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On the Solvability of Three-Pair Networks With
Common Bottleneck Links

Kai Cai and Guangyue Han
Department of Mathematics, University of Hong Kong

Pokfulam Road, Hong Kong
{kcai,ghan}@hku.hk

Abstract—We consider the solvability problem under network
coding and derive a sufficient and necessary condition for 3-
pair networks with common “bottleneck links” being solvable.
We show that, for such networks: (1) the solvability can be
determined in polynomial time; (2) being solvable is equivalent to
being linear solvable; (3) finite fields of size 2 or 3 are sufficient
to construct linear solutions.

Index Terms—Network coding, k-pair network, A-set.

I. INTRODUCTION

One of the most natural and important problems in the theo-
ry of network coding is to determine whether a network coding
solution exists for a given network and the corresponding rate
requirements between its sources and sinks, or in short, the
solvability problem under network coding. The case when the
network is a single multicast has been well understood: it has
been shown [1] that in this case 1) a linear network coding
solution always exists; 2) the solution can achieve the max-
flow min-cut bound; 3) as a result, an explicit characterization
of the capacity region under network coding can be obtained.

Unfortunately, the level of difficulty of the problem has
taken a quantum leap for any other networks with multiple
sources and sinks, even if they are only “slightly” more
general than multicast. In this direction, successes to date
are sporadic and most known results were obtained under the
rather stringent condition that the information sent/received
by sources/sinks are of unit rate, e.g, the sum-network [2]-
[3] and the two-multicast network [4]-[5]. Of great relevance
to this work are the results obtained in [6], where a simple
solvability characterization using the so-called A-set equation
has been obtained for a 2-pair network with rate (1, 1), and
in [7], which gives a sufficient and necessary condition for a
family of networks with rate (1, 2) being solvable.

In this paper, we are mainly concerned with 3-pair networks
having the so-called common “bottleneck links” with rate
requirement (1, 1, 1). For such networks, we will establish a
sufficient and necessary condition to determine whether the
rate (1, 1, 1) is achievable, and moreover, we show that 1) the
solvability can be determined in polynomial time; 2) being
solvable is equivalent to being linear solvable; 3) finite fields
of size 2 or 3 are sufficient to construct linear solutions.

Of greater importance than the above-mentioned technical
contributions is the methodology we employed, which has
been found rather successful for simpler case in [6], in terms
of giving explicit conditions for networks being solvable. As

elaborated later in the paper, we tend to first have a panoramic
view of all the considered networks through a classification
based on the so-called A-sets (very elementary topological
structures), which naturally leads to an explicit and complete
solution to the solvability problem in our setup.

The rest of this paper is organized as follows. In Section II,
we introduce our network model, some basic definitions and
notations. We analyze the basic network structure in Section
III and then illustrate the main result in Section IV. Finally,
the paper is concluded in Section V.

II. PRELIMINARIES

A. Network Model

A communication network N = (V,E, S, T ) consists of
a directed acyclic graph (DAG) G = (V,E) with node
(vertex) set V and link (edge) set E, a source set S =
{si, s2, · · · , s|S|} ⊆ V and a sink set T = {t1, t2, · · · , t|T |} ⊆
V . When S = {s} and T = {t}, the network is called point-to-
point and simply denoted by (V,E, s, t). For each link e ∈ E,
we assume it has the unit capacity, denoted c(e) = 1.

Let e = (a, b) be a link from node a to node b. We call a
the tail of e (denoted tail(e)) and b the head of e (denoted
head(e)). Define In(e) = {e′ ∈ E : head(e′) = tail(e)} and
Out(e) = {e′ ∈ E : tail(e′) = head(e)}.

Let N = (V,E, s, t) be a point-to-point network and let
V = W

⊎
W (

⊎
means disjoint union) be a vertex partition

such that s ∈ W and t ∈ W . An s-t cut C is the collection
of all the edges from W to W . The capacity of C is defined
as

∑
e∈C c(e). The minimum of the cut capacities for all s-t

cuts is called the minimum cut capacity of N and denoted by
CN (s, t) (or C(s, t) when there is no ambiguity). A minimum
cut of N is a cut with capacity CN (s, t). Note that the
minimum cut is not unique in general.

Definition 2.1 (A-set [6]): For a point-to-point network
N = (V,E, s, t), the A-set of N is defined as the union of
all its minimum cuts.

Given a communication network (V,E, S, T ), there are
totally |S|×|T | point-to-point network Ni,j = (V,E, si, tj) by
considering all the source nodes but si and all the sink nodes
but tj as internal nodes. For any feasible i, j, we use Ai,j to
denote the A-set of Ni,j = (V,E, si, tj). And we define

A(i, j) , Ai,i ∩ Aj,j ,
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and further,

A(1, 2, 3) , A1,1 ∩ A2,2 ∩ A3,3.

Note that in this paper, we assume A(1, 2, 3) ̸= ∅, which
means N has common “bottleneck links”.

B. Paths in the Network

A u-v path P is a string of ordered edges (e1, e2, · · · , en)
such that u = tail(e1), v = head(en) and head(ei) =
tail(ei+1) for i = 1, 2, · · · , n − 1, where u (v) is called the
tail (head) of P and denoted by tail(P ) (head(P )) and ei is
called an uplink (downlink) of ej on P if i < j (i > j). For
an edge e, e ∈ P means e lies in a path P ; for two edges e
and e′, e ≺ e′ (e ≻ e′) means there is a path P such that e is
an uplink (downlink) of e′ on P . For two edge sets A,B, we
write A ≺ B (A ≻ B) if a ≺ b (a ≻ b), ∀a ∈ A and ∀b ∈ B.
A family of k edge-disjoint paths with a same tail and a same
head is called an edge-disjoint k-path and denoted by P (k).

For a DAG, it is well known that there exists a topological
order according to the relation “≺”, that is, if ei ≺ ej in
some path P , then ei ≺ ej in any path Q for ei, ej ∈ Q. This
topology order is critical for this paper.

We denote by P [a, b] the section of path P from a to b,
where a and b can be edges or vertexes, or a vertex and an
edge.

Let P1 = (e1, e2, · · · , en) and P2 = (e′1, e
′
2, · · · , e′m)

be two paths such that head(P1) = tail(P2). Denote path
P = (e1, e2, · · · , en, e′1, · · · , e′m) by P1-P2. Similarly, P -P (k)

(or/and P (k)-P ) denotes the configuration formed by joining
a path P and an edge-disjoint k-path P (k).

A path (a family of paths) is usually regarded as a collection
of edges. For example, we use e ∈ P ∩ Q to represent that
path P and path Q share a common edge e.

C. Three-pair Network Coding Problem

Let N = (V,E, {s1, s2, s3}, {t1, t2, t3}) is a communica-
tion network, where each ti needs a unit rate information flow
from si for all i.

The desired flows, which are generated in si and to be
recovered in ti, denoted by Xi, i = 1, 2, 3, are considered as
independent random variables with unit entropy. The transmis-
sion of the information is assumed delay-free and error-free.
The information (random variables) transmitted over an edge
e and an edge set A are denoted by Xe and XA, respectively.

Remark 2.2: Because the desired flows have unit rate,
throughout the paper, we assume1 that for all feasible i, si has
a single out-edge denoted S(i) and ti has a single in-edge,
denoted T (i). All S(i) and T (i) are called the information
edges.

A network code is defined as a collection of functions
{fe : e ∈ E} such that (1) for all i, XS(i) = Xi; (2)
Xe = fe(XIn(e)). A network coding solution is a network

1Otherwise, we add an auxiliary source node with a single out-edge to each
source node and add an auxiliary sink node with a single in-edge to each sink
node. Since the desired flow has unit rate, this network are solvable equivalent
to the original network.

code such that H(XS(i)|XT (i)) = 0 for all i. A 3-pair network
is said to be solvable when a network coding solution exists,
and unsolvable otherwise.

We always suppose there exists at least one path form si to
ti for each i = 1, 2, 3, otherwise it is obviously unsolvable. We
further suppose si ̸= sj and ti ̸= tj for i ̸= j and source ̸=
sink throughout the paper.

III. NETWORK STRUCTURE

In this section, we analyze the structure of 3-pair networks
with common bottleneck links and give a topological classifi-
cation of such networks.

We first give some properties of the A-set of point-to-point
networks, which requires the following definition [6].

Definition 3.1 (Containment): Let N = (V,E, s, t) and
N0 = (V ′, E′, s′, t′) be two point-to-point networks. We say
N contains N0 if there exists a function f from the edges of
N0 to the paths of N satisfying:

(1) For e′ ∈ E′, if tail(e′) = s′, then tail(f(e′)) = s;
(2) For e′ ∈ E′, if head(e′) = t′, then head(f(e′)) = t;
(3) For any e′1, e

′
2 ∈ E′, if head(e′1) = tail(e′2), then

head(f(e′1)) = tail(f(e′2));
(4) For any e′1, e

′
2 ∈ E′, if e′1 ̸= e′2, then f(e′1) and f(e′2)

are edge-disjoint.
Lemma 3.2: [6] Let N = (V,E, s, t) be a point-to-point

network such that s has a unique out-edge and t has a unique
in-edge and let A denote the A-set of N . Then,

1) For any edge e ∈ A and any s-t path P , e ∈ P ;
2) For any e /∈ A, ∃ an s-t path P such that e /∈ P ;
3) N contains N0 = P1-P (2)

1 -P2-P (2)
2 -· · · -P (2)

n -Pn+1 (as
shown in Fig. 3(1)) such that A = ∪n+1

i=1 Pi, where
tail(P1) = s, head(Pn+1) = t, and path Pi is regarded
as a collection of edges.

A. Relation among the A-sets

Let N = (V,E, {s1, s2, s3}, {t1, t2, t3}) be a 3-pair net-
work. Throughout this section, we assume that for any i, j,

Ai,i = {ei1, ei2, · · · , eiℓi},A(i, j) = {ei,j1 , ei,j2 , · · · , ei,jℓi,j},

where eir ≺ eis and ei,jr ≺ ei,js for r < s, and

A(1, 2, 3) = {e1, e2, · · · , eℓ},

where er ≺ es for r < s.
Lemma 3.3: Given r < s. If eir, e

i
s ∈ A(i, j), then eiℓ ∈

A(i, j) for all r < ℓ < s.
Proof: Suppose eiℓ /∈ A(i, j), which implies eiℓ /∈ Aj,j .

Then by Lemma 3.2, there exists an sj-tj path Pj,j such
that eiℓ /∈ Pj,j . Note that eir, e

i
s ∈ A(i, j), we can pick an

arbitrary si-ti path, namely Pi,i, and obtain an si-ti path
P = Pi,i[si, e

i
r]-Pj,j [head(e

i
r), tail(e

i
s)]-Pi,i[e

i
s, ti] such that

eiℓ /∈ P , which is contradictory to 1) of Lemma 3.2.
Noticing that A(1, 2, 3) ⊆ A(i, j), we immediately have
Corollary 3.4: Given r < s. If eir, e

i
s ∈ A(1, 2, 3), then

eiℓ ∈ A(1, 2, 3) for all r < ℓ < s.
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Ai,i(1)
A(i, j)

A(i, k)

Ai,i(2)
A(i, j)

A(i, k)

Ai,i(3)
A(i, j)
A(i, k)

Ai,i(4)
A(i, j)

A(i, k)

Ai,i(5)
A(i, j)
A(i, k)

Fig. 1. Relations among A(i, j),A(i, k),A(k, j) and A(1, 2, 3).

The following theorem characterizes the relationship of
A(i, j) and A(1, 2, 3) in 3-pair networks with common bot-
tleneck links.

Theorem 3.5: For any 3-pair network with A(1, 2, 3) ̸= ∅,
one of the following statements holds: for all distinct i, j, k ∈
{1, 2, 3},

1) A(1, 2, 3)  A(i, j), A(1, 2, 3)  A(i, k) and
A(1, 2, 3) = A(j, k);

2) A(1, 2, 3)  A(i, j) and A(1, 2, 3) = A(i, k) =
A(j, k);

3) A(1, 2, 3) = A(i, j) = A(j, k) = A(i, k).
Proof: Without loss of generality, suppose |A(i, j)| ≥

|A(i, k)| ≥ |A(k, j)|. We then consider the following cases:
1) A(i, j) + A(i, k). In this case, as shown in Fig.1(1),

by the fact that A(i, j) ∩ A(i, k) = A(1, 2, 3) ̸= ∅ and
Lemma 3.3, we have A(k, j) = A(1, 2, 3).

2) A(i, j) ⊇ A(i, k) and |A(i, j)| ̸= |A(i, k)|. In this case,
A(1, 2, 3) = A(i, j)∩A(i, k)  A(i, j). By Lemma 3.3
and the assumption that |A(i, k)| ≥ |A(k, j)|, we have
A(1, 2, 3) = A(i, k) = A(k, j), as illustrated in Fig.
1(2), Fig. 1(3) and Fig. 1(4).

3) A(i, j) ⊇ A(i, k) and |A(i, j)| = |A(i, k)|. In this case,
as shown in Fig. 1(5), we have A(1, 2, 3) = A(i, j) ∩
A(i, k) = A(i, j) = A(j, k) = A(i, k), by Lemma 3.3
and the assumption that |A(i, k)| ≥ |A(k, j)|.

B. Network Structure

Let N be a 3-pair network with common bottleneck links.
Denote by P[a, b] the collection of all paths from a to b, where
a and b can be edges or vertexes, or a vertex and an edge. For
any i ̸= j, we define the following subnetworks of N .

• G(1, 2, 3) , P[e1, eℓ];
• G+(i) , P[S(i), tail(e1)];
• G−(i) , P[head(eℓ), T (i)].

When there exist i ̸= j such that ei,j1 ̸= e1, we define
• G+(i, j) , P[ei,j1 , tail(e1)].

When there exists i ̸= j such that ei,jℓi,j ̸= eℓ, we define

• G−(i, j) , P[head(eℓ), e
i,j
ℓi,j

)].

For any i, j, k, we refer to each G+(i) or G+(j, k) (G−(i)
or G−(j, k)) as a G+-subnetwork (G+-subnetwork). Then, by
Lemma 3.2, it is easy to see that G(1, 2, 3) must contain a
subnetwork as shown in Fig. 3(1); any G+-subnetwork must

G−(k) G−(i) G−(j)

G−(i, k)

G(1, 2, 3)

G+(i, j)

G+(i) G+(j) G+(k)

(1)

G−(j) G−(i) G−(k)

G−(i, j)

G(1, 2, 3)

G+(i, j)

G+(i) G+(j) G+(k)

(3)

G−(k) G−(i) G−(j)

G−(i, k)

G(1, 2, 3)

G+(i) G+(j) G+(k)

(2)

G−(i) G−(j) G−(k)

G(1, 2, 3)

G+(i, j)

G+(i) G+(j) G+(k)

(4)

G−(i) G−(j) G−(k)

G(1, 2, 3)

G+(i) G+(j) G+(k)

(5)

Fig. 2. The basic configurations, where the arrowed lines represent the
topological order between the subnetworks.

contain a subnetwork as shown in Fig. 3(2) and any G−-
subnetwork must contain a subnetwork as shown in Fig. 3(3).
It can also be verified that

any G+-subnetwork ≺ G(1, 2, 3) ≺ any G−-subnetwork,

which implies that there are no common edges or vertexes
shared by G+- and G−-subnetworks. Together with Theorem
3.5, the structure of all 3-pair networks with common bottle-
neck links can be classified as follows.

s t
(1)

s t
(2)

s t
(3)

Fig. 3. The subnetworks contained in G(1, 2, 3), G+ and G−.

Theorem 3.6: For a 3-pair network with A(1, 2, 3) ̸= ∅, it
has one and only one of the basic configurations shown in
Fig.2, where each Fig.2(i) corresponds to the case shown in
Fig.1(i), i = 1, 2, 3, 4, 5.

Note: in a 3-pair network, any two G+-subnetworks (G−-
subnetworks) may share edges; and there may exist paths from
G+-subnetworks to G−-subnetworks. The analysis of these
edges and paths plays a key role in deriving the main result.

IV. MAIN RESULT

A. The Condition for Solvability
Let N be a 3-pair network with A(1, 2, 3) ̸= ∅, and for all

feasible i, j, define

A(2)
i,j , {{a, b} : {a, b} is a cut of Ni,j ; a, b /∈ Ai,j}.
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Using these notations, our main result can be stated as follows.
Theorem 4.1: N is unsolvable if and only if there exist

distinct i, j, k ∈ {1, 2, 3} such that one of the following
statements holds:

1) Ai,j ∩ A(1, 2, 3) ̸= ∅;
2) ∃a ∈ Ai,i∩Aj,j ∩Ai,k and b ∈ Ak,k such that {a, b} ∈

A(2)
j,i ∩ A(2)

j,k .
3) ∃a ∈ Ai,i∩Ak,k ∩Aj,k and b ∈ Aj,j such that {a, b} ∈

A(2)
j,i ∩ A(2)

k,i .
4) ∃a ∈ Ai,i ∩ Aj,j ∩ Ai,k and b ∈ Ak,k ∩ Aj,i such that

{a, b} ∈ A(2)
j,k .

5) ∃a ∈ Aj,j ∩ Ai,k and b ∈ Ai,i ∩ Ak,k ∩ Aj,i such that
{a, b} ∈ A(2)

j,k .
6) ∃a ∈ Ai,i ∩Ai,j and b ∈ Aj,j such that {a, b} ∈ A(2)

k,i ∩
A(2)

k,j ∩ A(2)
k,k.

7) ∃a ∈ Aj,j ∩ Ak,j and b ∈ Ak,k such that {a, b} ∈
A(2)

i,i ∩ A(2)
j,i ∩ A(2)

k,i .
Note that for any 3-pair network N , all Ai,j can be comput-

ed in polynomial time, and so does determining whether {a, b}
is a cut. Since there are at most |E|2 pairs of {a, b}, Theorem
4.1 implies the existence of a polynomial time algorithm
to decide the solvability of a 3-pair network with common
bottleneck links.

Example 4.2: Fig.4 gives 8 unsolvable networks: it can be
verified that networks (1), (2) and (3) satisfy Conditions 1),
2) and 3) of Theorem 4.1, respectively; and network (4)
satisfies Conditions 4) and 5); and networks (5) and (6)
satisfy Conditions 6) and 7), respectively; network (7) satisfies
Conditions 3) and 6); and network (8) satisfies Conditions 2)
and 7), respectively.

B. Proof of the Sufficiency

The main tool to prove the sufficiency is the following so-
called “informational domination” defined in [8].

Definition 4.3: Let A,B be two edge sets of a 3-pair
network N . We say A informationally dominates B, denoted
by A

i B, if XB is a function of XA (or equivalently,
H(XB |XA) = 0) for all network coding solutions.

Informational domination has the following properties [8]:

1) For all feasible i, {T (i)} i {S(i)}.
2) If B ⊆ A, then A

i B.
3) If A i B and A

i C, then A
i B ∪ C.

4) If A i B and B
i C, then A

i C.
5) If B is downstream of A, then A

i B, where B
is downstream of A if there is no path from S =
{s1, s2, s3} to B in N \A.

The following generalization of information domination is
required in our proof.

Definition 4.4 (Sequential Informational Domination): We
say edge set A sequentially informationally dominate edge
sets B1, B2, · · · , Bn, denoted A

si (B1, B2 · · · , Bn),
if for each 2 ≤ k ≤ n, A

i Bk implies
A

i B1, A ∪B1
i B2, · · · , A ∪k−1

i=1 Bi
i Bk.

tk ti tj

si sj sk

A(1, 2, 3)

(1)

tk ti tj

si sj sk

a

b

(2)

tk ti tj

si sj sk

a

b

(3)

tk ti tj

si sj sk

a

b

(4)

ti tk tj

sk sj si

b a

(5)

tk ti tj

sk sj si

b a

(6)

ti tk tj

sk sj si

b

a

a′

(7)

tk ti tj

si sj sk

a

b a′

(8)

Fig. 4. Example of Unsolvable Networks.

Obviously, by definition, if A
si (B1, B2, · · · , Bn), then

A
i ∪n

i=1Bi. Now, we are ready to prove the sufficiency.
Proof of the sufficiency: Suppose, by way of contradiction,

that N is solvable and 1) holds, i.e., ∃e∗ ∈ Ai,j ∩A(1, 2, 3).
It can be easily checked that

{e∗, S(k)} i {e∗, S(k), T (j)} (by Properties 2,3,5))
i {e∗, S(k), S(j)} (by Properties 1,2,3))
i {e∗, S(k), S(j), T (i)} (by Properties 2,3,5))
i {e∗, S(k), S(j), S(i)} (by Properties 1,2,3))
i {S(k), S(j), S(i)} (by Property 2))

In other words, {e∗, S(k)} si ({S(k)}, {S(j)}, {S(i)}),
which, however, gives us a contradiction, since each link is
of unit capacity.

Similarly, it can be verified that if N is solvable and
2) holds, we have {a, b} si ({S(k)}, {S(i)}, {S(j)});
if N is solvable and 3) holds, we have {a, b} si 
({S(i)}, {S(k)}, {S(j)}); if N is solvable and 4) holds, we
have {a, b} si ({S(k)}, {S(i)}, {S(j)}); if N is solvable
and 5) holds, we have {a, b} si ({S(k)}, {S(i)}, {S(j)});
if N is solvable and 6) holds, we have {a, b} si 
({S(j)}, {S(i)}, {S(k)}); if N is solvable and 7) holds, we
have {a, b} si ({S(i)}, {S(j)}, {S(k)}). But each of the
above-mentioned cases will give us a contradiction, which
completes the proof. �
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TABLE I
CLASSIFICATION OF 3-PAIR NETWORKS WITH A(1, 2, 3) ̸= ∅ AND Ai,j ∩ A(1, 2, 3) = ∅

Classes (1.1) (1.2) (2.1) (2.2)
(1.1′) Fig.2(3)/F2-solvable Fig.2(3)/F2-solvable Fig.2(1),(3)/F2-solvable Fig.2(2)/F2-solvable
(1.2′) Fig.2(3)/F2-solvable Fig.2(1),(3)/unsolvable

case 4, 5) or F2-solvable
Fig.2(1),(3)/unsolvable
case 3) or F2-solvable

Fig.2(2)/unsolvable case
3, 6) or F2-solvable

(2.1′) Fig.2(1),(3)/F2-
solvable

Fig.2(1),(3)/unsolvable
case 2) or F2-solvable

Fig.2(1),(3)/F2(F3)-
solvable

Fig.2(2)/unsolvable case
6) or F2(F3)-solvable

(2.2′) Fig.2(4)/F2-solvable Fig.2(4)/unsolvable case
2, 7) or F2-solvable

Fig.2(4)/unsolvable case
7) or F2(F3)-solvable

Fig.2(5)/unsolvable case
6, 7) or F2(F3)-solvable

C. Proof Sketch of the Necessity

In this subsection, we assume that N is a 3-pair network
such that A(1, 2, 3) ̸= ∅, and Ai,j ∩ A(1, 2, 3) = ∅ for all
i ̸= j. We will prove that if N violates all Conditions 2)−7) of
Theorem 4.1, then it is solvable. We will need several lemmas
before reaching the proof of necessity.

Lemma 4.5: For any feasible i ̸= j, there exists an si-tj
path P such that P ∩G(1, 2, 3) = ∅.

Proof: Suppose, by way of contradiction, the conclusion
is not true, i.e., P ∩ G(1, 2, 3) ̸= ∅, for all si-tj path P . Let
A(1, 2, 3) = {e1, e2, · · · , eℓ}. If e1 ∈ P ∩ G(1, 2, 3) for all
si-tj path P , then one can conclude that e1 ∈ Ai,j , which con-
tradicts the assumption that Ai,j ∩A(1, 2, 3) = ∅. So, suppose
there exists an si-tj path P0 such that e1 /∈ P0 ∩ G(1, 2, 3).
Pick e∗ ∈ P0 ∩G(1, 2, 3) and take an e∗-ti path, say, Q (the
existence of Q is guaranteed by e∗ ∈ P[e1, eℓ] and eℓ ∈ Ai,i).
Then one verifies that P = P0[si, e

∗]-Q[head(e∗), ti] is an
si-ti path such that e1 /∈ P , which is a contradiction.

Lemma 4.6: Given k ̸= l, k′ ̸= l′. For any sk-tℓ path Pk,ℓ

such that Pk,ℓ∩G(1, 2, 3) = ∅ and any sk′-tℓ′ path Pk′,ℓ′ such
that Pk′,ℓ′ ∩G(1, 2, 3) = ∅, we have

Pk,ℓ ∩ Pk′,ℓ′ ̸= ∅ ⇔ k = k′ or ℓ = ℓ′.

Proof: “⇐” is obviously by noticing that S(k), T (ℓ) ∈
Ak,ℓ, ∀k, ℓ = 1, 2, 3. Now we prove “⇒.” Note that {k, ℓ} ∩
{k′, ℓ′} ̸= ∅. If k ̸= k′ and ℓ ̸= ℓ′, then we have either k = ℓ′

or ℓ = k′. Without loss of generality, suppose k = ℓ′, i.e.,
there exists an edge e0 ∈ Pk,ℓ ∩Pk′,k. Then P = Pk,ℓ[sk, e0]-
Pk′,k[head(e0), tk] is an sk-tk path such that P ∩A(1, 2, 3) =
∅, which is a contradiction.

Corollary 4.7: Suppose k ̸= ℓ and k′ ̸= ℓ′. Then,

Ak,ℓ ∩ Ak′,ℓ′ ̸= ∅ ⇔ k = k′ or ℓ = ℓ′.

The above lemmas, together with the results in Section III,
motivate a more detailed classification of N . Denote the A-set
of G+(i) by A+

i,i, we have the following cases:
(1) ∃ distinct i, j, k, s.t.,

A+
i,i ∩ A+

j,j ∩ (Ai,k ∪ Aj,k) ̸= ∅;
(1.1) A+

i,i ∩ A+
j,j ∩ Ai,k ∩ Aj,k ̸= ∅;

(1.2) A+
i,i ∩ A+

j,j ∩ Ai,k ∩ Aj,k = ∅;
(2) ∀ distinct i, j, k,

A+
i,i ∩ A+

j,j ∩ (Ai,k ∪ Aj,k) = ∅;
(2.1) A+

i,i ∩ A+
j,j ̸= ∅;

(2.2) A+
i,i ∩ A+

j,j = ∅;

Denote the A-set of G−(i) by A−
i,i, we have the cases:

(1′) ∃ distinct i, j, k, s.t.,
A−

i,i ∩ A−
j,j ∩ (Ak,i ∪ Ak,j) ̸= ∅;

(1.1′) A−
i,i ∩ A−

j,j ∩ Ak,i ∩ Ak,j ̸= ∅;
(1.2′) A−

i,i ∩ A−
j,j ∩ Ak,i ∩ Ak,j = ∅;

(2′) ∀ distinct i, j, k,
A−

i,i ∩ A−
j,j ∩ (Ak,i ∪ Ak,j) = ∅;

(2.1′) A−
i,i ∩ A−

j,j ̸= ∅;
(2.2′) A−

i,i ∩ A−
j,j = ∅;

To obtain the necessity, we enumerate each of the product
cases (of those on A+

ii and A−
ii ) and exhaustively examine all

the possible scenarios with the help of Lemmas 4.5 and 4.6.
Omitting the tedious details, we summarize the results in
Table I, which complete the proof of necessity. Here, in Table
I, expression like “Fig.2(1),(3)/unsolvable case 4,5) or F2-
solvable” means that the network belongs to Fig.2(1) or (3)
and it is either F2-solvable or unsolvable corresponding to
cases 4) or 5) in Theorem 4.1.

V. CONCLUSIONS AND FUTURE WORK

Theorem 4.1 further reviews that a 3-pair network with
A(1, 2, 3) ̸= ∅ is solvable if and only if @e1, e2 ∈ E, s.t.,
{e1, e2}

i {S(1), S(2), S(3)}. However, this is shown to be
false for general 3-pair networks after some further studies.
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