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Abstract— Intelligent substations in smart grids can provide 
more information about operating states of transformers by 
advanced sensors and monitoring units. According to 
information, operators can identify health conditions of 
transformers more accurately to determine maintenance 
strategies more reasonably. Maintenance of transformers can 
enhance the health condition and improve the reliability of a 
power system. However, maintenance introduces additional 
costs into total operating costs. A sophisticated maintenance 
strategy should be a tradeoff between maintenance costs and 
reliability enhancement. Based on monitoring information, a 
dynamic coordinated maintenance strategy for multiple 
transformers is proposed in this paper. First, a Markov model of 
an individual transformer is built to demonstrate its 
deterioration processes. Based on deterioration processes of an 
individual transformer, deterioration processes of a system with 
multiple transformers are built. Besides internal deterioration 
processes of components, external conditions, e.g., weather 
conditions and availability of servicemen and auxiliary 
equipment, are also considered in the model. Then, an 
optimization model is built. A series of dynamic coordinated 
maintenance strategies can be provided by the proposed 
optimization model, which is solved by a backward induction 
algorithm. A test system is used to demonstrate efficiency and 
accuracy of the method proposed in this paper. 

Index Terms--Backward induction, dynamic coordinated 
maintenance strategies, Markov decision processes. 

I. INTRODUCTION 

With the development of intelligent substations in smart 
grids, more information about operating states of transformers 
can be provided by advanced sensors and monitoring units 
equipped in intelligent substations. With provided 
information, operators can identify health conditions of 
transformers more accurately to determine maintenance 
strategies more reasonably. For a power system, electric 
power utilities always try to maximize profits with acceptable 
reliability levels. Challenges posed by aging equipment should 
be solved in a scheduled manner to minimize potential crises 
in the future. During the operating period of a transformer, the 
deterioration may increase the costs and decrease the 
reliability of the whole system. Usually, maintenance is used 
to mitigate the deterioration of components and enhance 

reliability levels of a system. However, additional costs 
associated with maintenance may increase the whole operating 
costs. To balance the reliability and costs, a sophisticated 
maintenance schedule is critical needed. The traditional 
maintenance is often pre-defined, i.e., maintenance activities 
are implemented in regular intervals. This method can be 
implemented with limited information of equipment but might 
be inefficient and uneconomic. 

The importance of maintenance scheduling for aging 
components is well recognized [1]-[6]. A state diagram, 
represented by a Markov process, was employed to 
demonstrate the deterioration and maintenance [7], [8]. This 
state diagram can illustrate transition probabilities between 
different deterioration states. Based on state diagrams, paper 
[9] analyzed strategies for the enhancement of Markov 
models. Paper [10], [11] analyzed the optimal maintenance 
with the consideration of the power system operation. The 
genetic algorithm (GA) is used to optimize the model. 
However, in real systems, some external factors, like weather 
and auxiliary equipment, may influence the maintenance 
strategies. Therefore, based on more information about 
operating states of transformers in intelligent substations, 
deterioration processes of an individual transformer and 
multiple transformers, using Markov models, are built in this 
paper. Besides internal deterioration processes of components, 
external conditions, e.g., weather conditions and availability of 
servicemen and auxiliary equipment, are also considered in 
the model. Then, to represent current and successive 
influences, an expected cost-to-go is presented. A backward 
induction algorithm is employed to solve this model. A test 
system is shown to validate the proposed model and the 
method. The proposed model can provide operators a series of 
dynamic coordinated maintenance strategies to adjust different 
conditions of multiple transformers. 

The paper is organized as follows: Section II describes 
deterioration models of an individual transformer and multiple 
transformers. Section III presents the proposed dynamic 
optimization model and a backward induction algorithm. A 
test system is shown in Section IV. 
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II. MARKOV MODELS FOR AN INDIVIDUAL TRANSFORMER 

AND MULTIPLE TRANSFORMERS 

A. Deterioration Processes of an Individual Transformer 
Based on a Markov Model 

For a transformer, its deterioration can be divided into 
several different levels which can be identified through 
information provided by sensors and monitoring units 
equipped in the intelligent substation. Assume that there are N 
types of deterioration levels, i.e., N states, for a transformer. 
The state set can be denoted as 1{ , , }D ND DΘ = ⋅⋅⋅ . The first 
state is a best state and the Nth state is a failure state. 

If there are not any activities, e.g. maintenance activities 
and repair activities, a worse state will not return to a better 
state. With increasing time intervals, a transformer will be in 
the failure state, i.e., DN. The transitions between different 
states without any activities, i.e., maintenance activities and 
repair activities, are shown in Fig.1. 

 

Figure 1.  Transitions without any activities 

To mitigate deterioration processes that may increase 
probabilities of being a failure in the future, maintenance 
activities are often employed. In this paper, it assumes that 
there can be N-1 types of maintenance activities, i.e., M1, 
M2,…,MN-1, for a transformer with N states. For the 
maintenance activity Mm, it can make the state Dq ( 1≤ q ≤ N-
1) return to the state D1 when m > q. If m ≤ q, the maintenance 
activity Mm can make the state Dq ( 1≤ q ≤ N-1) return to the 
state Dq-m+1. Maintenance activities cannot change the fault 
state. 

The repair activity, denoted as MN, can make any operating 
states or the failure state return to the best state, i.e., D1, in the 
next time interval. 

For the transformer i with N states, the activity set can be 
denoted as 

 0 1{ , , , }A NM M MΘ = ⋅⋅⋅  (1) 

where 0M  means no activity on the transformer i. 

The transition matrix can be written as 

 ( , )
, [ ]i a

i a N Njkp ×=P  (2) 

where ,i aP  is the transition matrix of the transformer i. When 

0a = , it means the transition matrix corresponding to M0. 
1, , 1a N= −L  denote the maintenance activities M1, …,MN-1 

respectively and a N=  represents the repair activity. ( , )i a
jkp  

is the transition probability of the transformer i from the state 

Dk to the state Dj with the activity ( 0, )aM a N= L . Based on 
the transition matrices, the probability from one state to itself 
or another state with different activities can be easily 
obtained. 

B. Deterioration Processes of Multiple Transformers 

For n transformers, a state set and an activity set can be 
defined as follows. 

 1, , ,{ , , , , }t i t ns s s= ⋅⋅⋅ ⋅ ⋅⋅t tΠ  (3) 

 1, , ,{ , , , , }t t i t n tA A A= ⋅⋅⋅ ⋅ ⋅ ⋅π  (4) 

where tΠ  is a state set of n transformers in the tth time 

interval, ,i t Ds ∈ Θ  is the state of the transformer i in the tth 

time interval, tπ  is an activity set of n transformers in the tth 

time interval, ,i t AA ∈ Θ  is the activity that is implemented on 

the transformer i in the tth time interval. 

The probability from tΠ  in the tth time interval to 1t+Π  

in the (t+1)th time interval with tπ  can be described as 

 1 ,( 1) , ,( | , ) ( | , )
T

t t t i t i t i t
i

P P s s A+ +
∈Θ

= ∏Π Π π  (5) 

where TΘ  is the set of indices of transformers, 

,( 1) , ,( | , )i t i t i tP s s A+  is the probability of the transformer i from 

the state ,i ts  in the tth time interval to the state ,( 1)i ts +  in the 

(t+1)th time interval with the activity ,i tA . These probabilities 

can be obtained according to the transition matrices. 

III. A DYNAMIC OPTIMIZATION MODEL 

In this section, a model, considering current and successive 
influences with different operating conditions, is built to 
optimize coordinated maintenance activities dynamically. In 
this paper, there are following two assumptions: 

• At most one transformer can be on maintenance in a 
time interval. 

• Any transformers cannot be on maintenance if any 
other transformers are in the failure states. 

A. The Expected Cost-to-go with All Components in Normal 
Operation 

When all transformers are in normal operating states, there 
are many different maintenance strategies that can be 
implemented. Different strategies can result in different 
influences in the future. The expected cost-to-go, which means 
the total cost from the current time interval to the terminal 
time interval, can be employed to evaluate the influences 
caused by the implementation of a certain maintenance 
strategy. The expected cost-to-go with all transformers in 
normal operation includes the activity cost, the load loss cost 
and the successive cost caused by actions. 

The activity cost ,A tC  of t O⊂ ΘΠ  with t ⊂ Θππ can be 

denoted as 



 , ,( )
T

A t i i t
i

C CA A
∈Θ

= ∑  (6) 

where OΘ  is the set of all possible system state sets with all 

transformers in normal operating states, Θπ  is the set of all 

possible activity sets for tΠ , ,( )i i tCA A  demotes the activity 

cost caused by implementing the activity ,i tA  on the 

transformer i . 

The load loss cost ,L tC  is represented as 

 , ,( )
T

L t i i t
i

C CL A
∈Θ

= ∑  (7) 

where ,( )i i tCL A  denotes the load loss cost caused by 

implementing the activity ,i tA  on the transformer i. Because 

the transformer should be off line when on maintenance, there 
may be load losses with heavy loads. 

Different activities on different transformers will results in 
different influences on the successive. The successive cost for 

t O⊂ ΘΠ  with tπ  can be expressed as follows. 

 , 1 1 1( ) ( | , )
O F

S t t t t t tC v P∗
+ + +

⊂Θ Θ

⎡ ⎤= ⋅⎣ ⎦∑
Ut+1Π

Π Π Π π  (8) 

where FΘ  is the set of all possible system state sets with 

different numbers of transformers in failure states. 1 1( )t tv∗
+ +Π  

is the minimum expected cost-to-go with the state matrix 

1t+Π  in the (t+1)th time interval. The calculation of the 
minimum expected cost-to-go will be introduced in the next 
section. 

Therefore, the expected cost-to-go with tΠ  and tπ  can be 
written as 

 , , ,( , )t t t A t L t S tv C C C= + +Π π  (9) 

B. The Minimum Expected Cost-to-go with All Components 
in Operation 

For all components in normal operating states, i.e., 

t O⊂ ΘΠ , in the tth time interval, the minimum expected 
total cost-to-go can be shown as the equation (10). 

{ }( ) min ( , ), ,t t t t t t t Ov v π
∗ = ⊂ Θ ⊂ ΘΠ Π π π Π  (10) 

C. The Minimum Expected Cost-to-go with Components in 
Failure 

When transformers in a power system are in the fault 
states, servicemen and auxiliary equipment should be arranged 
to fix the faults. However, servicemen and auxiliary 
equipment are not always ready-for-use. Therefore, this paper 
considers this factor. In this paper, it assumes that no 
maintenance activities are on any other non-fault transformers 
when any transformers are in the failure states.  

Therefore, the activity set ( )F
tπ  for t F⊂ ΘΠ  can be 

easily determined. It can be shown as 

 ( ) ( ) ( ) ( )
,,1,{ , , , , }F R R R

t n ti ttA A A= ⋅⋅⋅ ⋅ ⋅ ⋅π  (11) 

where ( )R
tπ  is an activity set, ( )

,
R

i tA  is a repair activity, i.e., 

MN, when the corresponding transformer is in the fault state, 

or ( )
,
R

i tA  is 0M  when the corresponding transformer is in the 

normal operating state. 

The minimum expected cost-to-go with components in the 
failure states can be denoted as 

 ( )( ) ( , )F
t t t t tv v∗ =Π Π π  (12) 

The expected cost-to-go ( )( , )F
t t tv Π π  of t F⊂ ΘΠ  with 

( )F
tπ  includes three parts that are the load loss cost, the repair 

cost and the successive cost. It can be written as 

( ) ( ) ( )( , ) ( ) ( )F F F
t t t t t t tv CL CR= +Π π Π π   

 ( )
1 1 1( ) ( | , )

O F

F
t t t t tv P∗
+ + +

⊂Θ Θ

⎡ ⎤+ ⋅⎣ ⎦∑
t+ 1Π

Π Π Π π
U

 (13) 

where ( ) ( )F
t tCL Π  is the load loss cost with t F⊂ ΘΠ , 

( )( )F
t tCR π  is the repair cost under ( )F

tπ , the third term on the 

right of equation (5) is the successive cost for t F⊂ ΘΠ  with 
( )F
tπ . 

D. A Revised Backward Induction Algorithm 

The backward induction algorithm is an efficient method 
to solve finite horizon discrete time Markov decision 
processes. In this paper, a searching space reduction method is 
used to speed up the calculation. With the increasing number 
of components, there will be a huge number of combinations 
of different conditions in a time interval. The calculations of 
probabilities from a certain condition in the tth time interval to 
all possible conditions in the (t+1)th time interval will be a 
time-consuming task. To reduce the amount of calculations, a 
searching space reduction method is employed. Empirically, 
the transition probability of a component from a certain 
condition to another deteriorated condition without any 
activities is often very small. Therefore, the probability, which 
the states of multiple components are deteriorated to worse 
simultaneously, is often so small that it can be ignored. 
Actually, we can consider at most three to five components 
whose states are deteriorated to worse states at the same time 
interval. This method can reduce the amount of calculation to 
a certain degree. 

The detailed steps of solving the proposed model, 
considering T time intervals, are shown as follows: 

Step 1) According to deteriorated processes of 
components, generate the sets OΘ , FΘ , and πΘ . 

Step 2) Repeat for t=T, T-1,…,1. 



--Step 2.1) For t O⊂ ΘΠ , determine a possible strategy 

t π⊂ Θπ . Compute the activity cost ,A tC , the load loss cost 

,L tC , the successive cost ,S tC  and the expected cost-to-go 

according to the equations (6)~(9). 

--Step 2.2) Compute all possible expected cost-to-goes for 

t O⊂ ΘΠ . The strategy with the minimum expected cost-to-
go is the optimal strategy according to the equation (10). 

--Step 2.3) For t F⊂ ΘΠ , determine the corresponding 

strategy ( )F
tπ  according to the equation (11). 

--Step 2.4) Compute the minimum expected cost-to-go of 

t F⊂ ΘΠ  under ( )F
tπ  using the equations (12) and (13). 

--Step 2.5) Set 1t t= − , go back to Step 2.1). For the Tth 
time interval, the successive costs are not considered. 

IV. CASE STUDY 

In this section, an IEEE 30-bus system is presented to 
show that the proposed dynamic coordinated maintenance 
strategies are correctness and efficient. In this paper, we 
mainly focus on three states, i.e., a good state (D1), a 
deteriorated state (D2) and a fault state (D3), for each 
transformer. D1 and D2 of transformers in actual operations 
can be provided by advanced sensors and monitoring units in 
intelligent substations. 

Two maintenance activities, i.e., a minor maintenance 
activity (M1) and a major maintenance (M2), and a repair 
activity can be performed. D1 and D2 can retain the same state 
in the next time interval with M1. D1 can retain the same state 
and D2 can return to the state D1 with M2. In the simulation, 
52 weeks, i.e., one year time horizon, and at most double 
faults are considered for the maintenance scheduling. 

TABLE I shows maintenance costs and repair costs of 
different transformers. T1, T2, T3 and T4 represent 
transformers between bus6-bus10, bus6-bus9, bus27-bus28 
and bus4-bus12 respectively in the IEEE 30-bus system. The 
load curve over 52 weeks is shown in Fig.2, with a week as 
one time interval. 

TABLE I.  COSTS (104RMB) OF TRANSFORMERS 

 T1 T2 T3 T4 

M1 
Case1 0.8 1.0 1.0 1.0 

Case2 1.0 0.8 0.7 1.0 

M2 
Case1 6.5 6.4 6.0 6.5 
Case2 6.5 6.4 6.0 6.5 

Repair 
Case1 12 15 16 15.5 

Case2 12 17 16 9 

 

Fig.3 shows the optimal maintenance strategies with two 
different operating conditions of transformers over the whole 
time intervals. It dynamically provides optimal coordinated 
maintenance strategies according to the different conditions in 
each interval. 

 

Figure 2.  Load curve of one year 

 

Figure 3.  Strategies with different conditions over 52 time intervals 

When operating conditions of transformers are different in 
a certain time interval, there will be different strategies 
accordingly. For example, if T1, T2, T3 and T4 are in D2 in the 
33rd or 34th time interval, the optimal strategy should be a 
major maintenance (M2) on T2, shown in Fig.3 (a). If T1, T3, 
T4 are in D2 and T2 is in D1 in the 33rd or 34th time interval, 
the optimal strategy should be a minor maintenance (M1) on 
T1, shown in Fig.3 (b). 

Fig.3 (a) provides optimal strategies when T1, T2, T3 and 
T4 are in D2 over different time intervals and Fig.3 (b) 
provides optimal strategies when T1, T3 and T4 are in D2 and 
T2 is in D1 over different time intervals.  

 

Figure 4.  Optimal maintenance strategies for T1, T2, T3 and T4 in D2 

In the second case, some costs in the first case are 
changed. The optimal strategies when T1, T2, T3 and T4 are in 
D2 in different time intervals are shown in Fig.4. Compared 
with the case 1, more minor maintenance activities will be 
implemented on T2 because the M1 cost of T1 in the case 1 is 
higher and the M1 cost of T2 in the case 2 is lower. In the case 
2, the M1 cost of T3 is also lower compared with that in the 
case 1, but a minor maintenance on T3 will result in larger 
load losses compared with that on T2. Therefore, minor 
maintenance activities are mainly implemented on T2 rather 
than on T3. This paper assumes that the load losses with 
different faults are calculated by OPF with the objective of 
minimizing load losses. The repair cost of T2 increases from 



15 to 17, which may increase the successive cost caused by 
repair activities after faults on T2, therefore, more 
maintenance activities, compared with the case 1, are 
implemented on T2 in the case 2 to reduce potential repair 
costs in the future. 

Considering the unrepaired probabilities caused by 
external factors, the third case analyzes influences of external 
factors on maintenance strategies. TABLE II shows 
unrepaired probabilities. Fig.5 shows the strategies with and 
without considering the unrepaired probabilities respectively. 
Time intervals circled by dot ellipses are different strategies 
caused by unrepaired probabilities. The results show that 
higher unrepaired probabilities, especially in summer and 
winter with higher load demands, will have a relatively great 
influence on optimal maintenance strategies. 

TABLE II.  UNREPAIRED PROBABILITIES OVER ALL TIME INTERVALS 

Weeks 
1 

~3 
4 

~24 
25 

~32 
33 

~37 
38 

~41 
42 

~47 
48 

~52 

Unrepaired 
probability 

0.15 0.05 0.1 0.22 0.05 0.1 0.20 

 

 
Figure 5.  Optimal maintenance strategies for T1, T2, T3 and T4 in D2 

According to the above analysis, the proposed model is 
reasonable and it can provide operators with a series of 
dynamic coordinated maintenance strategies according to the 
different conditions of multiple transformers. 

V. CONCLUSIONS 

Based on accurate information about operating states of 
transformers provided by advanced sensors and monitoring 
units in intelligent substations, this paper proposes a dynamic 
model to provide maintenance strategies coordinately for 
multiple transformers. Firstly, an individual deterioration 
model and a multi-transformer deterioration model are built 
based on Markov processes. Secondly, an optimization model 
considering an expected cost-to-go, including load losses, 
maintenance costs and equivalent successive costs in the 
future is built. Unrepaired factors caused by bad weather 

conditions and unavailability of servicemen and auxiliary 
equipment are considered in the model to make maintenance 
strategies more realistic. A backward induction algorithm is 
employed to solve this model. A test system is employed to 
prove the proposed model corrective and the results show that 
optimal maintenance strategies can be adjusted according to 
the different operating conditions of multiple transformers. 
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