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Abstract— The vector potential A has no direct physical meaning in classical electromagnetics.
However, it manifests itself in quantum physics in terms of the Aharonov-Bohm effect. The vector
potential A is similar to momentum. By itself, it is hard to detect classically, but its time variation
generates a force in terms of electric field. Hence, the E field is of the form

E=—0,A - V® (1)

where the electric field, which exerts a force on a charge, is generated by a time varying A and
the gradient of the scalar potential ®. The magnetic flux is given by B =V x A

By using Lorentz gauge

VA= —pcod (2)

Maxwell’s equations in vacuum reduce to
V20 — 10} ® = —ple, (3)
V2A — ped}A = —puJ (4)

For inhomogeneous medium, we pick the generalized gauge
eIV - eA = — e, ®. (5)
Then it can be shown that Maxwell’s equations reduce to
eIV - eV — ued?® = —p/e, (6)
—uV x IV x A — ped? A + uaVis_lv A = —pud. (7)

For homogeneous medium, (6) and (7) reduce to (3) and (4).

The above equations have no low-frequency breakdown when solved numerically irrespective of
how small the meshes are. Moreover, since A and ® are needed in writing the Hamiltonian of an
atom-field system, it is particularly suited for solving Maxwell-Schrodinger system of equations.

The discretization of the above equations can be inspired by differential forms from differential
geometry. The vector potential A can be regarded as a one form which is curl-conforming. But
the permittivity function can be regarded as a Hodge operator that converts a one form to a
two form. Hence, eA becomes a two form which has to be divergence conforming. The Hodge
operator can also be implemented numerically.



