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A New Visual Object Tracking Algorithm Using 
Bayesian Kalman Filter 
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Dept. Electrical and Electronic Engineering  

The University of Hong Kong  
Hong Kong, P. R. China 

 
Abstract—This paper proposes a new visual object tracking 

algorithm using a novel Bayesian Kalman filter (BKF) with 
simplified Gaussian mixture (BKF-SGM). The new BKF-SGM 
employs a GM representation of the state and noise densities and 
a novel direct density simplifying algorithm for avoiding the 
exponential complexity growth of conventional KFs using GM. 
Together with an improved mean shift (MS) algorithm, a new 
BKF-SGM with improved MS (BKF-SGM-IMS) algorithm with 
more robust tracking performance is also proposed. Experimental 
results show that our method can successfully handle complex 
scenarios with good performance and low arithmetic complexity. 

Keywords—Object tracking, Baysian Kalman filter, mean shift. 

I.  INTRODUCTION 

Visual object tracking is an important component in video 
surveillance, because many high-level video analytic tasks and 
other applications use object tracking results as a part of their 
initial inputs. An extensive survey of various state-of-the-art 
object tracking algorithms can be found in [1]. In general, 
visual object tracking can be classified into two categories: 
deterministic and probabilistic tracking. For the former 
framework, mean shift (MS) [3] is the most popular tracker 
because of its simplicity and effectiveness. It only keeps a 
single hypothesis/candidate and utilizes the gradient of the data 
distribution for seeking the maximum possible candidate. 
Consequently, it is very computationally efficient. However, 
conventional MS tracker is prone to losing tracks due to rapid 
movement of the object. Moreover, its performance degrades 
considerably if significant occlusion occurs or there are more 
than one similar objects in the scene. 

On the other hand, probabilistic tracking methods model 
the important information of the tracked object as a probability 
density function (pdf), which is recursively updated with new 
observations arrived. Usually, a dynamic state-space approach 
is employed where the states of the object are typically taken as 
its location, velocity, acceleration and bounding box, etc. The 
observations in each image frame are usually obtained by an 
initial detector or tracker. In this category, particle filtering (PF) 
algorithm [2] has received great attention because it is capable 
of dealing with non-Gaussian state densities by approximating 
them as a set of particles with associated weight. Unlike MS, 
these methods keep multiple hypotheses and thus are more 
suitable for tracking in clutter or occlusions. Despite of its 
effectiveness in tracking, the computational complexity of such 
methods grows rapidly when the dimension of the states and 

the number of particles grows. In addition, due to the problems 
of degeneracy and sampling impoverishment, the PF is rather 
inefficient in sampling. 

In this paper, we approximate the non-Gaussian state and 
noise densities by Gaussian mixtures (GMs) and propose a new 
Bayesian Kalman filter (BKF)-based visual object tracking 
algorithm. The proposed BKF is based on the classical 
formulation of Ho et al. [5] who showed that the classic 
Gaussian KF formulation can be extended by means of the 
Bayesian framework to handle more general pdf. However, for 
the non-Gaussian and/or non-linear system, the Bayesian 
recursion cannot be generally computed using closed-form 
formula due to difficulty in evaluating the multidimensional 
integral analytically. Therefore, one needs to approximate the 
state and noise pdfs using various techniques such as particles 
or GMs [4]. For the former, it gives rise to the PF technique 
discussed above. For the GMs, the filtering process of the 
original problem can be aproximately solved by a number of 
KFs operating in parallel. Unfortunately, its main drawback is 
that the filter number and the component number of the states 
will exponentially increase with time. To tackle this problem, a 
new direct density simplification approach and further the BKF 
with simplified GM (BKF-SGM) are proposed and applied to 
the visual object tracking. As the GM is simplified directly 
without resampling, the proposed BKF-SGM avoids 
performance degradation due to sampling degeneracy and 
impoverishment in conventional PF. Furthermore, coupled 
with an improved MS tracker for extracting measurements 
from image frame, the original MS is extended under the BKF-
SGM framework to a bank of parallel MS trackers, which 
reduces the possibility of the MS tracker being trapped in local 
maxima at the background or similar objects. The proposed 
approach, called the BKF-SGM with improved MS (BKF-
SGM-IMS) can also be viewed as a fusion of the deterministic 
and probabilistic object tracking frameworks, where local 
deterministic approach is used to provide the measurements for 
the probabilistic approach based on the BKF-SGM. 
Experimental results tested on public available datasets 
PETS2001 [8] & PETS2009 [9] and HD IP surveillance 
camera captured dataset show that the proposed approach 
outperforms the conventional PF-based and MS methods with 
low computational complexity. 

The rest of the paper is organized as follows. Section II is 
devoted to the proposed BKF-SGM-IMS tracking algorithm. 
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The implementation details, experimental results and 
comparisons with conventional algorithms are given in Section 
III. Finally, conclusion is drawn in Section IV. 

II. BKF-SGM-IMS VISUAL OBJECT TRACKING 

A. Baysian Kalman Filter with Gaussian Mixture (BKF-GM) 

The probabilistic object tracking problem can be modeled 
by the discrete-time linear state-space model as follows: 

kkkk wxAx  1 , (1)

kkkk vxCz  , (2)

where kx  and kz  denote respectively the state and observation 

(measurement) vectors at time k . kA  denotes the state 
transition matrix and kC  constitutes the observation model 
which relates the measurement with the state. kw  and kv  
denote respectively the process and observation noise vectors, 
and are assumed to be mutually independent. 

In this paper, the state vector and transition matrix are 
defined as T

kkkkkkkkk yHxHyxHyHxyx ],,,,,,,[ x and 
]],[],[ [ 444444

TT
k  IIIA 0 , where ),( kk yx  and ),( kk yx   

are respectively the location of the object center and its 
velocities, ),( kk HyHx  are the half axes of the tracking eclipse 
(bounding box) and ),( kk yHxH   are the corresponding scale 
changes. The observation model which relates the 
measurement T

kkkkk HyHxyx ],,,[z  with the state is defined 
as ][ 4444  0ICk . More details about the computation of 

kz  using the improved MS will be discussed in Section II(C). 

In the BKF-GM, the pdfs of the process and observation 
noises are characterized by the GMs as: )( kp w  
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),;( kllkN Quw  represents a Gaussian distribution with mean lu  

and covariance klQ . In the rest of the paper, the observation 
noise is assumed to be zero-mean Gaussian with covariance 
matrix kR , i.e., ),;()( kkk Np Rvv 0 , for simplicity. Now 

suppose further that 1kZ  denotes the observations collected up 

to time instant k-1 and the a prior pdf )|( 1kkp Zx  is modeled 

by the following GM with k   components: 
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where  
  kkkkkk dppc xZxxz )|()|( 1

1  is a normalization 

constant. The second equality in (4) consists of the products of 
two Gaussian distributions and each of these products can be 
simplified to a Gaussian distribution. As a result, one gets 

kk   , and the KF for Gaussian processes [4] is directly 

applicable to obtain ki , kiu  and kiP . Please refer to Table I 

for details. Similar to the derivation in (4), the a prior density is: 
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where kkk  1' . The update of jkjk' )1()1( '   ,  u  and 

jk )1(' P  are summarized in TABLE I. It can be seen that the 
number of mixture components 1' k  and hence the complexity 
grow exponentially after each recursion. To keep a constant 
complexity, the GM model in (5) should be approximated as the 
form of (3). 

B. BKF with Simplified GM (BKF-SGM) 

Consider the GM model in (5) with '  components: 

   
'
1

'
1 ),;()()(   j jjjj jj NfF Puxxx . (6)

where ),;()( jjj Nf Puxx   is the j-th component and 
 

'
1 1 j j . For notational convenient, the additional subscript 

k+1 in (5) is dropped. In the BKF-SGM, our goal is to 
approximate )(xF  with a simplified mixture model with fewer 
components  

'
1 )(')(  i ii gG xx , where ),;()( iii Ng Puxx   

and  
'
1 1 i i'  with '  . The error of approximating 

)(xF  with )(xG  is given by ))(),(( xx GFD  
5.02 )))()(((  xxx dGF . Conventionally, the simplification 

is done by first resampling and then clustering using the K-
means or EM algorithm. However, the complexity depends 
exponentially on the dimension of the state and hence it will 
soon become infeasible. In this paper, we employ the two-step 
algorithm developed in [6] for model order reduction while 
avoiding the additional resampling process. At the m-th 
iteration of the two-step algorithm, the component mixture is 
partitioned into    groups { )(

1
mS , )(

2
mS ,..., )(mS  }. 

Step 1 (Mean update): The representative component 
)()( xm

iC  for each )(m
iS  that minimizes the local quantization 

error is     )(
)(
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iC Sj jj

m
i dfCC xxxx

x
 . 

Interested readers are referred to [6] and references therein for 
solving this problem using coordinate descent. 

Step 2 (Clustering): Given 
 1

)()( )}({ i
m

i
m CC x , one re-

assigns )(xjf  to the nearest )()( xm
iC  based on the distortion 

measure ))(),(( )(
, xx j

m
iji fCDD  , and then update )(m

iS . The 
above process is repeated until either 1) the change in total 
distortion or 

 1
)()( )}({ i

m
i

m CC x  is less than a certain 
threshold, or 2) a maximum number of iteration is reached. 

The major advantage of the proposed method over other 
conventional resampling methods is the use of an efficient 
mixture simplification method with lower complexity. For 
example, denote the number of component and dimension of 
state respectively as n and d. Then, the complexity of the greedy 
EM algorithm [7] is ))12(( 223  ddnndO kk  , where   
is related to the number of candidates and data size in the 
greedy EM algorithm. On the other hand, the complexity of the 
two-step algorithm mentioned above is ))(( 3ndmLTO  , 
where T and L denote the numbers of iterations and are usually 
small as suggested in [6]. Since   is typically very large, say 
from 1000 to 5000, for the greedy EM algorithm, the method in 
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[7] has a higher complexity. 

C. BKF-SGM with Improved MS (BKF-SGM-IMS) 

As mentioned before, the observation vector kz  defined in 
(2) can be obtained by the MS tracker [3]. It models the 
appearance of the tracked object by a weighted color histogram 
and the object center ),( kk yx  is calculated by iteratively 
maximizing the similarity between the tracked object and its 
candidate. Histogram similarity is defined in terms of the 
Bhattacharya coefficient and distance [3]. At each iteration, the 
mean shift vector is computed such that the histogram 
similarity is increased. This process is repeated until 
convergence is achieved. ),( kk HyHx  is calculated by scale 
adaptation, which modifies ),( 11  kk HyHx  with a certain 
fraction ( %10 ) and lets the MS converge again. As we can 
see from (4), the posterior density is approximated by GM. 
Therefore, it makes sense to perform MS separately for each 
GM component so as to obtain the kz . A major difficulty in 
using such approach is that there are many measurements ik ,

~z , 
one from each Gaussian component with ki  ,,1 . To 
simplify the computation, we pick the most likely measurement 
from each MS tracker and use it to update the state density. 
More precisely, kz  is obtained from minimizing a cost 
function for each MS tracker associated with each Gaussian 
component. The cost function kiE ,  is constructed from the 
component weight and the Bhattacharyya distance: 

kikiki dE ,,, )1()1(   , where ki,  and ]1,0[, kid  are 
respectively the component weight and normalized 
Bhattacharyya distance for the i-th GM component at time k, 
and k  /1  is a weighting constant to ensure that kiE ,  has a 
magnitude less than or equal one. The final measurement kz  is 
chosen as 

kikk  ,
~zz , where kiik E ,minarg . 

The main advantage of this approach is that it reduces the 
possibility of the MS tracker in getting trapped in a local 
maximum point on the background or other similar objects. 
This leads to more accurate measurement and hence tracking 
results. For example, consider a tracked object inside a red 
rectangle of Fig. 1(a) and the histogram similarity surface is 
shown in Fig. 1(b). The object center estimated by a GM is 
marked as orange rectangle and object centers of four 
corssponding Gaussian components are marked as black circles 
in Fig. 1(b). In addition, the weight ki,  of the i-th GM 
component is represented by the size of the black point and 
white arrows indicate the converge behavior of the 

conventional MS. It can be seen from Fig. 1(b) that the 
similarity surface is not unimodal. Hence the orange point will 
converge to a local maximum point in the conventional MS, 
which is indicated by the white dotted arrow. However, in the 
improved MS, it is possible to find the global maxima because 
MS is performed separately for each component. This suggests 
the usefulness of the proposed improved MS tracker for BKF-
SGM. Finally, Table I summarizes the proposed BKF-SGM-
IMS in which the parameters of the simplified model are 
denoted by 1k , ik )1(  , ik )1( u  and ik )1( P . 

III. EXPERIMENTAL RESULTS 

To evaluate the performance of our BKF-SGM-IMS 
algorithm, two tests have been carried out using public datasets 
PETS2001 and PETS2009 for quantitative and visual 
evaluation. Furthermore, our algorithm is tested on a HD and 
low frame rate (15 fps) surveillance video captured by an IP 
camera. Since the BKF-SGM-IMS can be viewed as a fusion of 
deterministic and probabilistic frameworks, we will compare it 
with the MS [3] and PF-based algorithm [2], which are 
respectively two classical methods in deterministic and 
probabilistic tracking. For fair comparison, all methods use a 
weighted color histogram which is defined in [3] to represent 
the appearance of the tracked object. In addition, 8 bins for 
each dimension are used within the RGB space to represent the 
color histogram. The state noise kw  defined in Section II(A) is 
modeled as a GM with two components: )( kp w  

),;()1(),;( 2211 kkkk NN QuwQuw   , where 1.0 , 
0 21 uu , IQ 101 k , and IQ 2k . The initial state 

)()|( 010 xZx pp   is a GM with 6 components having the 
same weight. Covariance of each component is set to IP i0 . 
The total execution time of our BKF-SGM-IMS is nearly equal 
to the PF-based method with particle number N=60 based on 
C++ implementation. As the number of particles affects the 
accuracy of the approximation of the pdf and hence the final 
tracking performance, we use a much larger particle number of 
N=1000 in the comparison. 

Figs. 2(a)–2(c) show three moving objects we have tracked 

TABLE I. BKF-SGM-IMS Visual Object Tracking Algorithm

For ,...2,1k  

1) BKF-GM: 

For ki  :1  
)( kikkkikiki uCzKuu   

1)(  k
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End 
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For 1:1  kj   
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kl
T
kkikjk QAPAP   11)1(  

End 

2) BKF-SGM: use two-steps algorithm to obtain:  

  1

1)1(



k

iika  ,   1

1)1(



k

iik
u ,   1

1)1(



k

iik
P  

3) Improved MS: use improved MS tracker to obtain 1kz  
End 

      
(a)                                               (b) 

Fig.1 Illustration of the converge behavior of the BKF-SGM-IMS. (a) 
shows a tracked object (yellow) which centers at a small area (red); (b) 
shows the similarity surface (values of the Bhattacharyya coefficient) 
corresponding to the red rectangle marked in (a), where red triangle point 
to the global maxima (true object center) and yellow triangles are two 
local maximum points; The orange rectangle is the estimated object center 
of the GM and 4 black circles are object centers of the GM components. 
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in PETS2001 dataset. It can be seen that the color distributions 
of the yellow and purple eclipses are similar which is difficult 
for MS to track. When tracking targets experience significant 
occlusion, only our method can successfully track all three 
objects afterwards. The PF-based method loses one object and 
MS loses the two objects. The trajectory ground truth of 
PETS2001 dataset is used to calculate the velocity RMSE and 
center RMSE of tracked objects. The BKF-SGM-IMS 
outperform PF-based methods in velocity tracking. In Table II, 
we summarize the mean center RMSE and velocity RMSE 
values of various objects, which are evaluated over 10 trails. 
The label of “Lost Track” is marked with “Y” if the tracker 
loses track during any trial. “NaN” indicates the tracker loses 
tracks in all trials, and hence, we cannot obtain any reasonable 
value. The velocity RMSE results obtained using the BKF-
SGM-IMS are smaller than those of PF-based method for all 
objects, while offering comparable center RMSE results. 

We further tested our method in a more cluster 
environment, where the selected targets in PTES2009 dataset 
suffer from lighting changes, direction changes and nearly total 
occlusion. Figs. 2(d)–2(f) shows the visual tracking results of 
PETS2009 dataset. It can be seen that our method successfully 
tracks all objects, whereas MS tracker lose one object at the 
end of this experiment. The PF-based method does not lose 
track but the center of tracking ellipse deviates considerably 
from the real object center. The mean center RMSE and 
velocity RMSE values of tracked objects, which are evaluated 
over 10 trails, are shown in TABLE II. It can be seen that the 
proposed method is significantly better in terms of velocity 
RMSE. The center RMSE of the proposed method is smaller 
than the MS tracker. 

We now evaluate the performance of the various 
algorithms in an open environment obtained from a HD 
resolution but low frame rate IP camera. Due to the low frame 
rate, the object may move rapidly between two consecutive 
frames. From frame 6 to frame 37, the object experienced a 
sudden acceleration. Figs. 2(g)–2(i) shows the comparison 
results. It can be noticed that our method can successfully track 
the moving object even though it is slightly affected by the 
sudden velocity change and direction change. The MS tracker 
loses track when the object start accelerating. The PF-based 
method loses track in the middle of the acceleration period. 

IV. CONCLUSION 

A novel BKF-based method for visual objects tracking is 
presented. It employs GM representations of the state and noise 
densities and a novel density simplifying algorithm to avoid the 
exponential increase of the number of GM component. 
Coupled with an improved MS, the BKF-SGM-IMS visual 
object tracking algorithm is proposed. 
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TABLE II. Comparision of Velocity RMSE, Center RMSE (pixels) and 
Lost Track 

Object Method 
Velocity 
RMSE 

Center 
RMSE 

Lost 
Track 

PETS2001 camera1 dataset 

Yellow
BKF-SGM-IMS 0.1217 14.2178 N 

PF1000 1.7909 12.2166 Y 
MS NaN NaN Y 

Purple
BKF-SGM-IMS 0.1119 13.6707 N 

PF1000 1.6616 14.0365 Y 
MS Na Na N 

Green
BKF-SGM-IMS 0.2943 18.6802 N 

PF1000 NaN NaN Y 
MS NaN NaN Y 

PETS2009_S2_L3 dataset 

A 
BKF-SGM-IMS 0.2529 1.9327 N 

PF1000 1.7833 0.9874 N 
MS 2.3793 2.2457 N 

B 
BKF-SGM-IMS 0.3872 1.6786 N 

PF1000 1.8419 1.3588 N 
MS NaN NaN Y 

           

            

          
 (a)                 (b)                 (c)                             (d)                                 (e)                                  (f)                           (g)                     (h)                     (i) 

Fig.2 Tracking results of PETS2001 dataset at frames 783, 872 and 940, PETS2009 dataset at frames 178, 216 and 232 and low frame rate IP camera captured 
video sequence at frames 35, 60 and 90, which are obtained using BKF-SGM-IMS (a, d, g), MS (b, e, h) and PF-based method with N=1000 (c, f, i).
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