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Optimization of Composite Cloud Service
Processing with Virtual Machines

Sheng Di, Member, IEEE, Derrick Kondo, Member, IEEE and Cho-Li Wang, Member, IEEE

Abstract—By leveraging virtual machine (VM) technology, we optimize cloud system performance based on refined resource
allocation, in processing user requests with composite services. Our contribution is three-fold. (1) We devise a VM resource allocation
scheme with a minimized processing overhead for task execution. (2) We comprehensively investigate the best-suited task scheduling
policy with different design parameters. (3) We also explore the best-suited resource sharing scheme with adjusted divisible resource
fractions on running tasks in terms of Proportional-Share Model (PSM), which can be split into absolute mode (called AAPSM) and
relative mode (RAPSM). We implement a prototype system over a cluster environment deployed with 56 real VM instances, and
summarized valuable experience from our evaluation. As the system runs in short supply, Lightest Workload First (LWF) is mostly
recommended because it can minimize the overall response extension ratio (RER) for both sequential-mode tasks and parallel-mode
tasks. In a competitive situation with over-commitment of resources, the best one is combining LWF with both AAPSM and RAPSM. It
outperforms other solutions in the competitive situation, by 16+% w.r.t. the worst-case response time and by 7.4+% w.r.t. the fairness.

Keywords—Cloud Resource Allocation, Task Scheduling, Resource Allocation, Virtual Machine, Minimization of Overhead
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1 INTRODUCTION

Cloud computing [1], [2] has emerged as a flexible
platform allowing users to customize their on-demand
services. Platform as a Service (PaaS) is a classical
paradigm, and a typical example is Google App Engine
[3], which allows users to easily deploy and release their
own services on the Internet.

Our cloud scenario is similar to the PaaS model, in
which the users can submit complex requests each being
composed of off-the-shelf web services. Each service is
associated with a price, which is assigned by its creator.
When a user submits a compute request (or a task) that
calls other services, he/she needs to pay the usage of
these services and the payment is determined by how
much resource to be consumed. On the other hand,
virtual machine (VM) resource isolation technology [4],
[5], [6], [7], [8], [9] can effectively isolate various types
of resources for the VMs running on the same hardware.
We leverage such a feature to refine the resource alloca-
tion, which is completely transparent to users.

In cloud systems [10], over-commitment of physical
resources is fairly common in order to achieve high re-
source utilization. According to a Google trace [11] with
10k+ hosts, for example, Reiss. et al. [12] presented the
resource amounts requested are often greater than the
total capacity of Google data centers, and the requesting
amounts are usually twice as the real resource amounts
consumed by tasks. Such an over-commitment of re-
sources may result in relatively short-supply situation
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(a.k.a., competitive situation) occasionally, degrading the
overall Quality of Service (QoS) [11].

In our cloud model, each user request (or task) is made
up of a set of subtasks (or web service instances), and in
this paper, we aim to answer four questions below.

• how to optimize resource allocation for a task based
on its budget, where the subtasks inside the task can
be connected in parallel or in series.

• how to split the physical resources according to
tasks’ various requirements in both competitive and
non-competitive situation.

• how to minimize data transmission overhead and
operation cost of virtual machine monitor (VMM).

• how to schedule user requests with minimized task
response time in a competitive situation.

Based on our characterization of Google trace [11], [13]
which contains 4,000 types of cloud applications, we find
that there are only two types of Google tasks, sequential-
mode task and parallel-mode task. The former contains
multiple subtasks connected sequentially (like a sequen-
tial workflow) and the latter executes multiple subtasks
in parallel (e.g., mapreduce). We try to optimize the
performance for both of the two cases.

The cloud system may experience two different sit-
uations, either non-competitive status or competitive
status.

1) For a non-competitive situation, the available re-
sources are relatively adequate for user demands,
so the optimality is mainly determined by task’s
intrinsic structure (e.g., how its subtasks are con-
nected) and budget. In particular, some subtask’s
output needs to be transferred to its succeeding
subtask as input, and the data transmission delay
cannot be overlooked if the data size is huge. On
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the other hand, since we will take advantage of the
VM resource isolation, the cost of VMM operations
(such as the time cost in performing CPU-capacity
changing command at runtime) is also supposed to
be minimized.

2) For a competitive situation, how to keep each
task’s QoS at a high level and maximize the over-
all fairness of the treatment meanwhile is quite
challenging. On one hand, each task’s execution is
determined by a different structure that is made
up of multiple subtasks corresponding to vari-
ous services, and also associated with a varied
budget to restrict its total payment. On the other
hand, a competitive situation with limited avail-
able resources may easily delay some particular
responses, leading to the unfairness of treatment.

In our experiment, we find that assigning different
priorities to tasks in the task scheduling stage and
in the resource allocation stage would bring out sig-
nificantly different effects on the overall performance
and fairness. Hence, we investigate the best-suited
queuing policies for maximizing the overall perfor-
mance and fairness of QoS. As for the sequential-
mode tasks, the candidate queuing policies include
First-Come-First-Serve (FCFS), Shortest-Optimal-Length-
First (SOLF), Lightest-Workload-First (LWF), Shortest-
SubTask-First (SSTF) (a.k.a., min-min), and Slowest-
Progress-First (SPF). SOLF assigns higher priorities to the
tasks with shorter theoretically optimal execution length
estimated based on our convex-optimization model,
which is similar to the Heterogeneous Earliest Finish
Time (HEFT) [14]. LWF and SSTF can be considered
Shortest Job First (SJF) and min-min algorithm [15] re-
spectively. The intuitive idea of SPF is similar to Earliest
Deadline First (EDF) [16], wherein we adopt two criteria
to evaluate the task execution progress. In addition, we
also investigate the best-suited scheduling policy for the
parallel-mode tasks. The candidate scheduling policies
include FCFS, SSTF, LWF, Longest SubTask First (LSTF)
and the hybrid approach with a mixture of queuing
policies, e.g., LWF+LSTF.

We also explore a best-fit resource allocation scheme
(called adjusted proportional-share model) to adapt
to the competitive situation. Specifically, we investi-
gate how to coordinate the divisible resource allocation
among the running tasks in terms of their structures like
workload or varied estimated progress.

Based on the composite cloud service model, we
implement a distributed prototype that is able to
solve/calculate complex matrix problems submitted by
users. We also explore the best choice of the involved
parameters used in our algorithm, by running our ex-
periments performed on a real-cluster environment with
56 VMs and 10 services with various execution types.
Experiments show that for the sequential-mode tasks,
the worst-case performance under LWF is higher than
that under other policies by at least 16% when overall
resource amount requested is about twice as the real

resource amount that can be allocated. Another key
lesson we learned is that in a competitive situation,
short tasks (with the short single-core execution length)
are better to be assigned with more powerful resource
amounts than the theoretically optimal values derived
from the optimization theory. As for the parallel-mode
tasks, LWF+LSTF leads to the best result, which is better
than other solutions by 3.8% - 51.6%.

In the remainder of the paper, we will use the term
host, machine, and node interchangeably. In Section 2, we
describe the architecture of our cloud system. In Section
3, we formulate the research problem in our cloud
environment, to be aiming to maximize individual task’s
QoS and the overall fairness of treatment meanwhile.
In Section 4, we discuss how to optimize the execution
of each task with minimized overheads, and how to
stabilize the QoS especially in a competitive situation.
We present experimental results in Section 5. We discuss
the related works in Section 6. Finally, we conclude the
paper with a vision of the future work in Section 7.

2 SYSTEM OVERVIEW

The system architecture of our composite cloud service
system is shown in Fig. 1 (a). A user request (a.k.a.,
a task) is made up of multiple subtasks connected in
parallel or sequentially. Each subtask is an instance
of an off-the-shelf service that has a very convenient
interface (such API) to be called. Each whole task is
expected to be completed as soon as possible under the
constraint of its budget. Task scheduling is a key layer to
coordinate the task priorities. Resource allocation layer is
responsible for calculating the optimal resource fraction
for the subtasks. Each physical host runs multiple VMs,
on each of which are deployed with all of the off-the-
shelf services (e.g., the libraries or programs that do
the computation). Each subtask will be executed on a
VM, with an amount of virtual resource fraction tuned
by the substrate VM monitor (VMM, a.k.a., hypervisor).
Fault tolerance is beyond the scope of the paper, and we
discuss this issue in [17] in details.

Web Service Layer

Physical Infrastructure Layer

Resource Allocation Layer

User Interface (Task Parser)

Task Scheduling Layer

Virtual Machine Layer

(a) System Architecture

Task 

Submission
Cloud server

subtasktask

Physical node Virtual Machine

Task

Scheduling

notification

Resource Pool
Queue

Task

Scheduling
Resource 

Isolation

Task

Execution

(b) Task Processing Procedure
Fig. 1: System Overview of Cloud Composite Service System

Each task is processed via a scheduling queue, as
shown in Fig. 1 (b). Tasks are submitted continually over
time, and each task submitted will be analyzed by a task
parser (in the user interface module), in order to predict
the subtask workloads based on input parameters.
Subtask’s workload can be characterized using
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{resource processing rate×subtask execution length}
based on historical traces or workload prediction
approaches like polynomial regression method [18].
Our optimization model will compute the optimal
resource vector of all subtasks for the task. And then,
the unprocessed subtasks with no dependent preceding
unprocessed subtasks will be put/registered in a queue,
waiting for the scheduling notification. Upon being
notified, the hypervisor of the selected physical machine
will launch a VM and perform the resource isolation
to match optimization demand. The corresponding
service on the VM will be called using specific input
parameters, and the output will be cached in the VM,
waiting for the notification of the data transmission for
its succeeding subtask.

We adopt XEN’s credit scheduler [19] to perform the
resource isolation among VMs on the same physical
machine. With XEN [20], we can dynamically isolate
some key resources (like CPU rate and network band-
width) to suit the specific usage demands of different
tasks. There are two key concepts in the credit scheduler,
capacity and weight. Capacity specifies the upper limit
on the CPU rate consumable by a particular VM, and
weight means a VM’s proportional-share credit. On a
relatively free physical host, the CPU rate of a running
VM is determined by its capacity. If there are over-many
VMs running on a physical machine, the real CPU rates
allocated for them are proportional to their weights. Both
capacity and weight can be tuned at runtime.

3 PROBLEM FORMULATION

Assuming there are n tasks to be processed by the
system, and they are denoted as ti, where i=1,2,· · · ,n.
Each task is made up of multiple subtasks connected in
series or in parallel. We denote the subtasks of the task ti
to be ti(1), ti(2), · · · , ti(mi), where mi refers to the number
of subtasks in ti. Such a formulation is generic enough
such that any user request (or task) can be constructed
by multiple nested composite services (or subtasks).

Task execution time is represented in different ways
based on different intra-structure about subtask con-
nection. For the sequential-mode task, its total exe-
cution time (or execution length) can be denoted as
T (ti)=

∑mi

j=1
li(j)
ri(j)

, where li(j) and ri(j) are referred to as
the workload of subtask ti(j) and the compute resource
allocated respectively. The workload here is evaluated by
the number of instructions or data to read/write from/to
disk, and the compute resource here means workload
processing rate like CPU rate and disk I/O bandwidth.
As for a parallel mode task (e.g., embarrassingly parallel
application), its total execution length is equal to the
longest execution time of its subtasks (or makespan).
We will use execution time, execution length, response
length, and wall-clock time interchangeably in the fol-
lowing text.

Each subtask ti(j) will call a particular service API,
which is associated with a service price (denoted as pi(j)).

The service prices ($/unit) are determined by corre-
sponding service makers in our model, since they are the
ones who pay monthly resource leases to Infrastructure-
as-a-Service (IaaS) providers (e.g., Amazon EC2 [21]).
The total payment in executing a task ti on top of service
layer is equal to

∑mi

j=1 [ri(j) · pi(j)]. Each task is associated
with a budget (denoted as B(ti)) by its user in order to
control its total payment. Hence, the problem of opti-
mizing task ti’s execution can be formulated as Formula
(1) and Formula (2) (convex-optimization problem).

min T (ti) =


∑mi

j=1
li(j)
ri(j)

, ti is insequentialmode

max
j=1···mi

{ li(j)
ri(j)

}, ti is inparallelmode
(1)

s.t.
∑mi

j=1
[ri(j) · pi(j)] ≤ B(ti) (2)

There are two metrics to evaluate the system perfor-
mance. One is Response Extension Ratio (RER) of each task
(defined in Formula (3)).

RER(ti) =
t′is real response time

t′is theoretically optimal length
(3)

The RER is used to evaluate the execution performance
for a particular task. The lower value the RER is, the
higher execution efficiency the corresponding task is pro-
cessed in reality. A sequential-mode task’s theoretically
optimal length (TOL) is the sum of the theoretical execu-
tion time of each subtask based on the optimal resource
allocation solution to the above problem (Formula (1)
& Formula (2)), while a parallel-mode task’s TOL is
equal to the largest theoretical subtask execution time.
The response time here indicates the whole wall-clock
time from a task’s submission to its final completion. In
general, the response time of a task includes subtask’s
waiting time, overhead before subtask execution (e.g., on
resource allocation or data transmission), subtask’s pro-
ductive time, and processing overhead after execution.
We try best to minimize the cost for each part.

The other metric is the fairness index of RER among all
tasks (defined in Formula (4)), which is used to evaluate
the fairness of the treatment in the system. Its value is
ranged in [0, 1], and the bigger its value is, the higher
fairness of the treatment is. Based on Formula (3), the
fairness is also related to the different types of execution
overheads. How to effectively coordinate the overheads
among different tasks is a very challenging issue. This
is mainly due to largely different task structure (i.e.,
the subtask’s workload and their connection way), task
budget, and varied resource availability over time.

fairness(ti) =
(
∑n

i=1 RER(ti))
2

n
∑n

i=1 RER2(ti)
(4)

Our final objective is to minimize RER for each in-
dividual task (or minimize the maximum RER) and
maximize the overall fairness, especially in a competitive
situation with over-many submitted tasks.
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4 OPTIMIZATION OF SYSTEM PERFORMANCE

In order to optimize the entire QoS for each task, we
need to minimize the time cost at each step in the course
of its execution. We study the best-fit solution with
respect to three following facets, resource allocation, task
scheduling, and minimization of overheads.

4.1 Optimized Resource Allocation with VMs
We first derive an optimal resource vector for each
task (including parallel-mode task and sequential-mode
task), subject to task structure and budget, in both non-
competitive situation and competitive situation. In non-
competitive situation, there are always available and
adequate resources for task processing. As for an over-
committed situation (or competitive situation), the over-
all resources are over-committed such that the requested
resource amounts succeed the de-facto resource amounts
in the system. In this situation, we designed an ad-
justable resource allocation method for maintaining the
high performance and fairness.

4.1.1 Optimal Resource Allocation in Non-competitive
Situation
In a non-competitive situation (with unlimited available
resource amounts), the resource fraction allocated to
some task is mainly restricted by its user-set budget.
Based on the target function (Formula (1)) and a con-
straint (Formula (2)), we analyze the two types of tasks
(sequential-mode and parallel-mode) respectively.

• Optimization of Sequential-mode Task:

Theorem 1: If task ti is constructed in sequential
mode, ti’s optimal resource vector r∗(ti) for mini-
mizing T (ti) subject to the constraint (2) is shown
as Equation (5), where j=1, 2, · · · , mi.

r∗i(j) =

√
li(j)/pi(j)∑mi

k=1

√
li(k)pi(k)

·B(ti) (5)

Proof: Since ∂2T (ti)
∂rj

=2 li(j)
r3
i(j)

>0, T (ti) is convex
with a minimum extreme point. By combining the
constraint (2), we can get the Lagrangian function
as Formula (6), where λ refers to the Lagrangian
multiplier.

F (ri) =
∑mi

j=1

li(j)

ri(j)
+ λ(B(ti)−

∑mi

j=1
ri(j)pi(j)) (6)

We derive Equation (7) via Lagrangian multiplier
method.

ri(1) :ri(2) : · · · : ri(mi)=

√
li(1)

pi(1)
:

√
li(2)

pi(2)
: · · · :

√
li(mi)

pi(mi)

(7)
In order to minimize T (ti), the optimal resource
vector r∗i(j) should use up all budgets (i.e., let the
total payment be equal to B(ti)). Then, we can get
Equation (5).
As follows, we discuss the significance of Theo-
rem 1 and how to split physical resources among

different tasks based on VM resource isolation in
practice. According to Theorem 1, we can easily
compute the optimal resource vector for any task
based on its budget constraint. Specially, r∗i(j) is the
theoretically optimal resource vector (or processing
rate) allocated to the subtask ti(j), such that the
total wall-clock time of task ti can be minimized.
That is, even though there were more available
resources compared to the value r∗i(j), it would be
useless for the task ti due to its limited budget.
In this situation, our resource allocator will allocate
the theoretically optimal resource fraction (Formula
(5)) to each subtask’s resource capacity (such as
maximum CPU rate).

• Optimization of Parallel-mode Task:

Theorem 2: If task ti is constructed in the parallel
mode, ti’s optimal resource vector r∗(ti) for mini-
mizing T (ti) subject to the constraint (2) is shown
as Equation (8), where j=1, 2, · · · , mi.

r∗i(j) =
li(j)∑mi

j=1 pi(j)li(j)
·B(ti) (8)

Proof: We just need to prove the optimal situ-
ation occurs if and only if all of subtask execution
lengths are equal to each other. That is, the entire
execution length of a parallel-mode task will be
minimized if and only if Equation (9) holds.

li(1)

ri(1)
=

li(2)

ri(2)
= · · · =

li(mi)

ri(mi)
(9)

In this situation, we can easily derive Equation (8)
by using up the user-preset budget B(ti), i.e., letting∑mi

j=1 [ri(j) · pi(j)] = B(ti) hold.
As follows, we use proof-by-contradiction method
to prove that Equation (9) is a necessary condition
of the optimal situation by contradiction. Let us
suppose an optimal situation with minimized task
wall-clock length occurs while Equation (9) does not
hold. Without loss of generality, we denote by ti(k)
the subtask that has the longest execution time (i.e.,
li(k)

ri(k)
), that is, T (ti)=

li(k)

ri(k)
. Since Equation (9) does

not hold, there must exist another subtask ti(j) such
that li(j)

ri(j)
<

li(k)

ri(k)
. Obviously, we are able to add a

small increment △k to ri(k) and decrease ri(j) by
△j correspondingly, such that the total payment is
unchanged and the two subtasks’ wall-clock lengths
become the same. That is, Equation (10) and Equa-
tion (11) hold simultaneously.

ri(j)pi(j) + ri(j)pi(k)
= (ri(j) −∆j)pi(j) + (ri(j) +∆k)pi(k)

(10)

li(j)

ri(j) −∆j
=

li(k)

ri(k) +∆k
(11)

It is obvious that the new solution with ∆j and
∆k gets the further reduced task wall-clock length,
which contradicts to our assumption that the previ-
ous allocation is optimal.
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4.1.2 Adjusted Resource Allocation to Adapt to Compet-
itive Situation
If the system runs in short supply, it is likely the total
sum of their optimal resources (i.e., r∗(ti)) may suc-
ceed the total capacity of physical machines. At such
a competitive situation, it is necessary to coordinate
the priorities of the tasks in the resource consumption,
such that none of tasks’ real execution lengths would be
extended noticeably compared to its theatrically optimal
execution length (i.e., minimizing RER(ti) for each task
ti). In our system, we improve the proportional-share
model (PSM) [22] with XEN’s credit scheduler by further
enhancing resource fractions for short tasks.

Under XEN’s credit scheduler, each guest VM on
the same physical machine will get its CPU rate that
is proportional to its weight1. Suppose on a physical
host (denoted as hi), ni scheduled subtasks are running
on ni stand-alone VMs separately (denoted vj , where
j=1,2,· · · ,ni). We denote the host hi’s total compute
capacity to be ci (e.g., 8 cores), and the weights of the ni

subtasks to be w(v1), w(v2), · · · , w(vni). Then, the real
resource fraction (denoted by r(vj)) allocated to the VM
vj can be calculated by Formula (12).

r(vj) =
w(vj)∑ni

k=1 w(vk)
ci (12)

Now, the key question becomes how to determine the
weight value for each running subtask (or VM) on a
physical machine, to adapt to the competitive situation.
We devise a novel model, namely Adjusted Proportional-
Share Model (APSM), which further tunes the credits
based on task’s workload (or execution length). The
design of APSM is based on the definition of RER: a large
value of RER tends to appear with a short task. This is
mainly due to the fact that the overheads (such as data
transmission cost, VMM operation cost) in the whole
wall-clock time are often relatively constant regardless
of the total task workload. That is, based on RER’s
definition, short task’s RER is more sensitive to the
execution overheads than that of a long one. Hence, we
make short tasks tend to get more resource fractions than
their theoretically optimal vector (i.e., r∗i(j)). There are
two alternative ways to realize this effect.

• Absolute Mode: For this mode, we use a threshold
(denoted as τ ) to split running tasks into two cat-
egories, short tasks (workload≤τ ) and long tasks
(workload>τ ). Three values of τ are investigated
in our experiments: 500, 1000, or 2000, which cor-
responds to 5 seconds, 10 seconds or 20 seconds
when running a task on a single core. We assign as
much resource as possible to short tasks, while keep-
ing the long tasks’ resource fractions unchanged.
Task length is evaluated in terms of its workload
to process. In practice, it can be estimated based
on the workload characterization over history or
workload prediction method like [18]. In our design

1Weight-setting command is “xm sched-credit -d VM -w weight”.

based on the absolute mode, short tasks’ credits
will be set to 800 (i.e., 8 cores), implying the full
computational power. For example, if there is only
one short running task on a host, it will be assigned
with full resources (8 cores) for its computation. If
there are more running tasks, they will be allocated
according to PSM, while short tasks will be probably
assigned with more resource fractions.

• Relative Mode: Our intuitive idea is adopting a
proportional-share model (PSM) on most of the
middle-size-tasks such that their resource fractions
received are proportional to their theoretically op-
timal resource amounts (r∗i(j)). Meanwhile, we en-
hance the credits of the subtasks whose correspond-
ing tasks are relatively short and decrease the credits
of the ones with long tasks. That is, we give some
extra credits to short tasks to enhance their resource
consumption priority. Suppose on a physical ma-
chine is running d subtasks (belonging to different
tasks), which are denoted as t1(x1), t2(x2), · · · , td(xd),
where xi = 1, 2, · · · , or mi. Then, w(ti(j)) will be
determined by either Formula (13) or Formula (14),
based on different proportional-share credits (either
task’s workload or task’s TOL). Hence, the Relative
Mode based APSM (abbreviated as RAPSM) has two
different types, Workload-based APSM (abbreviated
as RAPSM(W)) and TOL-based APSM (abbreviated
as RAPSM(T)).

w(ti(j)) =


η · r∗i(j) li ≤ α

r∗i(j) α < li ≤ β
1
η · r∗i(j) li > β

(13)

w(ti(j)) =


η · r∗i(j) T (ti) ≤ α

r∗i(j) α < T (ti) ≤ β
1
η · r∗i(j) T (ti) > β

(14)

The weight values in our design (Formula (13)) are
determined by four parts, the extension coefficient
(η), theoretically optimal resource fraction (r∗i(j)),
the threshold value α to determine short tasks,
and the threshold value β to determine long tasks.
Obviously, the value of η is supposed to be always
greater than 1. In reality, tuning η’s value could
adjust the extension degree for short/long tasks.
Changing the values of α and β could tune the
number of the short/long tasks. That is, by adjusting
these values dynamically, we could optimize the
overall system performance to adapt to different
contention states. Specific values suggested in prac-
tice will be discussed with our experimental results.

In practice, one could use either of the above two
modes or both of them, to adjust the resource allocation
to adapt to the competitive situation.

4.2 Best-suited Task Scheduling Policy
In a competitive situation where over-many tasks are
submitted to the system, it is necessary to queue some
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tasks that cannot find the qualified resources temporar-
ily. The queue will be checked as soon as some new
resources are released or new tasks are submitted. As
multiple hosts are available for the task (e.g., there are
still available CPU rates non-allocated on the host), the
most powerful one with the largest availability will be
selected as the execution host. A key question is how to
select the waiting tasks based on their demands, such
that the overall execution performance and the fairness
can both be optimized.

Based on the two-fold objective that aims to minimize
the RER and maximize the fairness meanwhile, we inves-
tigate the best-fit scheduling policy for both sequential-
mode tasks and parallel-mode tasks. We propose that
(1) the best-fit queuing policy for the sequential-mode
tasks is Lightest-Workload-First (LWF) policy, which
assigns the highest scheduling priority to the shortest
task that has the least workload amount to process;
(2) the best-fit policy for parallel-mode tasks is adopt-
ing LWF and Longest-SubTask-First (LSTF) together. In
addition, we also evaluate many other queuing poli-
cies for comparison, including First-Come-First-Serve
(FCFS), Shortest-Optimal-Length-First (SOLF), Slowest-
Progress-First (SPF), Shortest-SubTask-First (SSTF), and
so on. We describe all the task-selection policies below.

• First-Come-First-Serve (FCFS). FCFS schedules the
subtasks based on their arrival order. The first ar-
rival one in the queue will be scheduled as long
as there are available resources to use. This is the
most basic policy, which is the easiest to implement.
However, it does not take into account the varia-
tion of task features, such as task structure, task
workload, thus the performance and fairness will
be significantly restricted.

• Lightest-Workload-First (LWF). LWF schedules the
subtasks based on the predicted workload of their
corresponding tasks (a.k.a., jobs). Task’s workload
is defined as the execution length estimated based
on a standard process rate (such as single-core
CPU rate). In the waiting queue, the subtask whose
corresponding task has lighter workload will be
scheduled with a higher priority. In our Cloud sys-
tem that aims to minimize the RER and maximize
the fairness meanwhile, LWF obviously possesses a
prominent advantage. Note that various tasks’ TOLs
are different due to their different budget constraints
and workloads, while tasks’ execution overheads
tend to be constant because of usually stable mem-
ory size consumed over time. In addition, the tasks
with lighter workloads tend to be with smaller
TOLs, based on the definition of T (ti). Hence, ac-
cording to the definition of RER, the tasks with
lighter workloads (i.e., shorter jobs) are supposed
to be more sensitive to their execution overheads,
which means that they should be associated with
higher priorities.

• Shortest-Optimal-Length-First (SOLF). SOLF is de-

signed based on such an intuition: in order to
minimize RER of a task, we can only minimize the
task’s real execution length because its theoretically
optimal length (TOL) is a fixed constant based on
its intrinsic structure and budget. Since tasks’ TOLs
are different due to their heterogeneous structures,
workloads, and budgets, the execution overheads
will impact their RERs to different extents. Suppose
there were two tasks whose TOLs are 30 seconds
and 300 seconds respectively and their execution
overheads are both 10 seconds. Even though the
sums of their subtask execution lengths were right
the optimal values (30 seconds and 300 seconds),
their RERs would be largely different: 30+10

30 vs.
300+10

300 . In other words, the tasks with shorter TOLs
are supposed to be scheduled with higher priorities,
for minimizing the discrepancy among tasks’ RERs.

• Slowest-Progress-First (SPF). SPF is designed for
sequential-mode tasks, based on task’s real exe-
cution progress compared to its overall workload
or TOL. The tasks with the slowest progress will
have the highest scheduling priorities. The execu-
tion progress can be defined based on either the
workload processed or the wall-clock time passed.
They are called Workload Progress (WP) and Time
Process (TP) respectively, and they are defined in
Formula (15) and Formula (16) respectively. In the
two Formulas, d refers to the number of completed
subtasks, li=

∑mi

j=1 li(j), and TOL(ti)=
∑mi

j=1
li(j)
r∗
i(j)

. SPF
means that the smaller value of ti’s WP (ti) or
TP (ti), the higher ti’s priority would be. For ex-
ample, if ti is a newly submitted task, its workload
processed must be 0 (or d=0), then WP (ti) would be
equal to 0, indicating ti is with the slowest process.

WP (ti) =
∑d

j=1 li(d)
li

(15)

TP (ti) =
wall-clock time since t′is submission

TOL(ti)
(16)

Based on the two different definitions, the Slowest-
Progress-First (SPF) can be split into two types,
namely Slowest-Workload-Progress-First (SWPF)
and Slowest-Time-Progress-First (STPF) respec-
tively. We evaluated both of them in our experiment.

• Shortest-SubTask-First (SSTF). SSTF selects the short-
est subtask waiting in the queue. The shortest sub-
task is defined as the subtask (in the waiting queue)
which has the minimal workload amount estimated
based on single-core computation. As a subtask
is completed, there must be some new resources
released for other tasks, which means that a new
waiting subtask will then be scheduled if the queue
is non-empty. Obviously, SSTF will result in the
shortest waiting time to all the subtasks/tasks on
average. In fact, since we select the “best” resource
in the task scheduling, the eventual scheduling ef-
fect of SSTF will make the short subtasks be ex-
ecuted as soon as possible. Hence, this policy is
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exactly the same as min-min policy [15], which has
been effective in Grid workflow scheduling. How-
ever, our experiments validate that SSTF is not the
best-suited scheduling policy in our Cloud system.

• LWF+LSTF. We can also combine different individ-
ual policies to generate a new scheduling policy. In
our system, LWF+LSTF is devised for parallel-mode
task, whose total execution length is determined by
its longest subtask execution length (i.e., makespan),
thus the subtasks with heavier workloads in the
same task will have higher priority to schedule. On
the other hand, in order to minimize the overall
waiting time, all of tasks will be scheduled based on
Lightest Workload First (LWF). LWF+LSTF means
that the subtasks whose task has the lightest work-
load will have the highest priority and the subtasks
belonging to the same task will be scheduled based
on Longest SubTask First (LSTF). In addition, we
also implement LWF+SSTF for comparison.

4.3 Minimization of Processing Overheads

In our system, in addition to the waiting time and exe-
cution time of subtasks, there are three more overheads
which need also to be counted in the whole response
time, VM resource isolation cost, data transmission cost
between sub-tasks, and VM’s default restoring cost. Our
cost-minimization strategy is performing the data trans-
mission and VMM operations concurrently, based on
the characterization of their costs. We also assign extra
amount of resources to super-short tasks (e.g., the tasks
with TOL≤2 seconds) in order to mitigate the impact
of the overhead to their executions. Specifically, we run
them directly on VMs without any credit-tuning oper-
ation. Otherwise, the credit-tuning effect may work on
another subtask instead of the current subtask, due to the
inevitable delay (about 0.3 seconds) of the credit-tuning
command. Details can be found in our corresponding
conference paper [24].

5 PERFORMANCE EVALUATION

5.1 Experimental Setting

We implement a cloud composite service prototype that
can help solve complex matrix problems, each of which
is allowed to contain a series of nested or parallel
matrix computations. For an example of nested ma-
trix computation, a user may submit a request like
Solve((Am×n·An×m)k,Bm×m), which can be split into
three steps (or subtasks): (1) matrix-product (a.k.a.,
matrix-matrix multiply): Cm×m=Am×n·An×m; (2) matrix-
power: Dm×m = Ck

m×m; (3) calculating Least squares
solution of D·X=B: Solve(Dm×m, Bm×m).

In our experiment, we make use of ParallelColt [25]
to perform the math computations, each consisting of
a set of matrix computations. ParallelColt [25] is such
a library that can effectively calculate complex matrix

computations, such as matrix-matrix multiply and ma-
trix decomposition, in parallel (with multiple threads)
based on Symmetric Multiple Processor (SMP) model.

There are totally 10 different matrix computations
(such as matrix-product, matrix-decomposition, etc.) as
shown in Table 1. We carefully characterize the single-
core execution length (or workload) for each of them,
and find that each matrix computation has its own
execution type. For example, matrix-product and matrix-
power are typical computation-intensive services, while
rank and two-norm computation should be memory-
intensive or I/O-bound ones when matrix scale is large.
Hence, each sequential-mode task that is made up of
multiple different matrix computations in series can be
considered complex applications with execution types
varied over time.

In each test, we randomly generate a number of
user requests, each of which is composed of 5∼15 sub-
tasks (or matrix computation services). Such a simula-
tion is non-trivial since each emulated matrix has to
be compatible for each matrix computation (e.g., two
matrices in a matrix-product must be in the form of
Am×n and Bn×p respectively). Among the 10 matrix-
computation services, three services are implemented
as multiple-threaded programs, including matrix-matrix
multiply, QR-decomposition, matrix-power, hence their
computation can get an approximate-linear speedup
when allocated multiple processors. The other 7 matrix
operation services are implemented using single thread,
thus they cannot get speedup when being allocated with
more than one processor. Hence, we set the capacity of
any subtask performing a single-threaded service to be
single-core rate, or less when its theoretically optimal
resource to allocate is less than one core.

In our experiment, we are assigned with 8 physi-
cal nodes to use from the most powerful cluster at
HongKong (namely Gideon-II [23]), and each node owns
2 quad-core Xeon CPU E5540 (i.e. 8 processors per node)
and 16GB memory size. There are 56 VM-images (centos
5.2) maintained by Network File System (NFS), so 56
VMs (7 VMs per node) will be generated at the bootstrap.
XEN 4.0 [20] serves as the hypervisor on each node and
dynamically allocates various CPU rates to the VMs at
run-time using the credit scheduler.

We will evaluate different queuing policies and re-
source allocation schemes under different competitive
situations with different numbers (4-24) of tasks simul-
taneously. Table 2 lists the candidate key parameters we
investigated in our evaluation. Note that the measure-
ment unit of η and β for RAPSM(T) is second, while
the measurement unit for RAPSM(W) is seconds×100,
because a single core’s processing ability is represented
as 100 according to XEN’s credit scheduler [20], [19].

5.2 Experimental Results
5.2.1 Demonstration of Resource Contention Degrees
We first characterize the various contention degrees with
different number of tasks submitted. The contention
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TABLE 1: Workloads (Single-core Execution Length) of 10 Matrix Computations (seconds)
Matrix Scale M-M-Multi. QR-Decom. Matrix-Power M-V-Multi. Frob.-Norm Rank Solve Solve-Tran. V-V-Multi. Two-Norm
500 0.7 2.6 m=10 2.1 0.001 0.010 1.6 0.175 0.94 0.014 1.7
1000 11 12.7 m=20 55 0.003 0.011 8.9 1.25 7.25 0.021 9.55
1500 38 35.7 m=20 193.3 0.005 0.03 29.9 4.43 24.6 0.047 29.4
2000 99.3 78.8 m=10 396 0.006 0.043 67.8 10.2 57.2 0.097 68.2
2500 201 99.5 m=20 1015 0.017 0.111 132.6 18.7 109 0.141 136.6

TABLE 2: Candidate Key Parameters
Parameter Value

threshold of short task length (seconds) 5, 10, 20
η 1.25, 1.5, 1.75, 2
α w.r.t. RAPSM(T) (seconds) 5, 10, 20
β w.r.t. RAPSM(T) (seconds) 100, 200, 300
α w.r.t. RAPSM(W) (seconds×100) 500, 1000, 2000
β w.r.t. RAPSM(W) (seconds×100) 10000, 20000, 30000

degree is evaluated via two metrics, Allocate-Request Ratio
(abbreviated as ARR) and Queue Length (abbreviated as
QL). System’s ARR at a time point is defined as the ratio
of the total allocated resource amount to the total amount
requested by subtasks at that moment. QL at a time
point is defined as the total number of subtasks in the
waiting list at that moment. There are 4 test-cases each
of which uses different number of tasks (4, 8, 16, and
24) submitted. The 4 test-cases correspond to different
contention degrees.
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Fig. 2: Allocation vs. Request With Different Contention Degrees

Fig. 2 shows the summed resource amount allocated
and the summed amount requested over time under
different competitive situations, with exactly the same
experimental settings except for different scheduling
policies. The numbers enclosed in parentheses indicate
the number of tasks submitted.

We find that with the same number of submitted
tasks, ARR exhibits similarly with different scheduling
policies. The resource amount allocated can always meet
the resource amount requested (i.e., ARR keeps 1 and
two curves overlap in the figure) when there are a
small number (4 or 8) of tasks submitted, regardless
of the scheduling policies. This confirms our resource
allocation scheme can guarantee the service level in
the non-competitive situation. As the system runs with
over-many tasks (such as 16 and 24) submitted, there
would appear a prominent gap between the resource
allocation curve and the resource request curve. This
clearly indicates a competitive situation. For instance,
when 24 tasks are submitted simultaneously, ARR stays
around 1/2 during the first 50 seconds. It is also worth
noting that the longest task execution length under FCFS
is remarkably longer than that under LWF (about 280
seconds vs. about 240 seconds). This implies scheduling
policy is essential to the performance of Cloud system.

Fig. 3 presents that the queue length (QL) increases
with the number of tasks submitted. It is worth noticing
that QL under different scheduling policies exhibits quite
different. In the duration with high competition (the first
50 seconds in the test), SSTF and LWF both lead to small
number of waiting tasks (about 5-6 and 6-7 respectively).
By contrast, under SOLF, SWPF, or STPF, QL is much
longer (about 10-12 waiting tasks on average), implying
a longer waiting time.
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Fig. 3: Queue Lengths With Different Scheduling Policies

5.2.2 Investigation of Best-suited Strategy
We explore the best-suited scheduling policy and
resource allocation scheme, in a competitive situation
with 24 tasks (Allocate-Request Ratio (AAR) ≈ 1

2 for
the first 50 seconds). The investigation is for sequential-
mode tasks and parallel-mode tasks respectively.

A. Best-suited Strategy for Sequential-mode Tasks
Fig. 4 shows the distribution (Cumulative Distribution
Function) of Response Extension Ratio (RER) in the
competitive situation, with different scheduling policies
used for the sequential-mode tasks. For each policy, we
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ran the experiments with all the possible combinations
of parameters shown in Table 2, and then compute the
distribution. It is clearly observed that the RERs under
LWF and SSTF are much smaller than those under other
policies. By contrast, The two worst policies are SWPF
and SOLF, whose maximum RERs are even up to 105
and 55 respectively. The main reason is that LWF and
SSTF lead to much shorter waiting time than SWPF and
SOLF, according to Fig. 3.
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Fig. 4: Distribution of RER in a Competitive Situation

In addition to task scheduling policy, we also investi-
gate the best-fit resource allocation scheme. In Table 3,
we show the statistics of RER with various solutions,
by combining different scheduling policies and resource
allocation schemes. We evaluate each solution with all of
different combinations of parameters (including τ , η, α,
and β) and compute the statistics (including minimum,
average, maximum, and fairness value).

TABLE 3: Statistics of RER in a Competitive Situation with Sequential-
mode Tasks

strategy min. avg. max. fairness
FCFS+PSM 0.712 3.919 22.706 0.352
FCFS+RAPSM(T) 0.718 4.042 23.763 0.351
FCFS+RAPSM(W) 0.720 4.137 24.717 0.348
LWF+PSM 0.720 2.106 8.202 0.628
LWF+RAPSM(T) 0.719 2.172 8.659 0.603
LWF+RAPSM(W) 0.723 2.122 7.937 0.630
SOLF+PSM 0.736 2.979 13.473 0.506
SOLF+RAPSM(T) 0.745 3.252 14.625 0.527
SOLF+RAPSM(W) 0.738 3.230 14.380 0.526
SSTF+PSM 0.791 2.068 8.263 0.591
SSTF+RAPSM(T) 0.769 2.169 9.024 0.566
SSTF+RAPSM(W) 0.770 2.126 8.768 0.579
SWPF+PSM 0.713 6.167 58.691 0.209
SWPF+RAPSM(T) 0.726 6.532 62.332 0.208
SWPF+RAPSM(W) 0.718 6.477 61.794 0.208
STPF+PSM 0.723 3.176 16.398 0.465
STPF+RAPSM(T) 0.723 3.208 15.831 0.475
STPF+RAPSM(W) 0.722 3.188 15.399 0.485

Through Table 3, we observe that LWF and SSTF
result in the lowest RERs on average and at the worst
case, which is consistent with the distribution of RER
as shown in Fig. 4. They improve the performance by
3.919
2.1 − 1=86.6%, as compared to First-Come-First-Serve

(FCFS) policy. It is also observed that Relative Mode
based Adjusted PSM (RAPSM) may not further reduce
the RER as expected. This means that RAPSM cannot di-
rectly improve the execution performance without Abso-
lute Mode based Adjusted PSM (AAPSM). Later, we will
show in Section 5.2.3 that the solutions with Absolute
Mode based Adjusted PSM (AAPSM) can significantly

reduce RER, in comparison to the RAPSM.
We also show the distributions of Payment Budget

Ratio (PBR) and Performance Payment Ratio (PPR) in
Fig. 5. Through Fig. 5 (a), we observe that all of tasks’
payments are guaranteed below their budgets. This is
due to the strict payment-by-reserve model (Formula
(2) and Theorem 1) we always followed in our design.
Through Fig. 5 (b), it is also observed that PPR exhibits
similarly to RER. For example, two best scheduling
policies are also LWF and SSTF. Their mean PPRs are
0.874 and 0.883 respectively; their maximum PPRs are
8.176 and 6.92 respectively. Apparently, if we do not
take into account the difference of adjusted resource
allocation scheme but task scheduling policy, SSTF
outperforms others prominently due to its shortest
waiting time on average.
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Fig. 5: Distribution of PBR and PPR in a Competitive Situation

B. Best-suited Strategy for Parallel-mode Tasks
We also explore the best-suited scheduling strategy with
respect to the parallel-mode tasks. Table 4 presents dif-
ferent minimum/average/maximum/fairness values of
RER when scheduling parallel-mode tasks by different
policies, including FCFS, LWF, SSTF, etc. Note that SPF
is not included because all of subtasks in a task will
be executed in parallel, so that it is meaningless to
characterize the processing progress, unlike the situation
with sequential-mode tasks.

Each test is conducted with 24 tasks, and each task ran-
domly contains 5-15 parallel matrix-power computation
subtasks. Since there are only 8 physical execution nodes,
so this is a competitive situation where some tasks have
to be queued for scheduling. In this experiment, we also
implement Heaviest Workload First (HWF) combined
with Longest (Shortest) SubTask First for comparison.

Based on Table 4, we can observe that LWF always
leads to a fairly high scheduling performance. For exam-
ple, when only adopting LWF, the average RER is about
1.30, which is lower than that of FCFS by 1.5−1.3

1.5 =13.3%,
and lower than SSTF by 2.09−1.3

2.09 =37.8%. Adopting the
LWF+LSTF (i.e., the combination of LWF and SSTF)
can minimize the maximum RER to be 3.58, which
is lower than other strategies by 3.8% (LWF) - 51.6%
(HWF+SSTF).

The key reason why LWF exhibits much better results
is that LWF schedules the shortest tasks with highest
priority, suffersing the least overall waiting time. In
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Fig. 6: Average RER of Various Solutions with Different Parameters

TABLE 4: Statistics of RER in a Competitive Situation with Parallel-
mode Tasks

strategy min. avg. max. fairness
FCFS 2.75 1.50 4.97 0.89
LWF 2.25 1.30 3.72 0.92
HWF 3.04 1.45 6.25 0.86
SSTF 3.37 2.09 4.94 0.96
LWF+LSTF 2.34 1.57 3.58 0.96
LWF+SSTF 2.27 1.35 3.79 0.94
HWF+LSTF 3.20 1.43 6.88 0.81
HWF+SSTF 3.20 1.38 7.39 0.82

particular, not only can LWF+LSTF minimize the max-
imum ERE, but it can also lead to the highest fairness
(up to 0.96), which means a fairly high stability of the
LWF+LSTF policy. This is because each task is a parallel-
mode task, such that Longest SubTask First (SSTF) can
effectively minimize the makespan for each task, opti-
mizing the execution performance for a particular task.

5.2.3 Exploration of Best-fit Parameters
In this section, we comprehensively compare various
solutions with different scheduling policies and adjusted
resource allocation schemes with different parameters
shown in Table 2, in a both competitive situation
(i.e., AAR is about 1/2) and non-competitive situation
(i.e., AAR approaches 1). We find that the adjusted
resource allocation scheme could effectively improve
the execution performance (RER and PPR), only when
combining it with the Absolute Mode based Adjusted
PSM (AAPSM).

A. Evaluation in a Competitive Situation
Fig. 6 shows the RER of various solutions with dif-

ferent parameters, including η, α, and β. It is observed
that various policies with different choices of the three
parameters lead to different results. The smallest RER
(best result) is 1.77, when adopting SSTF+RAPSM(W)
and η, α, and β being set to 1.75, 30000, and 1000.
The largest RER (worst case) is 7.69, when adopting
SWPF+RAPSM(W) and η, α, and β being set to 1.5,
20000, and 1000. We also find that different selections
of the three parameters may affect the performance
prominently for a few solutions like STLF+RAPSM(T)
and STLF+RAPSM(W). However, they would not impact
RER clearly in most cases. From Fig. 6 (b), (d), (f) and (h),
it is observed that with different parameters, the RERs
under both LWF and SSTF are within [1.85, 2.31].

In our experiments, the most interesting and valuable
finding is that the Absolute Mode based Adjusted PSM
(AAPSM) with different short task length thresholds (τ )
will result in quite different results, which we show
in Table 5, Table 6 and Table 7. These three tables
present the three key indicators, average RER, maximum
RER, and fairness index of RER, when adopting vari-
ous solutions with different values of τ and η. In our
evaluation, we compute the average value for each of
the three indicators, by traversing all of the remaining
parameters, including α and β. Accordingly, the values
shown in three tables can be deemed relatively stable
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mathematical expectation.
Through Table 5, we clearly observe that LWF and

SSTF significantly outperforms other solutions, w.r.t. the
mean values of RER. The mean values of RER under
the two solutions can be restricted down to 1.935 and
1.968 respectively, when short task length threshold is
set to 20 seconds. The mean value of RER under FCFS
is about 4, which is about twice as large as that of
LWF or SSTF. The worst situation occurs when adopting
SWPF+RAPSM(W) and setting τ to 20. In this situation,
the mean value of RER is even up to 6.784, which
is worse than LWF(τ=20) by 6.784−1.935

1.935 =250.6%. The
reason why τ=20 is often better than τ=5 is that the
former assigns more resources to short tasks at runtime,
significantly reducing the waiting cost in the system.
However, τ=20 is not always better than τ=5 or τ=10,
in that the resource allocation is also related to other
parameters like η. That is, if η is set to 2, then τ=20 will
lead to an over-adjusted resource allocation situation,
which exhibits worst results than τ=10.

TABLE 5: Mean RER under Various Solutions with Different τ&η

strategy τ η=1.25 η=1.5 η=1.75 η=2

FCFS
5 4.050 4.142 4.131 4.054
10 4.122 3.952 3.924 3.845
20 4.121 4.196 4.139 4.296

LWF
5 2.071 2.090 2.169 2.138
10 2.268 2.133 2.179 2.152
20 2.194 1.935 2.194 2.218

SOLF
5 3.316 3.321 3.552 3.102
10 3.241 3.382 2.989 2.783
20 3.375 3.324 3.305 3.039

SSTF
5 2.111 2.072 2.275 2.147
10 2.202 2.171 1.980 2.172
20 2.322 1.968 2.092 2.205

STPF
5 3.265 3.011 3.271 3.119
10 3.296 3.024 3.152 3.132
20 3.200 3.326 3.318 3.244

SWPF
5 6.169 6.371 6.339 6.322
10 6.271 6.353 6.446 6.659
20 6.784 6.763 6.730 6.635

Through Table 6, it is observed that that LWF and
SSTF significantly outperforms other solutions, w.r.t. the
maximum values of RER (i.e., the worst case for each
solution). In absolute terms, the expected value of the
worst RER when adopting LWF with τ=20 is about
5.539, and SSTF’s is about 6.432, which is worse than
LWF by 6.432

5.539 − 1=16.1%. The worst case among all
solutions happens when using SWPF+RAPSM(W), and
the expected value of the worst RER is even up to 64.887,
which is about 11.7 times as large as that of LWF (τ=20).
The expected value of the worst RER under FCFS is
about 23, which is about 4 times as large as that of LWF.

Table 7 shows the fairness of RER with different
solutions. We find that the best result is adopting LWF
with τ and η being set to 20 and 1.5, and the ex-
pected fairness value is up to 0.709, which is better
than the second best solution (SSTF, τ=20, η=1.5) by
about 0.709−0.66

0.66 =7.4%. From the three tables, we can
conclude that LWF(τ=20,η=1.5) is the best choice in the
competitive situation with AAR≈2.

In Fig. 7, we further investigate the performance
(on minimum value, average value, and maximum

TABLE 6: Max. RER under Various Solutions with Different τ&η

strategy τ η=1.25 η=1.5 η=1.75 η=2

FCFS
5 23.392 25.733 24.742 24.470
10 24.184 22.397 22.633 23.192
20 24.204 25.258 24.391 25.313

LWF
5 9.164 7.826 8.543 8.323
10 10.323 7.681 9.136 9.104
20 8.106 5.539 6.962 8.812

SOLF
5 13.294 15.885 15.743 13.255
10 12.735 18.719 13.939 10.325
20 17.070 15.642 13.379 13.394

SSTF
5 8.091 7.931 9.276 9.803
10 10.245 8.376 7.224 11.199
20 11.418 6.432 6.706 9.650

STPF
5 16.456 15.545 17.642 15.232
10 16.925 14.797 15.892 14.710
20 13.978 15.596 16.250 14.853

SWPF
5 58.467 61.647 60.266 59.044
10 59.351 60.199 61.241 64.286
20 65.142 64.887 64.769 63.326

TABLE 7: Fairness of RER under Various Solutions with Different τ&η

strategy τ η=1.25 η=1.5 η=1.75 η=2

FCFS
5 0.353 0.338 0.345 0.352
10 0.347 0.359 0.358 0.348
20 0.352 0.344 0.354 0.347

LWF
5 0.585 0.628 0.609 0.619
10 0.552 0.640 0.581 0.579
20 0.627 0.709 0.670 0.610

SOLF
5 0.552 0.506 0.540 0.526
10 0.566 0.459 0.497 0.573
20 0.484 0.520 0.538 0.541

SSTF
5 0.594 0.602 0.558 0.549
10 0.527 0.575 0.623 0.479
20 0.517 0.660 0.650 0.544

STPF
5 0.468 0.472 0.446 0.480
10 0.457 0.473 0.474 0.494
20 0.508 0.500 0.479 0.499

SWPF
5 0.210 0.205 0.209 0.215
10 0.210 0.209 0.209 0.204
20 0.206 0.207 0.206 0.208

value of RER) with more comprehensive combinations
of parameters, by taking into account scheduling
policy, AAPSM and RAPSM together. We find that
LWF and SSTF result in best results when their
short task length thresholds (τ ) are set to 20 seconds
and 10 seconds respectively. So, we just make the
comparison in these two situations. It is observed that
the mean values of RER of LWF+AAPSM+RAPSM(T)
and LWF+AAPSM+RAPSM(W) (τ=20) can be down
to 1.64 and 1.67 respectively, and their values of
{α,β} are {300,20} and {10000,2000} respectively.
In addition, the maximum value of RER under
LWF+AAPSM+RAPSM(T) (τ=20) is about 3.9, which is
the best result as we observed.

B. Evaluation in a Non-competitive Situation

For the non-competitive situation, there are 8 tasks
submitted and AAR is about 1 in the first 50 seconds.
We compare the execution performance (i.e., RER) when
assigning different values to η, α, and β in a non-
competitive situation. For each set of parameters, we
perform 144 tests, based on various task scheduling
policies and different values of threshold of short task
length (i.e., τ ), and then compute the CDF for each set
of parameters, as shown in Fig. 8.

Through Fig. 8, it is observed that various assignments
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Fig. 8: Average RER with Different Parameters for the Non-competitive Situation
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Fig. 7: Investigation of Best-fit Parameters for LWF+AAPSM

on the set of parameters result in different execution
performance. For RAPSM(T) and RAPSM(W), {α=200
seconds, β=5 seconds} and {α=20000, β=500} often serve
as the best assignment of the parameters respectively,
regardless of η’s value. For example, Fig. 8 (d) shows
that when η is set to 2.0, {α=200 seconds, β=5 seconds}
is better than other choices by [3.8%, 7.1%]. In addi-
tion, we can also observe a relatively high instability
in the other assignments of parameters. For instance,
with RAPSM(T), {α=100 seconds, β=20 seconds} exhibits
good results in Fig. 8 (c) (η=1.75), but bad results in Fig.
8 (η=2.0); Using RAPSM(W) with {α=10000, β=2000},
about 93% of tasks’ RERs are below 1 when setting η
to 1.75, while the corresponding ratio is only 86% when
setting eta to 2.0.

6 RELATED WORK

Although job scheduling problem [26] in Grid comput-
ing [27] has been extensively studied for years, most of
them (such as [28], [29]) are not suited for our cloud
composite service processing environment. Grid jobs are
often with long execution length, while Cloud tasks are
often short based on [13]. Hence, task’s response time
will be more easily degraded by scheduling/execution
overheads (such as waiting time and data transmission
cost) in Cloud environment than in Grid environment.
That is, the overheads in Cloud environment should be
treated more carefully.

Recently, many new scheduling methods are proposed
for different Cloud systems. Zaharia et al. [30] designed
a task scheduling method to improve the performance of
Hadoop [31] for a heterogeneous environment (such as a
pool of VMs each being customized with different abil-
ities). Unlike the FCFS policy and speculative execution
model originally used in Hadoop, they designed a so-
called Longest Approximate Time to End (LATE) policy,
that assigns higher priorities to the jobs with longer
remaining execution lengths. Their intuition is maximiz-
ing the opportunity for a speculative copy to overtake
the original and reduce job’s response time. Isard et al.
[32] proposed a fair scheduling policy (namely Quincy)
for a high performance compute system with virtual
machines, in order to maximize the scheduling fairness
and minimize the data transmission cost meanwhile.
Compared to these works, our Cloud system works
with a strict payment model, under which the optimal
resource allocation for each task can be computed based
on convex optimization theory. Mao et al. [33], [34]
proposed a solution by combining dynamic scheduling
and earliest deadline first (EDF) strategy, to minimize
user payment and meet application deadlines mean-
while. Whereas, they overlook the competitive situation
by assuming the resource pool is always adequate and
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users have unlimited budgets. Many of other methods
like Genetic algorithms [35] and Simulated Annealing
algorithm [36], often overlooked the execution overheads
in VM operation or data transmission, and performed
the evaluation through simulation.

In addition to scheduling model, many Cloud manage-
ment researchers focus on the optimization of resource
assignment. Unlike Grid systems whose compute nodes
are exclusively consumed by jobs, the resource allocation
in Cloud systems are able to be refined by leveraging
VM resource isolation technology. Stillwell et al. [37]
exploited how to optimize the resource allocation for
service hosting on a heterogeneous distributed platform.
Their research is formalized as a Mixed Integer Linear
Program (MILP) problem and treated as a rational LP
problem instead, also with fundamental theoretical anal-
ysis based on estimate errors. In comparison to their
work, we intensively exploit the best-suited scheduling
policy and resource allocation scheme for the competi-
tive situation. We also take into account user payment
requirement, and evaluate our solution on a real-VM-
deployment environment which needs to tackle more
practical technical issues like minimization of various
execution overheads. Meng et al. [38] analyzed VM-
pairs’ compatibility in terms of the forecasted work-
load and estimated VM sizes. SnowFlock [39] is an-
other interesting technology that allows any VM to be
quickly cloned (similar to UNIX process fork) such that
the resource allocation would be automatically refined
at runtime. Kuribayashi [40] also proposed a resource
allocation method for Cloud computing environments
especially based on divisible resources. BlobCR [41] aims
to optimize the performance of HPC applications on
Infrastructure-as-a-Service (IaaS) clouds at system level,
by improving the robustness of running virtual machines
using virtual disk image snapshots. In comparison, our
work focuses on the theoretical optimization of perfor-
mance when system runs in short supply and corre-
sponding implementation issues at the application level.

7 CONCLUSION AND FUTURE WORK

In this paper, we designed and implemented a loosely-
coupled Cloud system with web services deployed on
multiple VMs, aiming to improve the QoS of each user
request and maximize fairness of treatment at runtime.
Our contribution is three-fold: (1) we studied the best-
suited task scheduling policy with VMs; (2) we explored
an optimal resource allocation scheme and an adjusted
strategy to suit the competitive situation; (3) the process-
ing overhead is minimized in our design. Based on our
experiments, we summarize the following lessons.

• We confirm that the best scheduling policy of
scheduling sequential-mode tasks in the competitive
situations, is either Lightest-Workload-First (LWF)
or Shortest SubTask First (SSTF). Each of them im-
proves the performance by about 86% compared to

First-Come-First-Serve (FCFS). As for the parallel-
mode tasks, the best-fit policy is combining LWF
and Longest SubTask First (LSTF), and the average
RER is lower than other solutions by 3.8% - 51.6%.

• For a competitive situation, the best solution
is combining Lightest-Workload-First (LWF)
with AAPSM and RAPSM (in absolute terms,
LWF+AAPSM+RAPSM with short task length
threshold and extension coefficient being set to
20 seconds and 1.5 respectively). It outperforms
other solutions in the competitive situation, by
16+% w.r.t. the worst-case response time. The
fairness under this solution is about 0.709, which
is higher than that of the second best solution
(SSTF+AAPSM+RAPSM) by 7.4+%.

• For a non-competitive situation, {α=200 seconds,
β=5 seconds} serves as the best assignment of the
parameters, regardless of the threshold value of
setting the short task length (η).

In the future, We plan to further exploit an adaptive
solution that can dynamically optimize the performance
in both competitive and non-competitive situations. We
also plan to improve the ability of fault tolerance and
resilience in our cloud system.
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