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A vanadium-MH rechargeable semi-flow battery hybridizing the 

V
4+

/V
5+

 redox couple (positive) with the metal hydride (negative) 

was investigated to increase the cell voltage greatly and eliminate 

the problems of V
2+

 oxidation. The experimental open circuit 

voltage of 1.86 V and operating voltage of 1.65 V for this hybrid 

battery were obtained, very high values among all rechargeable 

flow batteries. The system demonstrated superior stability, 

reversibility, and efficiencies in coulomb (97%), energy (81.3%), 

and voltage (83.8%). 

 

 

Introduction 

 

Flow batteries [1-4] are actively studied for storing electricity, particularly intermittently 

generated from solar, wind, and other renewable sources [5]. The all-vanadium redox 

flow (VRF) battery [6, 7] is one of the most promising flow batteries, but still requiring 

improvements and development [8].  

 

      Theoretical specific energy of VRF battery is 60.5 Wh/kg. The VRF battery (as 

shown in Scheme 1) is acidic and has a positive V
4+

/V
5+

 electrolyte at a standard potential 

of 1.0 V coupled with a negative electrolyte V
2+

/V
3+

 at -0.26 V, giving a theoretical cell 

voltage of 1.26 V. 
 

Positive: VO2
+ +2H+ + e- 

Discharge

Charge

 VO2+ + H2O     (   1.00 V) 

Negative: V2+ 
Discharge

Charge

 V3+ + e-                              (   -0.26 V) 

Overall reaction: VO2+ + H2O + V3+  
Discharge

Charge

 VO2
+ +2H+ + V2+    (   1.26 V) 

Scheme 1. Electrochemistry of VRF. 

 

Serious attempts were made to improve vanadium flow battery technology by 

alternative pairing of negative and positive electrode/electrolyte reactions  into a hybrid 

cell [9-14]. Skyllas-Kazacos et al. [9] reported a hybrid Vanadium-O2 redox fuel cell, 

thus eliminating the mass of the positive side as oxygen can be freely stored in air. The 

reported specific energy is > 40 Wh/kg, about 1.6 times the practical specific energy of 

conventional VRF battery, whereas the reported open circuit voltage (OCV) was kept in 
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the range of 1.10 to 1.24 V. But the oxygen reaction is highly irreversible and the absence 

of a good bi-functional electrocatalyst leads to low voltage efficiency. A vanadium 

chloride/polyhalide redox flow battery proposed by the same group [14] increased the 

specific energy significantly as a consequence of higher vanadium concentration can be 

used in the presence of mixed electrolyte, and with an experimental OCV of 1.3 V. 

Crossover of ions through the membrane was reduced during operation. Both attempts 

give similar OCV to that of the conventional VRF battery.  

 

With the concept of pH differential between an alkaline negative electrode and acidic 

positive electrode, higher cell voltages have been demonstrated for H2-O2 fuel cells [15-

17] and PbO2/PbSO4-MHx/MHx-1 rechargeable batteries [17-20]. A bipolar membrane 

was used to provide the ionic contact as well as barrier in the pH differential cells [16, 17, 

19, 20]. The lead acid/MH system reported a stable operating voltage with repeated 

charge/discharge cycles at 2.6 V (30% and 86% increase from individual lead-acid and 

NiMH batteries). The higher voltage and increased capacity is a result of the extra energy 

store/released in acid-alkaline neutralization corresponding to    =-79.85 kJ/mol [17, 

18].   

 

It is conceptually attractive to increase the voltage of vanadium flow battery with 

introduction of a pH differential by coupling the positive V
4+

/V
5+

 with a negative alkaline 

electrode/electrolyte. Moreover, the problem of V
2+

 oxidation can be eliminated.  In this 

paper, we combine the advantages of the vanadium redox flow battery and the 

acid/alkaline hybrid battery, and demonstrate a novel semi-flow vanadium-metal hydride 

(V-MH) hybrid rechargeable battery. Additional neutralization energy can be stored in 

the electrolyte and liquid flow minimizes fouling and enhances the function of the ionic 

interfaces. In principle, this hybrid battery system of V
4+

/V
5+

 and metal hydride can 

deliver an overall cell capacity of 111 mAh/g, cell voltage of 1.8 V, and specific energy 

of 200 Wh/kg, much higher than that of conventional VRF battery. This paper reports the 

electrochemical properties of the new hybrid flow battery, cell voltage, electrode 

overpotentials, and voltage across membrane are monitored during idle, charge and 

discharge. The electrochemistry of this V-MH flow battery is shown in Scheme 2. 

 

Positive: VO2
+ + 2H+ + e-

 

Discharge

Charge

 VO2+ + H2O     (   1.00 V) 

Negative: MHx + OH- 
Discharge

Charge


 
MHx-1 + H2O + e-  (   -0.80 V) 

Overall reaction: VO2+ + 2H2O + MHx-1 
Discharge

Charge

  VO2
+ + 2H+ + MHx + OH-     (   1.80 V) 

Scheme 2. Electrochemistry of V-MH. 

       



 

 
Fig. 1. Schematic drawing of the V-MH hybrid system with positive electrolyte flow. V1: 

Potential difference between GF electrode and MHx/MHx-1 electrode or overall cell 

potential. V1=positive - negative; V2: Potential across bipolar membrane or potential 

difference between reference electrodes Hg/Hg2SO4 and Hg/HgO. V2= Hg/Hg2SO4 - 

Hg/HgO (Here the reference electrode Hg/HgO in alkaline solution is arbitrarily defined as 

reference electrode as it is immersed into the negative chamber); V3: Potential difference 

between graphite felt (GF) electrode (positive electrode) and reference electrode 

(Hg/Hg2SO4). V3= positive - Hg/Hg2SO4; V4: Potential difference between MHx/MHx-1 

electrode (negative electrode) and reference electrode (Hg/HgO). V4= negative - Hg/HgO. 

 

 

Experimental and Results 

 

Electrode preparation 

 

Commercial graphite felt (Shenhe Carbon Fiber Materials Co. Ltd., Liaoning, China) 

was used as positive electrode and had an active surface area of around 9 cm
2
 with a 

thickness of 5 mm, these graphite felt were pre-treated before use. The pre-treatment as 

follows: the graphite felt (GF) was soaked in 95% (wt%) H2SO4 at 50 
o
C for 2 h. Rinsed 

it with DI water until the effluent pH is near neutral and then heat treated at 60 
o
C for 2 h 

to improve its electrochemical activity and hydrophilicity. The negative MHx electrode 

was prepared by 1 g of LaNi5 based metal-hydride alloy powder extracted from a 

commercial GP-2700 AA battery. The LaNi5 based powder was mixed with 50 mg XC-



 

72 vulcan carbon (4.5 wt%), pasted and pressed on nickel foam. The active area of MHx 

electrode was around 9 cm
2
. 

 

The initial 0.064 mol/L positive VOSO4 electrolyte was prepared from dissolving 

0.274 g VOSO4 nH2O (Dieckmann Chemical Industrial Co. Ltd., Hong Kong, n=2.85 

according to thermogravimetric analysis) in 20 mL 2 mol/L H2SO4 solution, respectively. 

 

Vanadium-MH flow battery design 

 

The hybrid battery had two compartments (See Fig. 1). The acid chamber contained a 

graphite felt positive electrode immersed in 0.064 mol/L positive VOSO4 electrolyte in 2 

mol/L H2SO4 solution, while the alkaline chamber contained a MHx negative plate 

inserted in 20 mL 2 mol/L KOH aqueous solution. The two chambers were separated by a 

bipolar membrane (Membrane International Inc., USA). The active area of the bipolar 

membrane is 20 cm
2
 with a dimension of 40 mm (L) x 50 mm (H). The membrane was 

preconditioned by immersing into 5 wt% NaCl solution over night before use. The 

volume of each acid and alkaline electrolyte was about 20 mL in a chamber of 

dimensions 46 mm (L) ×68 mm (H) × 10 mm (W). The flow rate was fixed at 10 mL/min 

for the VOSO4 electrolyte in the positive chamber of Vanadium-MH system. 

      

Electrochemical tests and cell performance  

 

All electrochemical performance tests were carried out at room temperature. 

Galvanostatic charge and discharge measurements were carried out with Voltalab 

PGZ301. Hg/HgSO4 (filling solution: 2 mol/L H2SO4) and Hg/HgO (filling solution: 2 

mol/L KOH) are employed as reference electrodes in the acid and alkaline chambers of 

the Vanadium-MH system, respectively. The positive electrolyte was circulated in the 

positive chamber through Phar-Med NSF-51 tube by using Watson-Marlow Bredel’s 323 

peristaltic pump at 10 mL/min. The hybrid system was left idle for 1 hour, and then 

charge and discharge at constant current of 9 mA (1 mA/cm
2
) in all runs. The cut-off 

voltage is 2.0 V - 1.6 V. During idle and operation, the overall cell potential (V1), the 

potential across the membrane (V2), and the electrode potential versus corresponding 

reference electrode: Hg/HgSO4 (V3) and Hg/HgO (V4) were recorded by National 

Instrument PCI-6221 Data Acquisition (as shown in Fig. 1).  

 

Performance of individual components of the V-MH cell can be evaluated from the 

four voltage profiles V1-V4, as shown in Fig. 2 for 5 charge and discharge cycles. For the 

overall cell voltage, V1, the charge and discharge plateaus are stable throughout the 5 

cycles at c.a. 1.86 V, and 1.65 V, respectively. 

 

As shown in Fig. 2, the shape of the charge/discharge curves (V1) resembles that of 

the positive electrodes (V3), whilst the voltage loss between charge and discharge of the 

MH negative electrode (V4) remains small. The present setup of V-MH is therefore 

limited by the positive side. Throughout the cycles, the voltage loss across the membrane 



 

(V2) remains stable at 0.4 to 0.6 V, indicating a steady and reversible process of ionic 

transport.  

 

Fig. 2. 5 charge and discharge cycles (1
st
-5

th
) of V-MH battery. V1: Potential difference 

between GF electrode and MHx/MHx-1 electrode or overall cell potential. V1=positive - 

negative; V2: Potential across bipolar membrane or potential difference between reference 

electrodes Hg/Hg2SO4 and Hg/HgO. V2= Hg/Hg2SO4 - Hg/HgO (Here the reference 

electrode Hg/HgO in alkaline solution is arbitrarily defined as reference electrode as it is 

immersed into the negative chamber); V3: Potential difference between graphite felt (GF) 

electrode (positive electrode) and reference electrode (Hg/Hg2SO4). V3= positive - 

Hg/Hg2SO4; V4: Potential difference between MHx/MHx-1 electrode (negative electrode) 

and reference electrode (Hg/HgO). V4= negative - Hg/HgO. 

 

Efficiencies of the V-MH battery are analysed from the voltage profiles. In the first 

cycle, the overall cell voltage V1 takes around 29.4 minutes to reach 2.00 V. Then it 

discharges with a plateau of 1.65 V for c.a. 29 minutes until the 1.6V cut-off, with a 

charge efficiency of 98.6%. In the 5th cycle, the charge efficiency maintained with an 

operating voltage ~1.65 V. As shown in the matching V1 and V3 curves, which indicates 

the positive side mainly determines the overall cell performance in this case.  

 

      Voltage efficiency, defined as (averaged discharge voltage)/(averaged charge voltage), 

is 83.8% at the end of the 5th cycle. Corresponding energy efficiency is 81.3%. These 



 

values are much higher than those of the VRF battery, as shown in Table 1. One 

disadvantage of VRF battery over other conventional batteries is its low specific energy. 

With this semi-flow V-MH battery, the theoretical specific energy can be increased up to 

200 Wh/kg, 3.5 times that of VRF battery. In addition to a higher discharge voltage, the 

efficiency in voltage, coulombic, and energy for V-MH battery improved. Specifically, 

the voltage efficiency is 83.8% compared to 62-73% for VRF, while the charge 

efficiency was maintained at 97%. Higher energy efficiency 81.3% was obtained for V-

MH battery, compared to 66-75% for VRF, representing an increase of >8%. 

 
Table 1. Comparison of V-MH and VRF batteries in terms of average voltage, coulomb, and energy efficiencies. 

Battery type 
Nominal 

voltage, V 

Voltage 

efficiency
b
, % 

Coulombic 

efficiency
c
, % 

Energy 

efficiency
d
, % 

V-MH 1.65 83.8 97 81.3 

VRF[8] 1.25 62-73 80-98 66-75 

b Voltage efficiency:  ηV = Vdischarge /Vcharge 
c Coulomb/charge efficiency:  ηc = Qdischarge / Qcharge = (Itdischarge)/(Itcharge) 
d Energy efficiency: ηP =Edischarge/Echarge = (VdischargeItdischarge)/(VchargeItcharge) 

 

Improvement over the preliminary results of the lab-scale V-MH system are expected 

with optimization in electrolyte flow rates, concentrations, electrodes material, membrane 

thickness, or other cell and operation parameters. The power and specific energy of the 

V-MH hybrid battery can be further increased with scale-up. Depends on the application, 

the hybrid system can provide further specific improvement over existing options of VRF, 

lead acid, or MH systems.  

 

Conclusions  

 

A novel semi-flow Vanadium-Metal Hydride (V-MH) system (200 Wh kg
-1

) with 3.5 

times higher theoretical specific energy than that of the conventional all vanadium redox 

flow battery (60.5 Wh kg
-1

) was reported. Hybridizing the V
4+

/V
5+

 couple with metal 

hydride eliminates the problem of V
2+

 oxidation as in VRF battery. The average voltage 

of the Vanadium-MH battery system during discharge is around 1.65 V, which is higher 

than that of individual all vanadium redox flow battery (1.2 – 1.4 V) and NiMHx battery 

(1.25 – 1.35 V). The Vanadium-MH battery system has good reversibility and efficiency 

in voltage (83.8%), coulombic (97%) and energy (81.3%), which is critical for its 

potential application.  
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Figure Captions 

 

 

Fig. 1. Schematic drawing of the V-MH hybrid system with positive electrolyte flow. V1: 

Potential difference between GF electrode and MHx/MHx-1 electrode or overall cell 

potential. V1=positive - negative; V2: Potential across bipolar membrane or potential 

difference between reference electrodes Hg/Hg2SO4 and Hg/HgO. V2= Hg/Hg2SO4 - 

Hg/HgO (Here the reference electrode Hg/HgO in alkaline solution is arbitrarily defined 

as reference electrode as it is immersed into the negative chamber); V3: Potential 

difference between graphite felt (GF) electrode (positive electrode) and reference 

electrode (Hg/Hg2SO4). V3= positive - Hg/Hg2SO4; V4: Potential difference between 

MHx/MHx-1 electrode (negative electrode) and reference electrode (Hg/HgO). V4= 

negative - Hg/HgO. 

 

 

 

Fig. 2. 5 charge and discharge cycles (1
st
-10

th
) of V-MH battery. V1: Potential difference 

between GF electrode and MHx/MHx-1 electrode or overall cell potential. V1=positive - 

negative; V2: Potential across bipolar membrane or potential difference between 

reference electrodes Hg/Hg2SO4 and Hg/HgO. V2= Hg/Hg2SO4 - Hg/HgO (Here the 

reference electrode Hg/HgO in alkaline solution is arbitrarily defined as reference 

electrode as it is immersed into the negative chamber); V3: Potential difference between 

graphite felt (GF) electrode (positive electrode) and reference electrode (Hg/Hg2SO4). 

V3= positive - Hg/Hg2SO4; V4: Potential difference between MHx/MHx-1 electrode 

(negative electrode) and reference electrode (Hg/HgO). V4= negative - Hg/HgO. 

 

 

 

 

 

 

 



 

 
Fig. 1. Schematic drawing of the V-MH hybrid system with positive electrolyte flow. V1: 

Potential difference between GF electrode and MHx/MHx-1 electrode or overall cell 

potential. V1=positive - negative; V2: Potential across bipolar membrane or potential 

difference between reference electrodes Hg/Hg2SO4 and Hg/HgO. V2= Hg/Hg2SO4 - 

Hg/HgO (Here the reference electrode Hg/HgO in alkaline solution is arbitrarily defined as 

reference electrode as it is immersed into the negative chamber); V3: Potential difference 

between graphite felt (GF) electrode (positive electrode) and reference electrode 

(Hg/Hg2SO4). V3= positive - Hg/Hg2SO4; V4: Potential difference between MHx/MHx-1 

electrode (negative electrode) and reference electrode (Hg/HgO). V4= negative - Hg/HgO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 2. 5 charge and discharge cycles (1
st
-5

th
) of V-MH battery. V1: Potential difference 

between GF electrode and MHx/MHx-1 electrode or overall cell potential. V1=positive - 

negative; V2: Potential across bipolar membrane or potential difference between reference 

electrodes Hg/Hg2SO4 and Hg/HgO. V2= Hg/Hg2SO4 - Hg/HgO (Here the reference 

electrode Hg/HgO in alkaline solution is arbitrarily defined as reference electrode as it is 

immersed into the negative chamber); V3: Potential difference between graphite felt (GF) 

electrode (positive electrode) and reference electrode (Hg/Hg2SO4). V3= positive - 

Hg/Hg2SO4; V4: Potential difference between MHx/MHx-1 electrode (negative electrode) 

and reference electrode (Hg/HgO). V4= negative - Hg/HgO. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table Captions 

 

 

Table 1. Comparison of V-MH and VRF batteries in terms of average voltage, coulomb, 

and energy efficiencies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Table 1. Comparison of V-MH and VRF batteries in terms of average voltage, coulomb, and energy efficiencies. 

Battery type 
Nominal 

voltage, V 

Voltage 

efficiency
b
, % 

Coulombic 

efficiency
c
, % 

Energy 

efficiency
d
, % 

V-MH 1.65 83.8 97 81.3 

VRF[8] 1.25 62-73 80-98 66-75 

b Voltage efficiency:  ηV = Vdischarge /Vcharge 
c Coulomb/charge efficiency:  ηc = Qdischarge / Qcharge = (Itdischarge)/(Itcharge) 
d Energy efficiency: ηP =Edischarge/Echarge = (VdischargeItdischarge)/(VchargeItcharge) 

 


