The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Generalized Gauge for Multi-scale Inhomogeneous Media
Author(s)	Chew, WC; Dai, Q; Sun, S; Liu, A; Ryu, CJ; Chen, S; Li, Y; Sha, W
Citation	The 35th Progress in Electromagnetics Research Symposium (PIERS), Guangzhou, China, 25-28 August 2014. In the Abstracts of the 35th Progress in Electromagnetics Research Symposium (PIERS), 2014, p. 1390
Issued Date	2014
URL	http://hdl.handle.net/10722/204098
Rights	Creative Commons: Attribution 3.0 Hong Kong License

Generalized Gauge for Multi-scale Inhomogeneous Media

W. C. Chew¹, Q. I. Dai¹, S. Sun², A. Y. Liu¹, C. J. Ryu¹, S. Chen¹, Y. L. Li², and W. E. I. Sha²

¹University of Illinois at Urbana-Champaign, USA ²The University of Hong Kong, Hong Kong SAR, China

Abstract— The vector potential **A** has no direct physical meaning in classical electromagnetics. However, it manifests itself in quantum physics in terms of the Aharonov-Bohm effect. The vector potential **A** is similar to momentum. By itself, it is hard to detect classically, but its time variation generates a force in terms of electric field. Hence, the **E** field is of the form

$$\mathbf{E} = -\partial_t \mathbf{A} - \nabla \Phi \tag{1}$$

where the electric field, which exerts a force on a charge, is generated by a time varying **A** and the gradient of the scalar potential Φ . The magnetic flux is given by $\mathbf{B} = \nabla \times \mathbf{A}$

By using Lorentz gauge

$$\nabla \cdot \mathbf{A} = -\mu \varepsilon \partial_t \Phi \tag{2}$$

Maxwell's equations in vacuum reduce to

$$\nabla^2 \Phi - \mu \varepsilon \partial_t^2 \Phi = -\rho/\varepsilon, \tag{3}$$

$$\nabla^2 \mathbf{A} - \mu \varepsilon \partial_t^2 \mathbf{A} = -\mu \mathbf{J} \tag{4}$$

For inhomogeneous medium, we pick the generalized gauge

$$\varepsilon^{-1} \nabla \cdot \varepsilon \mathbf{A} = -\mu \varepsilon \partial_t \Phi. \tag{5}$$

Then it can be shown that Maxwell's equations reduce to

$$\varepsilon^{-1}\nabla\cdot\varepsilon\nabla\Phi - \mu\varepsilon\partial_t^2\Phi = -\rho/\varepsilon,\tag{6}$$

$$-\mu\nabla \times \mu^{-1}\nabla \times \mathbf{A} - \mu\varepsilon\partial_t^2 \mathbf{A} + \mu\varepsilon\nabla\frac{1}{\mu\varepsilon}\varepsilon^{-1}\nabla\cdot\varepsilon\mathbf{A} = -\mu\mathbf{J}.$$
(7)

For homogeneous medium, (6) and (7) reduce to (3) and (4).

The above equations have no low-frequency breakdown when solved numerically irrespective of how small the meshes are. Moreover, since **A** and Φ are needed in writing the Hamiltonian of an atom-field system, it is particularly suited for solving Maxwell-Schrödinger system of equations.

The discretization of the above equations can be inspired by differential forms from differential geometry. The vector potential \mathbf{A} can be regarded as a one form which is curl-conforming. But the permittivity function can be regarded as a Hodge operator that converts a one form to a two form. Hence, $\varepsilon \mathbf{A}$ becomes a two form which has to be divergence conforming. The Hodge operator can also be implemented numerically.