic lesions. The myelopathic cord with 26 

prolonged latency demonstrate significantly lower FA mapping (J) and disturbance of fiber tracking 27 

(K, M) at the upper cervical region cephalic to the chronic compressive lesions compared with those 28 

without prolonged latency, as well as the healthy cord. 29 

 30 

Figure 5. A comparison of the diffusion anisotropy of the dorsal (A), lateral (B) and ventral columns 31 

(C) of white matter among healthy and the myelopathic spinal cord with (CSM_lat+) or without 32 

prolonged latency (CSM_lat-). In the CSM_lat- group, FA drops mainly in the dorsal and lateral 33 

columns. Yet in the CSM_lat+ group, the changes in FA are much more extensive not only at the 34 

lesion level but cephalic to the lesion, and involved in all three columns (“*” Indicates statistical 35 

significance at p<0.05 with one-way ANOVA and post-hoc test). 36 



 

 1 

  Table 1 Summary of clinical and radiological data of the patients of cervical spondylotic myelopathy  

Case Gender/age 

From 

symptom 
onset to 

imaging 

JOA 
score 

Hoffman 
Sign 

Finger  

Escape 

Sign 

Babinski 
Sign 

Ankle 
Clonus 

Romberg 
Test 

Spinal canal 

Spinal cord 

Stenostic level(s) 

SEP 

T1W T2W Latency Amplitude 

1 F/44 3 years 10.0 - 1 + - + PID - - C5~6 - + 

2 F/46 5 years 11.5 + 2 + - + PID - - C4~5, C5~6 - + 

3 M/54 5 years 9.5 - 0 + - + 
PID, 

spondylosis 
- 

Focal 

hyperintense 
signals 

C5~6 - + 

4 F/61 4 years 11.0 + 1 - - - PID - - C4~5, C5~6 - - 

5 M/57 8 years 8.5 + 1 - - - PID - - C3~4 - - 

6 F/58 4.5 years 10.0 - 1 + - + 
PID, 

spondylosis 
- 

Focal 
hyperintense 

signals 

C3~4, C4~5, C5~6 - + 

7 M/61 8 years 9.5 + 1 + - + PID - - C3~4 - - 

8 F/68 7 years 10.0 - 4 + - + PID - - C4~5 - - 

9 M/71 >10 years 11.0 + 2 + + + PID - - C3~4, C4~5, C5~6 - + 

10 M/72 10 years 9.0 + 0 + - - PID - - C4~5, C5~6 - - 

11 F/54 6 years 10.0 + 3 + + N.T. 
PID, 

spondylosis 

Multi-segmental 

hypointense 

signals 

Multi-segmental 

hyperintense 

signals 

C3~4, C4~5, C5~6 + + 

12 F/58 3 years 8.5 + 1 + - + PID - - C4~5, C5~6 + + 

13 M/65 5 years 11.0 + 3 + + N.T. 
PID, 

spondylosis 
- 

Focal 
hyperintense 

signals 

C4~5, C5~6 + - 

14 M/66 7 years 9.0 + 2 + + + PID - 

Focal 

hyperintense 
signals 

C5~6 + + 

15 F/74 10 years 8.5 + 4 + + N.T. PID - - C3~4 + + 

Abbreviations: SEP: Somatosensory evoked potentials; PID: protrusion of intervertebral disc; 

Note: “+”/”-” indicates the presence (or absence) of pathological signs. Finger escape signs were graded as: “0” all, none deficiency; “1” little finger unable to hold adduction; “2” little or little and ring finger unable 

to assume adduction; “3” little and ring finger unable to assume adduction or full extension; “4” little, right and middle unable to assume adduction or full extension. 

Table(s) in MS Word
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Supplementary Table The scanning parameters of anatomic and diffusion MR image 

Scanning mode Imaging parameters 

Sagittal T1W and T2W images Field of view (FOV) = 250 250  mm, slice thickness = 3 mm, slice gap = 0.3 mm, fold-over 

direction = Feet/Head (FH), Number of excitation (NEX) = 2, resolution = 0.92 1.16 3.0   

mm3 (T1W) and 0.78 1.01 3.0   mm3 (T2W), recon resolution = 0.49 0.49 3.0   mm3, 

Time of echo (TE) / Time of Repetition (TR) = 7.2 / 530 ms (T1W) and 120 / 3314 ms (T2W). 

Axial T1W and T2W images FOV = 80 80  mm, slice thickness = 7 mm, slice gap = 2.2 mm, fold-over direction = 

anterior/posterior (AP), NEX = 3, resolution = 0.63 0.68 7.0   mm3 (T1W) and 

0.63 0.67 7.0   mm3 (T2W), recon resolution = 0.56 0.55 7.0   mm3 (T1W) and 

0.63 0.63 7.0   mm3 (T2W), TE / TR = 8 / 1000 ms (T1W) and 120 / 4000 ms (T2W) 

Axial diffusion tensor images FOV = 80 80  mm, slice thickness = 7 mm, slice gap = 2.2 mm, fold-over direction = AP, 

NEX = 3, resolution = 1 1.26 7.0   mm3, recon resolution = 0.63 0.64 7.0   mm3, TE / TR 

= 60 ms / 5 heartbeats 
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