

The HKU Scholars Hub

Title	Ubiquitination and proteosome-dependent degradation of the activated form of human liver-enriched transcription factor CREB-H regulated by protein kinase A
Author(s)	Cheng, Y; Tang, VHM; Gao, W; Deng, J; Chan, CP; Jin, DY
Citation	The 2014 Hong Kong Inter-University Biochemistry Postgraduate Symposium, Hong Kong, 14 June 2014. In Program Booklet, 2014, p. 15, poster no. 5
Issued Date	2014
URL	http://hdl.handle.net/10722/203841
Rights	Creative Commons: Attribution 3.0 Hong Kong License

<u>Poster</u> Number

5

6

Ubiquitination and proteosome-dependent degradation of the activated form of human liver-enriched transcription factor CREB-H regulated by protein kinase A

Yun Cheng, Hei-Man Vincent Tang, Wei-Wei Gao, Jian-Jun Deng, Chi-Ping Chan and Dong-Yan Jin

Department of Biochemistry, The University of Hong Kong

CREB-H is a membrane-bound bZIP transcription factor which is mainly expressed in liver and small intestine. CREB-H plays important roles in the regulation of lipid metabolism, iron metabolism, gluconeogenesis and acute phase response. CREB-H is proteolytically activated by regulated intramembrane proteolysis to generate a C-terminal truncated form known as CREB-H Δ TC, which translocates to the nucleus to activate target gene expression. We have previously shown that CREB-HATC has a short half-life. In this study we report on ubiquitination and proteasome-mediated degradation of CREB-HATC. Proteasome inhibition led to the accumulation of CREB-HATC. The degradation of CREB-HATC was mediated by lysine 48-linked polyubiquitination of CREB-HATC. A DSGXS destruction box was identified in CREB-HATC and was also found to be conserved among orthologous proteins from different species. Disruption of this DSGXS destruction box resulted in stabilization of CREB-HATC. A potential E3 ubiquitin ligase implicated in CREB-HATC degradation was identified and characterized. In addition, CREB-HATC was also found to be phosphorylated by protein kinase A, leading to its stabilization. Taken together, our work revealed a new signaling pathway that controls ubiquitination and degradation of CREB-HATC. The rapid ubiquitination and degradation of CREB-HATC ensures transient and tightly regulated activation of its target genes in liver.

This work is supported by S.K. Yee Medical Research Fund (2011).

The Activation of Transient Receptor Potential Channel Vanilloid 3 (TRPV3) Suppresses Adipogenesis Cheung Sin Ying (CUHK)

(Supervisor: Professor Chung Hau Yin, CUHK)

Obesity is a major risk factor for metabolic diseases. Adipocytes in adipose tissues influence obesity, insulin resistance and diabetes mellitus. Therefore, discovery of anti-adipogenic pathways is crucial for the development of clinical therapies against obesity. We identified that the activation of Ca2⁺ permeable channel Transient Receptor Potential Channel Vanilloid 3 (TRPV3) prevented differentiation of 3T3-L1 preadipocytes. The activation of TRPV3 by activators (-)-epicatachin and diphenylboronic anhydride (DPBA) was determined by fluorometric calcium imaging studies and patch clamp electrophysiology. The 3T3-L1 cells were induced to differentiate in the presence of the TRPV3 activators. Adipogenesis in stimulated 3T3-L1 preadipocytes was determined by oil red O-staining of intracellular lipid droplets and quantitative real-time RT-PCR. The activators attenuated adipogenesis at a dosedependent manner and could be reversed by the TRPV3 inhibitor Diphenyltetrahydrofuran (DPTHF) and TRPV3 siRNA. Our immunoblotting results validated that the activation of TRPV3 attenuated insulin receptor and phosphoinositide 3-Kinase/Akt signaling, which downregulated the expression of CCAAT/enhancer binding protein alpha (C/EBPalpha) and peroxisome proliferator-activated receptor gamma (PPARgamma) in 3T3-L1 cells. TRPV3 also co-immunoprecipitated with insulin receptor substrate-1 (IRS-1), confirming association between TRPV3 and IRS-1 in 3T3-L1 preadipocytes. Compared with wild-type mice, we observed reduction in TRPV3 expression in ob/ob and db/db mice. We conclude that TRPV3 activation suppresses adipogenesis. The TRPV3 channel may regulate adipocyte metabolism.