The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Injection locking of spin-torque nano-oscillators
Author(s)	Cao, C; Zhou, Y; Jiang, L; Pong, PWT
Citation	The 2013 Asia-Pacific Data Storage Conference (APDSC'13), Hualien, Taiwan, 20-22 November 2013. In IEEE Transactions on Magnetics, 2014, v. 50 n. 7, paper 1401503
Issued Date	2014
URL	http://hdl.handle.net/10722/204019
Rights	IEEE Transactions on Magnetics. Copyright © Institute of Electrical and Electronics Engineers.

IEEE TRANSACTIONS ON MAGNETICS

A PUBLICATION OF THE IEEE MAGNETICS SOCIETY

JULY 2014	VOLUME 50	NUMBER 7	IEMGAQ	(ISSN 0018-9464)

PART I OF TWO PARTS

SELECTED PAPERS FROM THE ASIA-PACIFIC DATA STORAGE CONFERENCE 2013

Hualien, Taiwan, November 20–22, 2013

0301301	Chairmen's Preface
	DR. Huang, T. E. Schlesinger, and Y. Kawata
0301401	Proceedings of the Asia-Pacific Data Storage Conference (APDSC 2013) P. WT. Pong

0301503 APDSC'13 Committees

PAPERS

0900107	Magnetics in Smart Grid
	Q. Huang, Y. Song, X. Sun, L. Jiang, and P. W. T. Pong
1401503	Injection Locking of Spin-Torque Nano-Oscillators C. L. Cao, Y. Zhou, L. Jiang, and P. W. T. Pong
1401604	High-Frequency Vortex-Based Spin Transfer Nano-Oscillators P. S. Ku, Q. Shao, and A. Ruotolo
2005304	Evaluation of Electrical, Mechanical Properties, and Surface Roughness of DC Sputtering Nickel-Iron Thin Films
	CL. Tien, TW. Lin, KC. Yu, TY. Tsai, and HF. Shih
2102306	Gradient-Composition Sputtering: An Approach to Fabricate Magnetic Thin Films With Magnetic Anisotropy Increased With Temperature N. N. Phuoc and C. K. Ong
2503404	Influence of LaNiO ₃ Buffer Layer on the Magnetic Properties of Thin Perovskite Manganites YK. Chan, SM. Ng, WC. Wong, and CW. Leung
2800904	La-Co Pair Substituted Strontium Ferrite Films With Perpendicular Magnetization Y. Hui, W. Cheng, G. Lin, and X. Miao
3000603	Electrical Switching of Al-Doped Amorphous SiO_x Thin Films JS. Huang, YC. Shih, LM. Chen, TY. Lin, SC. Chang, and TS. Chin
3000704	Resistive Switching Behavior of Al/Al₂ Structural Device for Flexible Nonvolatile Memory Application CC. Lin, CT. Su, CL. Chang, and HY. Wu

3000804	Investigating the Uneven Current Injection in Perovskite-Based Thin Film Bipolar Resistance Switching Devices by Thermal Imaging Z. Luo, H. K. Lau, P. K. L. Chan, and C. W. Leung
3000904	Resistive Switching in Perovskite-Oxide Capacitor-Type Devices Z. Luo, H. K. Lau, P. K. L. Chan, and C. W. Leung
3201704	Effect of Underlayer Structures on Microstructures and Magnetic Properties of Co-Rich Co-Pt Films Prepared at Ambient Temperature SC. Chen, TH. Sun, CH. Wang, JY. Chiou, ST. Chen, PC. Kuo, and JR. Chen
3201804	Fabrication of <i>L</i> ¹ Phase CoPt Film on Glass Substrate With [Co/Pt] Multilayer Structure CF. Huang, AC. Sun, HY. Wu, FT. Yuan, JH. Hsu, SN. Hsiao, HY. Lee, HC. Lu, SF. Wang, and P. Sharma
3201904	Perpendicular Magnetic Anisotropy in MgO/CoFeB/Nb and a Comparison of the Cap Layer Effect DS. Lee, HT. Chang, CW. Cheng, and G. Chern
3202004	Stabilized Perpendicular Magnetic Anisotropy L1₁ CoPtCu Thin Film at Room Temperature AC. Sun, CF. Huang, L. J. Li, SF. Chen, and YS. Chen
3400404	A Novel Device Geometry for Vortex Random Access Memories Q. Shao, P. S. Ku, and A. Ruotolo
3500104	Numerical Simulation of In-Line Gratings for Differential Push–Pull Signals Using the Scalar Diffraction Method LK. Cheng, HF. Shih, Y. Chiu, JS. Chen, S. Yang, and S. Tsai
3500204	Investigation of the Microstructure, Porosity, Adhesion, and Optical Properties of a WO ₃ Film Fabricated Using an E-Beam System With Ion Beam-Assisted Deposition PK. Chiu, D. Chiang, CT. Lee, Chien-Nan, Hsiao, JR. Yang, WH. Cho, HP. Chen, and C. L. Huang
3500305	3-D Holographic Data Storage Circuit Design YC. Fan, CC. Lu, DW. Syu, SH. Chen, and YT. Shie
3500404	Luminance and Color Correction of Multiview Image Compression for 3-DTV System YC. Fan, JL. You, JH. Shen, and CH. Wang
3500504	Performance Analysis for Multiview Auto-Stereoscopic Floating Images YL. Chen, CY. Chen, YH. Chou, YH. Chen, TR. Jeng, and DR. Huang
3500607	3-D Image and Storage Applications DR. Huang, TR. Jeng, FJ. Hsiao, CC. Hong, YL. Chen, and CY. Chen
3500704	New Disc Format for Biosensing by Using Optical Pick-Up Head System DR. Huang, JJ. Ju, YC. Lee, JS. Chen, FH. Lo, and SL. Chang
3500804	Selective Interpolation Method for Two-Step Parallel Phase-Shifting Digital Holography S. Jeon, DH. Kim, NC. Park, YP. Park, and KS. Park
3500904	An Efficient Rasterization Unit With Ladder Start Tile Traversal in 3-D Graphics Systems YK. Lai and YC. Chung
3501004	A Cloud-Storage RFID Location Tracking System YL. Lai and J. Cheng
3501105	Characteristics of System in a Package of Synchronous Dynamic Random Access Memory for High-Speed Data Storage Applications YL. Lai and WJ. Chiang
3501204	WO ₃ Electrochromic Thin Films Doped With Carbon CT. Lee, D. Chiang, PK. Chiu, CM. Chang, CC. Jaing, SL. Ou, and KS. Kao
3501304	A Compact and Low-Cost Optical Pickup Head-Based Optical Microscope YC. Lee and S. Chao
3501404	2-D Non-Isolated Pixel 6/8 Modulation Code B. Kim and J. Lee

3501503	Liquid Crystal Compensator Using Dual-Layer Electrodes for the Optical Pickup Head Application XH. Liu, HF. Shih, KY. Hung, and CL. Tien
3501604	Recording Characteristics and Crystallization Behavior of InGeSbSnTe Phase Change Thin Films S. L. Ou, K. S. Kao, C. T. Lee, T. S. Ko, H. F. Chang, and H. H. Yeh
3501704	NiGe Thin Films for Write-Once Blue Laser Media SL. Ou, SC. Chen, YC. Lin, CS. Wang, and TY. Kuo
3501804	Worst Case Performance Assessment of DC-Free Guided Scrambling Coding by Integer Programming Model T. Park and J. Lee
3501904	Analysis of Behavior of Focusing Error Signals in Astigmatic Method in the Scheme of Land–Groove Recording M. Shinoda, K. Nakai, and M. Ohmaki
4400204	Magnetoresistance of Manganite-Cobalt Ferrite Spacerless Junctions H. F. Wong, K. Wang, C. W. Leung, and K. H. Wong
6200505	Broadband Point Measurement of Transient Magnetic Interference in Substations With Magnetoresistive Sensors Q. Huang, X. Wang, W. Zhen, and P. W. T. Pong
6200605	Underground Power Cable Detection and Inspection Technology Based on Magnetic Field Sensing at Ground Surface Level X. Sun, W. K. Lee, Y. Hou, and P. W. T. Pong
6400107	The Role of Neutron Scattering in Magnetic Storage Materials Research S. J. Callori, and F. Klose
8600105	Predictable Power Saving Memory Controller Circuit Design for Embedded Static Random Access Memory YC. Fan, CK. Lin, SY. Chou, HK. Liu, SH. Wu, and CH. Wang

9900602 CONFERENCE AUTHOR INDEX

Chong Long Cao¹, Yan Zhou², Lijun Jiang¹, and Philip W. T. Pong¹

¹Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong ²Department of Physics, The University of Hong Kong, Hong Kong

We demonstrated the phase locking of a spin-torque oscillator (STO) to an alternating current (ac) using macrospin and micromagnetic simulations. We found that the locking properties of both approaches agree with each other. The phase difference between the STO and the injected ac stabilizes at $\Delta \phi \approx 90^{\circ}$ and is not sensitive to the initial phase difference, which provides potential application of STO for microwave generation.

Index Terms-Injection locking, microwave generator, spin-transfer torque.

I. INTRODUCTION

THE INVESTIGATIONS of current-induced magnetization excitation in magnetic nanopillars have received tremendous interest since the spin-transfer phenomenon was first predicted in the theoretical studies of Berger [2] and Slonczewski [3] in the late 1990s. It has been shown that a spin-polarized direct current (dc) through a free ferromagnetic layer can exert a torque on the magnetic moment of the free layer and flip its magnetization when the spin current exceeds a certain critical value [1]–[3]. Krivorotov *et al.* [4] have experimentally demonstrated that a spin-polarized dc can cause transition to steady precessional modes with typical frequencies at gigahertz under external applied field, leading to the so-called spin-torque oscillator (STO).

Although STO is a possible solution to replace the current microwave generator because it does not need LC tanks, the dependency on the external field and the weak output power (typically below 1 nW) need to be solved to achieve compatibility with the existing microwave circuits. Some attempts have been made on STO to achieve zero external field operation. Houssameddine et al. [5] used an STO with a perpendicularly polarized Co/Pt multilayer (perpendicular STO) as the fixed layer and it was shown to generate microwave oscillations at zero applied field. Boulle et al. [6] experimentally achieved zero field microwave generation of STO by employing wavy angular dependence of the torque. To enhance the output power, the most investigated route is to phase lock a phasecoherent STO array. Kaka et al. [7] and Mancoff et al. [8] first demonstrated synchronized oscillation at nanoscale independently: the phase locking of two STOs in close proximity through the spin-wave interaction. Grollier et al. [9] have theoretically studied the synchronization of many oscillators in an electrically connected network. In this configuration, synchronization relies on phase locking between the STOs and their self-generated alternating current (ac) [10]-[12]. Ruotolo et al. [13] also reported the interaction of magnetic vortices through the mediation of antivortices, leading to synchronization when they are closely spaced. More recently,

Manuscript received October 21, 2013; revised December 12, 2013; accepted December 13, 2013. Date of current version July 7, 2014. Corresponding author: P. W. T. Pong (e-mail: ppong@eee.hku.hk).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2013.2295411

(a) Free layer Spacer Fixed layer H_{app} Fig. 1. (a) Sketch of the single STO consisting of a nonmagnetic spacer layer

Fig. 1. (a) Sketch of the single STO consisting of a nonmagnetic spacer layer sandwiched between a fixed ferromagnetic layer and a free ferromagnetic layer, and the corresponding coordinate system employed in this paper. x-y plane is the easy plane, with x-axis being the easy axis in the film plane. The free layer magnetization **m** makes an angle θ with the z-axis. The current I is defined as positive when the negative electrons flow from the fixed layer to the free layer. (b) Schematic view of STO coupled to a dc and an ac.

Petit-Watelot *et al.* [14] reported that a vortex can achieve self-phase locking of its internal gyrotropic mode and the relaxation mode.

In this paper, we have studied the locking behavior of STO using macrospin and micromagnetic approach, respectively. This paper is organized as follows. In Section II, we describe the general approach of Landau–Liftshitz–Gilbert–Slonczewski (LLGS) modeling and the simulated electronic circuit. In Section III, we present the results of the macrospin simulation and then the micromagnetic simulation. The overall summary of these analytical and simulation results are presented in Section IV and we point out that the results provide not only a useful perspective of understanding the STO phase-locking mechanism from the fundamental physics point of view, but also guidelines for optimizing the device performance in realistic applications.

II. MODELING OF INJECTION LOCKING

As shown in Fig. 1(a), the STO is a typical trilayer system consisting of a thick magnetically fixed layer, nonmagnetic spacer layer, and a thin free (sensing) layer. The injection locking circuit is shown in Fig. 1(b). The time evolution of the free-layer magnetization \hat{m} is found from a numerical solution

0018-9464 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

of the LLGS equation [1], [2]

$$\frac{d\hat{m}}{dt} = -|\gamma|\hat{m} \times \mathbf{H}_{\text{eff}} + \alpha \hat{m} \times \frac{d\hat{m}}{dt} \\
+|\gamma| \frac{\eta(I_{\text{dc}} + I_{\text{ac}})}{2\mu_0 M_S e V_f} \hat{m} \times (\hat{m} \times \hat{M})$$
(1)

where \hat{m} is the unit vector along the magnetization of the free layer, \hat{M} is the unit vector along the magnetization of the fixed layer, γ is the gyromagnetic ratio, α is the damping coefficient, μ_0 is the magnetic vacuum permeability, η is the spin-transfer efficiency, M_S is the free layer saturation magnetization, and V_f is the volume of the free layer. $\mathbf{H}_{\text{eff}} = H_{\text{app}} \hat{e}_x + H_k (\hat{m} \cdot \hat{e}_x) \hat{e}_x - H_d (\hat{m} \cdot \hat{e}_z) \hat{e}_z$ is the effective magnetic field acting on the free layer, which includes the applied in-plane (IP) magnetic field H_{app} , the uniaxial magnetic anisotropy field H_k , and the out-of-plane (OOP) demagnetization field H_d . \hat{e}_x and \hat{e}_z are the unit vectors along x (IP easy axis) and z (OOP), respectively. For the dependence of the resistance R of the STO on the angle between the magnetization of fixed and free layer at time t, we assume the following standard equation:

$$R(t) = \left\{ \frac{R_P + R_{\rm AP}}{2} - \frac{R_{\rm AP} - R_P}{2} \cos(\psi(t)) \right\}$$
(2)

where R_P and R_{AP} are the parallel and antiparallel resistances separately. $\psi(t)$ is the angle between the magnetization of the fixed layer and the free layer.

We consider an STO coupled to a dc I_{dc} and an ac I_{ac} [Fig. 1(b)]. To study the shape deviation of small STO samples due to the lithography limitations in realistic fabrication process, we assume a standard deviation in the STO shape anisotropy fields. As shown in Fig. 1(b), the total current flowing through the STO is the summation of the dc and ac, $I_{STO} = I_{dc} + I_{ac}$. I_{dc} drives the STO into dynamic precession, while I_{ac} modulates the oscillation leading to the phase locking.

III. SIMULATION RESULT

In a typical IP Co/Cu/Co nanopillars, the fixed layer magnetization $\mathbf{M} = (\mathbf{M}, \mathbf{0}, \mathbf{0})$ lies along the easy axis (*x*-axis) in the easy plane (*x*-*y* plane). The following parameters are adopted in our simulation [9], [15]–[17]: $\alpha = 0.007$, $\gamma = 1.85 \times 10^{11}$ Hz/T, $M_S = 1.27 \times 10^8$ A/m, $\eta = 0.35$, $H_{\rm app} = 0.2$ T, $H_d = 1.6$ T, $R_P = 10 \Omega$, and $R_{AP} = 11 \Omega$. The anisotropy field of the free layer of STO H_k is kept at 0.05 T.

Fig. 2 shows the macrospin simulation results. In Fig. 2(a), we show the precession frequency versus the driving dc. When the driving dc I_{dc} exceeds a critical value, \hat{m} starts its precession in a clam-shell mode, which is also called IP mode, and the precession frequency $f(I_{dc})$ decreases with I_{dc} (red shift). The STO switches from IP mode to OOP oscillation when I_{dc} continues increasing, and $f(I_{dc})$ increases with I_{dc} (blue shift). The magnetization precesses following the orbits in the inset of Fig. 2(a). The energy of the system conserves after each precession period because of the closed orbit [18], [19]. The preferred phase shift $\Delta \phi$ is shown in Fig. 2(b). In the inset, we plot a single simulation run when

Fig. 2. (a) Typical IP STO precession frequency versus drive current. The insets show the precessional trajectory of the STO for different oscillation modes: IP and OOP. (b) Relative phase shift $\Delta\phi$ between the ac and the STO versus dc drive. Inset: a typical simulation run, which illustrates how the STO locks to its injection ac. (c) Absolute value of preferred phase shift $|\Delta\phi|$ versus dc for different anisotropy field H_k . (d) Demagnetization field H_d tunability of the preferred phase shift $|\Delta\phi|$.

Fig. 3. Micromagnetic simulation of injection locking. The dc density is $J_{dc} = 10^{12} \text{ A/m}^2$, the dimension of the STO is $20 \times 20 \times 2 \text{ nm}^3$, the initial phase difference between ac and STO is $\Delta \phi_0 \approx 0^\circ$. The top layer is the overall simulation, the middle layer is the transient detail at steady state, and the bottom layer is the transient detail when ac is applied.

 $f_{\text{STO}} = 27.7 \text{ GHz}$, $I_{\text{dc}} = 11.4 \text{ mA}$, and $I_{\text{ac}} = 22.8 \ \mu\text{A}$. The upper left figure shows the STO resistance and I_{ac} versus time on the onset of application of ac with an initial phase difference $\Delta \phi_0 = -45^\circ$, and the upper right figure shows the preferred intrinsic phase difference of $\Delta \phi = -86^\circ$ at the steady state. The dc dependence of the preferred phase difference $\Delta \phi$ can be further fine tuned by varying the anisotropy field [Fig. 2(c)] and demagnetization field [Fig. 2(d)] of the sample. The preferred phase difference at around 90° can be explained by the orbit energy conservation over one period in steady states when considering the ac, which has been discussed in [18].

To compare with our macrospin results and have a better understanding on the preferred phase difference in the framework of the micromagnetism, we perform the micromagnetic simulations for the injection locking using the OOMMF micromagnetic package [20] and the spin-transfertorque extension module [21]. Due to the calculation capacity,

Fig. 4. Micromagnetic simulation of injection locking. The dc density is $J_{dc} = 10^{12} \text{ A/m}^2$, the dimension of the STO is $20 \times 20 \times 2 \text{ nm}^3$, and the initial phase difference between ac and STO is $\Delta\phi_0 \approx 180^\circ$. The top layer is the overall simulation, the middle layer is the transient detail at steady state, and the bottom layer is the transient detail when ac is applied.

we chose a relatively small dimension of the STO for simulation. As shown in Figs. 3 and 4, the initial phase difference between the injected ac and the STO is 0° and 180°, respectively. We can see that the phase difference finally stabilizes at $\Delta \phi \approx 90^\circ$, regardless of the initial phase difference, which agrees with the macrospin simulations.

IV. CONCLUSION

In summary, we have studied the phase-locking characteristics of a free-running STO under an external ac employing both macrospin and micromagnetic simulation. We observe a phase shift of about 90° in both approaches, in line with the predictions from our analytical analysis. The phase difference at steady state is not sensitive to the initial phase difference between the STO and the ac. This property provides useful information for achieving synchronization of multiple STOs.

ACKNOWLEDGMENT

This work was supported in part by the Seed Funding Program for Basic Research and Small Project Funding Program from the University of Hong Kong, in part by ITF Tier 3 funding under Grant ITS/112/12, in part by RGC-GRF under Grant HKU 704911P, and in part by the University Grants Committee of Hong Kong under Contract AoE/P-04/08.

REFERENCES

- J. C. Slonczewski, "Current-driven excitation of magnetic multilayers," J. Magn. Magn. Mater., vol. 159, nos. 1–2, pp. L1–L7, Jun. 1996.
- [2] L. Berger, "Emission of spin waves by a magnetic multilayer traversed by a current," *Phys. Rev. B*, vol. 54, no. 13, pp. 9353–9358, Oct. 1996.

- [3] J. C. Slonczewski, "Excitation of spin waves by an electric current," J. Magn. Magn. Mater., vol. 159, no. 2, pp. L261–L268, May 1999.
- [4] I. N. Krivorotov, N. C. Emley, J. C. Sankey, S. I. Kiselev, D. C. Ralph, and R. A. Buhrman, "Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques," *Science*, vol. 307, no. 5707, pp. 228–231, Jan. 2005.
- [5] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, *et al.*, "Spin-torque oscillator using a perpendicular polarizer and a planar free layer," *Nature Mater.*, vol. 6, no. 6, pp. 447–453, Jun. 2007.
- [6] O. Boulle, V. Cros, J. Grollier, L. G. Pereira, C. Deranlot, F. Petroff, et al., "Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field," *Nature Phys.*, vol. 3, no. 7, pp. 492–497, Jul. 2007.
- [7] S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A. Katine, "Mutual phase-locking of microwave spin torque nanooscillators," *Nature*, vol. 437, no. 7057, pp. 389–392, Sep. 2005.
- [8] F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, "Phaselocking in double-point-contact spin-transfer devices," *Nature*, vol. 437, no. 7057, pp. 393–395, 2005.
- [9] J. Grollier, V. Cros, and A. Fert, "Synchronization of spin-transfer oscillators driven by stimulated microwave currents," *Phys. Rev. B*, vol. 73, no. 6, pp. 060409-1–060409-4, 2006.
- [10] W. H. Rippard, M. R. Pufall, S. Kaka, T. J. Silva, S. E. Russek, and J. A. Katine, "Injection locking and phase control of spin transfer nanooscillators," *Phys. Rev. Lett.*, vol. 95, no. 6, p. 067203, 2005.
- [11] L. Dong, Y. Zhou, Z. Chang-Song, and H. Bam-Bi, "Fractional locking of spin-torque oscillator by injected ac current," *Phys. Rev. B*, vol. 83, no. 17, pp. 174424-1–174424-8, 2011.
- [12] Y. Zhou, V. Tiberkevich, G. Consolo, E. Iacocca1, B. Azzerboni, A. Slavin, *et al.*, "Oscillatory transient regime in the forced dynamics of a nonlinear auto-oscillator," *Phys. Rev. B*, vol. 82, no. 1, pp. 012408-1–012408-4, 2010.
- [13] A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, et al., "Phase-locking of magnetic vortices mediated by antivortices," *Nature Nanotechnol.*, vol. 4, no. 8, pp. 528–532, Aug. 2009.
- [14] S. Petit-Watelot, J.-V. Kim, A. Ruotolo, R. M. Otxoa, K. Bouzehouane, J. Grollier, *et al.*, "Commensurability and chaos in magnetic vortex oscillations," *Nature Phys.*, vol. 8, no. 9, pp. 682–687, Sep. 2012.
- [15] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, *et al.*, "Microwave oscillations of a nanomagnet driven by a spin-polarized current," *Nature*, vol. 425, no. 6956, pp. 380–383, 2003.
- [16] J. Xiao, A. Zangwill, and M. D. Stiles, "Macrospin models of spin transfer dynamics," *Phys. Rev. B*, vol. 72, no. 1, pp. 014446-1–014446-13, 2005.
- [17] H. Xi, Z. Lin, and A. M. Wilomowski, "Understanding the currentinduced magnetization dynamics in the presence of large magnetic fields," *J. Magn. Magn. Mater.*, vol. 296, no. 1, pp. 32–36, Jan. 2006.
- [18] Y. Zhou, J. Persson, S. Bonetti, and J. Ä. Kerman, "Tunable intrinsic phase of a spin torque oscillator," *Appl. Phys. Lett.*, vol. 92, no. 9, pp. 092505-1–092505-3, Mar. 2008.
- [19] Y. Zhou, J. Persson, and J. Ä. Kerman, "Intrinsic phase shift between a spin torque oscillator and an alternating current," *J. Appl. Phys.*, vol. 101, no. 9, pp. 09A510-1–09A510-3, May 2007.
- [20] M. Donahue and D. Porter. (2013, Sep. 10). The Object Oriented MicroMagnetic Framework (OOMMF) Project at ITL/NIST [Online]. Available: http://math.nist.gov/oommf/
- [21] C.-Y. You. (2013, Sep. 10). Spin Transfer Torque (STT) Extension Module for OOMMF(Object Oriented MicroMagnetic Framework) [Online]. Available:http://spintronics.inha.ac.kr/STT-OOMMF.html