
Title Evaluating multi-way joins over discounted hitting time

Author(s) Zhang, W; Cheng, R; Kao, B

Citation
The 30th IEEE International Conference on Data Engineering
(ICDE 2014), Chicago, IL., 31 March-4 April 2014. In International
Conference on Data Engineering Proceedings, 2014, p. 724-735

Issued Date 2014

URL http://hdl.handle.net/10722/203650

Rights International Conference on Data Engineering Proceedings.
Copyright © IEEE Computer Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38056395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Evaluating Multi-Way Joins over

Discounted Hitting Time

Wangda Zhang, Reynold Cheng, Ben Kao
Department of Computer Science, The University of Hong Kong

{wdzhang2, ckcheng, kao}@cs.hku.hk

Abstract—The discounted hitting time (DHT), which is a
random-walk similarity measure for graph node pairs, is useful
in various applications, including link prediction, collaborative
recommendation, and reputation ranking. We examine a novel
query, called the multi-way join (or n-way join), on DHT scores.
Given a graph and n sets of nodes, the n-way join retrieves
a set of n-tuples with the k highest scores, according to some
aggregation function of DHT values. This query enables analysis
and prediction of complex relationship among n sets of nodes.
Since an n-way join is expensive to compute, we develop the
Partial Join algorithm (or PJ). This solution decomposes an n-
way join into a number of top-m 2-way joins, and combines
their results to construct the answer of the n-way join. Since
PJ may necessitate the computation of top-(m+ 1) 2-way joins,
we study an incremental solution, which allows the top-(m+ 1)
2-way join to be derived quickly from the top-m 2-way join
results earlier computed. We further examine fast processing
and pruning algorithms for 2-way joins. An extensive evaluation
on three real datasets shows that PJ accurately evaluates n-way
joins, and is four orders of magnitude faster than basic solutions.

I. INTRODUCTION

Inter-related data is often found in social networks, bib-

liographic databases, and bioinformatics [1]. For instance,

Facebook users establish friendship links with each other,

and create interest groups. Large social sharing websites (e.g.,

YouTube and Flickr) generate relationship information among

videos and photos, in order to recommend resources to users.

As another example, DBLP and CiteSeer provide a rich source

of collaboration and citation information. A graph naturally

models this kind of information. Figure 1(a) illustrates the

relationship among people in a social network, where an edge

between two persons (nodes) indicates that they are friends.

A lot of research effort has been invested on the retrieval

of interesting information from large graphs. Solutions such

as link prediction [2], collaborative recommendation [3], and

query suggestion [4], have been studied. These methods make

use of the hitting time, a similarity measure that estimates the

expected length of a path between two nodes [5]. The hitting

time considers the structure properties of a graph [6], and is

resilient to noises [7]. An enhanced version of the hitting time,

known as discounted hitting time (or DHT), has been recently

proposed [8], [9]. In this paper, we present a query called the

multi-way join (or n-way join). Given n groups of nodes, this

query returns k lists of n nodes retrieved from these groups,

which are ranked the highest according to some aggregation

function of DHT. This query can be used in a wide range of

applications, as illustrated below.

(a) An example graph.

(b) A query graph.

Rank (pi, qj)

1 (p1, q2)
2 (p2, q2)
3 (p1, q1)

(c) Top-3 results.

Fig. 1: Illustrating a 2-way join.

• Example 1: 2-way join. Here, two sets of nodes (called

node sets) are involved. Figure 1(a) shows two node sets

P = {p1, p2, p3} (in grey) and Q = {q1, q2} (in black). A

“query graph”, shown in Figure 1(b), connects P and Q. If

k = 3, this query retrieves three pairs of nodes in P and

Q with the highest DHT scores (Figure 1(c)). Conceptually,

these three pairs of nodes are the closest to each other, in

terms of the expected lengths of all the paths between them. 1

This query facilitates link prediction, which is useful in friend

suggestion [10] and bioinformatics [11]. Let us suppose that

the graph in Figure 1(a) is a social network, where an edge

between two nodes represent friendship between two persons.

Also assume that P and Q are two interest groups (e.g., soccer

and basketball). The 2-way join predicts that p2 and q2, who

have some common friends, can become friends later.

• Example 2: 3-way join (triangle). A bibliographic

network can be modeled as a graph, where a node represents

an author, and a directed edge from node u to v means that

author u cites the paper written by another author v. We can

use DHT to capture the closeness of u and v. Suppose that this

graph contains experts from three domains: Database (DB),

Artificial Intelligence (AI), and System (SYS). A researcher

plans to set up a lab that involves cross-disciplinary research

work in DB, AI, and SYS. He is looking for experts from each

of these three areas, who may be interested in joining this lab.

To identify these experts, we can execute a 3-way join on DB,

AI, and SYS, on a “triangular” query graph (Figure 2(a)) 2.

This query returns k lists of authors’ names retrieved from

DB, AI, and SYS. Since these authors are close to each other

in terms of DHT, they can be good candidates for the lab.

1The DHT between nodes u and v, or h(u, v), is asymmetric, i.e., h(u, v)
is different from h(v, u). Hence, an edge in a query graph is also directional.

2For ease of presentation, here we use a single line between two query
graph nodes to denote two edges with opposite directions.

978-1-4799-2555-1/14/$31.00 © 2014 IEEE ICDE Conference 2014724



(a)

(b)

(c)

Fig. 2: n-way join: (a) traingle, (b) chain, and (c) star.

• Example 3: 3-way join (chain). In e-commerce, a retailer

may be looking for new customers and manufacturers. A 3-

way join on a social network, containing groups of Manu-

facturer (M ), Retailer (R), and Customer (C), can be useful

(Figure 2(b)). This query returns k lists of people obtained

from these three groups; for each group, a manufacturer is

near to a retailer, who is close to a customer, in terms of DHT

scores. An e-commerce system can use this result to suggest

potential manufacturers and customers to the retailer.

• Example 4: 6-way join (star). Suppose that in a social

network, there are six groups of members, who are interested

in Soccer (S), Basketball (B), Hockey (H), Golf (G), Tennis

(T ), and Photography (P ). A member of P , Mary, is a pro-

fessional photographer in sports. She wants to form a “multi-

interest” group that contains hobbyists in different sports. To

identify these people, we can execute a 6-way join on node

sets S, B, H , G, and T , with P at the centre of the query

graph (Figure 2(c)). This query returns k lists of sports lovers

who are close to members in P . Mary can use this list to ask

her friends in P to suggest the people they know from other

sports groups.

Challenges. Consider a top-k n-way join associated with a

query graphQ. We name the n node sets involved in this query

as R1, R2, . . . , Rn. A straightforward way of evaluating this

query (called Nested-Loop Join, or NL) is to first enumerate all

the candidate query answers, in the form of n-tuples, where

each attribute of the n-tuple is some node ri selected from

Ri. We then compute the “score” of each candidate answer

A. This is done by: 1) computing the DHT score of every

pair of nodes in A whose corresponding node sets have an

edge in Q; 2) evaluating an aggregate function f of DHT

values for these query edges. Finally, NL returns the candidate

answers with the k highest f values. To illustrate, consider a

top-1 3-way join with query graph Q shown in Figure 2(b).

Suppose that the three node sets involved (i.e., M , R, and C)

contain nodes “Tom”, “Gary”, and “Alice” respectively. Thus,

a candidate answer A is (Tom, Gary, Alice). We next compute

the f value of A. Let f be the sum of the DHT values for node

pairs retrieved from (M,R) and (R,C). The DHT scores of

the node pairs relevant to A are shown in Table I. We see that

the f value of A is 0.5 + 0.3, or 0.8. If this is the highest

among the f values of all the candidate answers, then A is

returned by the query.

TABLE I: Computing a 3-way join for Figure 2(b).

(Ri,Rj) (ri, rj) DHT score

(M,R) (Tom, Gary) 0.5

(R,C) (Gary, Alice) 0.3

The NL algorithm is extremely expensive. It has to perform

numerous DHT computations, each of which is very costly.

Specifically, given a node pair (ri, rj) that appears in A, its

DHT is calculated by performing random walks over all the

paths connecting ri and rj . In a large graph, many long paths

may exist between ri and rj ; this makes the DHT calculation

of (ri, rj) extremely inefficient. A more efficient algorithm for

executing a n-way join is thus desirable.

Efficient n-way join. Notice that each edge in Q can be

viewed as a 2-way join between two node sets specified in Q.

Based on this fact, we develop a fast n-way join algorithm,

called the Partial Join, or PJ. This solution evaluates a top-

m 2-way join query for every edge in Q, where m is a

tunable parameter. It then uses these results to construct the

top-k answers of the n-way join. Since the efficiency of PJ

depends on the performance of top-m 2-way join queries, we

study efficient algorithms for them. We first develop a general

formula of DHT, which can be customized to the two common

variants of DHT proposed in [8], [9]. Based on this formula,

we examine an adaptation of existing 2-way join algorithms for

DHT. We further propose a class of solutions, called backward

processing algorithms, for joining node sets Ri and Rj . These

solutions simulate “backward random walks” from every node

in q ∈ Rj to Ri, in order to derive DHT scores between

every node in Ri and q. We study two ways of bounding a

DHT score and use them to prune nodes from q. These new

techniques allow the performance of PJ to attain up to four

orders of magnitude of improvement over NL experimentally.

Moreover, PJ can be used on the two existing variants of DHT.

The main problem of PJ is that the top-m 2-way join results

produced from each query graph edge may not be sufficient

for devising the answer of the n-way join. If this happens, we

have to compute the top-(m+1) 2-way join for some edges of

Q from scratch. Since a top-(m+ 1) query can be expensive

to evaluate, the efficiency of PJ can be affected. We develop

a variant of PJ, called the Incremental Partial Join, or PJ-i.

This solutions allows a top-(m+ 1) 2-way join query for Ri

and Rj to be efficiently derived from the result of the top-m
join between these two node sets. In our experiments, PJ-i

is up to 50 times faster than PJ.

Our contributions. We propose a n-way join operator over

DHT scores. To evaluate this query efficiently, we develop

the PJ and PJ-i algorithms. They can handle two recently-

proposed DHT scores in [8], [9]. They also support any

monotonic aggregate DHT function f (e.g., sum, or minimum

of DHT scores on query graph edges). We have performed

a detailed evaluation of these algorithms on a bibliographic

dataset (DBLP), a social-sharing website (YouTube), and a

protein-interaction dataset (Yeast). Our solutions are highly

effective and efficient on these databases.

725



The rest of our paper is organized as follows. Section II

discusses the related work. In Section III, we present the

formal definition of the multi-way join query. We present

the solution framework of PJ in Section IV. In Section V,

we describe two existing variants of DHT, and examine

how existing 2-way join algorithms that can be applied to

them. Section VI presents the backward processing algorithms,

as well as PJ-i. Our experimental results are reported in

Section VII. We conclude in Section VIII.

II. RELATED WORK

We now discuss previous studies about similarity joins.

2-way join. The problem of joining two sets of objects,

based on a similarity or distance measure, is an important topic

in the database literature. In high dimensional databases, [12]

studied efficient 2-way join algorithms based on Euclidean

distances. In text databases, [13] and [14] examined set and

string similarity joins for data cleaning applications by using

Hamming and edit distances. In spatial databases, fast 2-way

join algorithms based on Euclidean distances were exam-

ined [15], [16]. Recently, the issues of supporting a similarity

join in a database system have been addressed [17].

In graph databases, [16] and [18] investigated 2-way joins

for road networks and graph pattern matching, respectively.

They use the shortest-path distance. In [19], we examined an

efficient 2-way join algorithm, IDJ, which can be applied

to common random-walk measures (e.g., Personalized PageR-

ank [20], SimRank [21], and DHT [8], [9]). However, it does

not perform a detailed study on DHT. Here we address DHT

in more detail. We examine how to generalize two recently

proposed DHT measures [8], [9] in a common form. We then

adapt IDJ to run a 2-way join for DHT. We propose an

algorithm, called B-IDJ, and study two pruning techniques

for it. We show that B-IDJ is theoretically and experimentally

faster than IDJ. We also use B-IDJ to support a n-way join

query, which has not been studied before.

n-way join.This query generally involves joining n sets of

entities (with n ≥ 3), according to a query graph Q. The

authors in [22], [23] examined fast n-way join algorithms

for relational databases. The efficiency of of n-way join has

also been addressed in interval databases (e.g., [24], [25]) and

spatial databases (e.g., [16], [26], [27]).

However, little work has been done on n-way join for graph

databases. In [18], the authors study this query based on the

shortest path distance. Given node sets {R1, R2, . . . , Rn},
and nodes ri ∈ Ri, the query returns all the n-tuples

(r1, r2, . . . , rn), such that the shortest path distance between

(ri, rj) does not exceed a global threshold δ, and there exists

an edge between Ri and Rj inQ. As discussed in [8], [9], [20],

[21], the shortest path measure is often inferior to random walk

metrics in terms of accuracy in prediction and recommendation

tasks. Also, setting an appropriate value of δ can be difficult.

However, the query in this paper returns k n-tuples with the

highest value of f (i.e., the aggregate function of DHT on Q).

It may be easier for a user to specify the value of k rather than

δ. Our solution also allows f to be any monotonic aggregate

function of DHT.

III. PRELIMINARIES

We now describe the data and query models in Sec-

tion III-A. We then discuss two basic solutions for answering

a multi-way join, in Section III-B.

A. Data and Query Models

Let G be a directed and weighted graph. Also, let VG and

EG be the sets of nodes and edges of G respectively. Given

two nodes u and v in G, wuv denotes the weight of edge (u, v).
We use Ou (Iu) to denote the set of out-neighbor (in-neighbor)

nodes of u. We assume that G is stored in an adjacency list,

so that the neighbors of a node can be found quickly.

Let h(u, v) be the DHT score of nodes u and v. As

discussed before, h(u, v) measures the closeness between u
and v. Notice that a DHT score is asymmetric, i.e., h(u, v) 6=
h(v, u). We will detail the properties of h(u, v) in Section V.

A node set of G is a subset of VG. Let R1, R2, . . . , Rn be n
node sets of G, with n ≥ 2. They constitute a query graph.

Definition 1. A QUERY GRAPH Q is an unweighted and

directed graph, whose sets of nodes and edges are re-

spectively denoted by VQ and EQ. Specifically, VQ =
{R1,R2, . . . ,Rn}, where Ri ∈ VQ corresponds to a node

set Ri ⊆ VG.

Definition 2. The AGGREGATE SCORE f of a query graph Q
is a monotonic function of |EQ| real-valued inputs.

Definition 3. Given a query graph Q, a CANDIDATE ANSWER

A is an n-tuple within domain R1 ×R2 × . . .×Rn.

To compute the aggregate score of A (denoted by A.f ), we

can evaluate the DHT score h(ri, rj) for all pairs of nodes

that appear in A, such that (1) ri ∈ Ri and rj ∈ Rj , and (2)

an edge is incident on nodes Ri and Rj . Then, f is applied

to these |EQ| DHT scores. Notice that if Q has a single edge

only, A.f is the DHT of the node pair specified in A.

An example f is the SUM function, which sums up the DHT

scores of the |EQ| node pairs. Given a candidate answer A,

A.f computes the “overall closeness” of the |EQ| node pairs

appearing in A. Another example f is MIN, which returns the

minimum DHT value among all the |EQ| scores. The value

of A.f is the lowest similarity score among the node pairs of

A.

We use the f function to rank the candidate answers in a

multi-way join, as defined below.

Definition 4. MULTI-WAY JOIN (or n-way join). Given a

graph G, a query graph Q, n node sets ({R1, R2, . . . , Rn}),
an aggregate function f , and a natural number k, the n-way

join returns a sorted list of k candidate answers of Q, i.e.,

{A1, A2, . . . , Ak}, such that (1) the Ai.f values are the highest

among all the candidate answers of Q; and (2) Ai.f ≥ Aj .f
for every i, j ∈ [1, k] and i < j.

Essentially, an n-way join returns a sorted list of candidate

answers with the highest f values.

726



Fig. 3: Solution Framework of PJ.

B. Basic Solutions

We now discuss two simple n-way join algorithms.

(1) Nested Loop (NL). As discussed in Section I, NL

enumerates all the candidate answers. This is done by using n
nested loops on the n node sets (i.e., R1, R2, . . . , Rn). For

each candidate answer, we compute its aggregate score f .

These answers are then sorted according to their f values, and

those with the k highest scores are returned. This solution is

slow, because (1) it has to generate a huge number (Πn
i=1|Ri|)

of candidate answers; and (2) for each candidate answer, a

DHT computation is performed for every edge in Q. As we

will see in Section V, computing a DHT score is expensive.

(2) All Pairs (AP). This algorithm decomposes an n-way

join into |EQ| joins of node set pairs specified in Q. These

results are combined to construct the final solution. Let us

illustrate AP by Figure 2(b). This query can be processed

by first generating the DHT scores for all pairs of nodes in

(M,R) and (R,C). The |M | × |R| node pairs from (M,R)
are then joined with the |R|×|C| node pairs from (R,C). The

aggregate scores of the 3-tuples from (M,R,C) are computed,

and the k 3-tuples with the highest scores are returned. The

number of DHT computations required by this solution is:
∑

(Ri,Rj)∈EQ
(|Ri| × |Rj |), which can be less than that of

NL. To further improve the performance of AP, a rank join

algorithm ( [28]–[30]) for finding the top k candidate answers

can be employed. In our experiments, we use the PBRJ, which

is a common rank join algorithm [28]. The PBRJ is also used

in our better n-way join algorithm, PJ, as discussed next.

IV. THE PARTIAL JOIN ALGORITHM

Recall that AP decomposes an n-way join to |EQ| 2-way

joins. Each of these operations is expensive to evaluate, since

the DHT scores of all the pairs in the two node sets involved

have to be computed. However, not many of these results

are useful. In our experiments (Section VII), under a wide

range of values of k, less than 1% of the 2-way join results

are used to construct the n-way join answers. Based on this

observation, we develop the Partial Join algorithm (or PJ),

which can generate much fewer 2-way join results. We present

the framework of this solution here, and explain its details in

Sections V and VI.

Algorithm 1: n-way Join (PJ)

Input: graph G; query graph Q; node sets R1, . . . , Rn;

aggregate function f ; integers k,m
Output: top-k n-tuples with the highest f values

Data: list LRi,Rj
; candidate buffer CRi,Rj

; output O
1 O ← ∅
2 foreach edge (Ri,Rj) in Q do

3 CRi,Rj
← ∅

4 LRi,Rj
← twoWayJoin(G,Ri, Rj ,m)

5 τ ←∞
6 while |O| < k or minA∈OA.f < τ do

7 LRi,Rj
← roundRobin(LRi,Rj

|(Ri,Rj) ∈ EQ)
8 (ri, rj), h(ri, rj)← next entry in LRi,Rj

9 if (ri, rj) = null then

10 LRi,Rj
.append(getNextNodePair(G,Ri, Rj))

11 add ((ri, rj), h(ri, rj)) to CRi,Rj

12 I ←
getCandidate

(

(ri, rj), h(ri, rj), {CR′
i
,R′

j
|(R′

i,R
′
j) 6=

(Ri,Rj)}
)

13 insert every A ∈ I to O, retaining only the k
candidate answers with the highest f values

14 τ ← cornerBound(h(ri, rj))

15 return O

Let us first illustrate PJ with an example. Figure 3 shows

a query graph that contains four nodes (A, B, C and D).

To evaluate this 4-way join, PJ first performs a top-m 2-way

join for the three node set pairs: (A,B), (B,C), and (C,D).
Notice that m is a parameter of PJ, and m = 3 here. These

results, sorted in descending order of DHT scores, are stored

in three lists (LA,B , LB,C , and LC,D). Next, PJ performs a

rank join on these lists, and produces top-k 4-way join results,

in the form of 4-tuples, and their aggregate scores. If the

information in the L lists is not enough to generate all the

n-way join results, PJ fetches more answers from the 2-way

joins involved. For example, PJ can request the fourth node

pair in LC,D, by issuing a top-4 2-way join on C and D.

Algorithm 1 shows the details of PJ. We use O to denote

a priority queue of size k, which stores the candidate answers

with the k highest f scores. Initially, O is empty (Step 1).

Then, for each edge (Ri,Rj) that appears in Q, in Step 3 we

initialize its “candidate buffer” CRi,Rj
, which stores node pairs

retrieved from Ri and Rj . (We will discuss more about this

buffer later.) We also issue a top-m 2-way join for Ri and

Rj (Step 4). This is done by calling twoWayJoin, which

performs a top-m join on node sets Ri and Rj . The result,

containing m node pairs with DHT scores, is stored in LRi,Rj
.

The value of m ranges from 0 to min(Ri,Rj)∈EQ
(|Ri|×|Rj |).

If m = 0, twoWayJoin just returns an empty list. Section V

studies this function in more detail.

Steps 5–14 employs the rank join on the lists obtained

in Step 4, for producing n-way join answers. We choose

the commonly-used Pull/Bound Rank Join (PBRJ) [28] as

the framework of the rank join. The PBRJ has a stopping

727



Fig. 4: Generating a candidate answer.

threshold τ , which denotes the lower bound of the k-th highest

f scores of the candidate tuples. Initially, τ is set to ∞ (Step

5). Steps 7–14 are repeated as long as one of the conditions in

Step 6 are satisfied: (1) |O| is k or less; or (2) the minimum

f value of the candidate answers in O is less than τ . In

Step 7, we select LRi,Rj
among all the 2-way join result

lists in a round-robin fashion, according to the well-known

HRJN scheme [29]. We then retrieve the next unread entry

(ri, rj) with its DHT score from LRi,Rj
(Step 8). If this is

not found (since the end of the top-m list has been reached),

we execute getNextNodePair to find the next node pair of

the 2-way join of Ri and Rj , and append it to LRi,Rj
(Steps

9–10). This procedure can be implemented by simply running

a top-(m + 1) join (i.e., twoWayJoin(G,Ri, Rj ,m + 1)),
and obtain the (m + 1)-th node pair. We develop a faster

solution that uses the results obtained from the top-m join

query. Section VI gives details on this.

Next, we construct candidate answers from the retrieved

node pair (ri, rj). In Step 11, we insert (ri, rj) and its DHT

score to CRi,Rj
. This is a 2D array of dimensions |Ri|× |Rj |,

where CRi,Rj
[ri][rj ] stores the value of h(ri, rj). In Step 12,

getCandidate is executed. This algorithm uses (ri, rj),
and the node pairs stored in other candidate buffers, to generate

a set I of candidate answers. We will examine this function

shortly. In Step 14, we use h(ri, rj) to update the value of τ ,

based on the corner-bound strategy in HRJN [29]. After the

loop of Steps 5-14 ends, O contains the candidate answers

with the k highest values of f , and is returned in Step 15.

Figure 4 illustrates getCandidate for a query graph with

four node sets. Initially, a node pair (a, b) is retrieved from the

list LA,B . A “partial answer” A is created for (a, b), namely

(a, b,#,#), where # stands for unknown elements. Following

the edges in Q, we found the edge (B,C). We then obtain the

node pair (b, c) by searching CB,C with b. Then, A becomes

(a, b, c,#). The f score of A is updated to f(h(a, b), h(b, c)).
We repeat this process by visiting edge (C,B) in Q, which

contains the edge (c, b). Finally, we process (C,D), and A
becomes (a, b, c, d), which is then inserted to I. Notice that

two or more edges may be found from a candidate table.

For instance, based on node b, we obtain two node pairs

(b, c1) and (b, c2) from CB,C . If this happens, we create two

partial answers, namely (a, b, c1,#) and (a, b, c2,#). Finally,

getCandidate returns all the partial answers in I that do

not carry any unknown elements.

We next discuss the details of Algorithm 1. Section V

describes existing algorithms for supporting twoWayJoin

in Step 4. The same procedure can be executed faster

by using backward processing techniques (Section VI).

In Section VI-D, we present an efficient solution for

getNextNodePair, which is invoked in Step 10.

V. DHT AND 2-WAY JOINS

Recall that in our n-way join algorithm (Algorithm 1),

twoWayJoin is frequently invoked (e.g., Step 2 and Step 7).

Hence, it is crucial for this function to be efficient. However,

this objective is complicated by the facts that (1) computing

the DHT score of a node pair is expensive; and (2) there

are two variants of DHT measures. To enable efficient 2-

way join, we study how DHT variants can be generalized

to a common form, in Section V-A. We then examine how

existing techniques can be used to evaluate 2-way join over

this common form, in Section V-B.

A. A General Form of DHT

Let us first explain the notion of random walk. Given a

graph G, a random walker starts from a node in VG, and per-

forms a move by following the outgoing edges in EG. In every

step, the walker moves from u (the node where he is currently

located), to an out-neighbor v of u with a transition probability

puv . For a weighted graph, puv = wuv/(
∑

v′∈Ou
wuv′).

The Hitting Time (or HT) is a random-walk-based measure

that considers the ensemble of paths between nodes u and v
in graph G, and computes the expected path length between u
and v ( [2]–[4], [6], [7], [31], [32]). Intuitively, HT measures

the “time” for a random walker to reach v from u. The

Discounted Hitting Time, or DHT, is an enhanced version

of HT, which places more emphasis on neighboring nodes,

and less so on long-range relationships. As discussed in [8],

[9], DHT is a better measure than HT in graph applications.

Recently, two DHT measures have been proposed:

• DHTe [8]: a random walker, who starts at u, stops when

he reaches v. The formula of DHTe is given by:

DHTe(u, v) =
∞
∑

i=1

e−(i−1)Pi(u, v) (1)

where Pi(u, v) is the hitting probability that a random walker

starting from node u first hits node v after i steps. Notice that

when i increases, e−(i−1) decreases. Hence, DHTe weighs

higher for shorter paths between u and v.

• DHTλ [9]: the formula of DHTλ is given by:

DHTλ(u, v) = −1 + λ
∑

w∈Ou

puw ·DHTλ(w, v) (2)

where DHTλ(v, v) = 0, and λ ∈ (0, 1) is called the decay

factor. Again, a random walker starting at u stops when he

reaches v. In each step of the random walk, he may stop with

a probability λ ∈ (0, 1). Here, λ is also used to reduce the

effect of long paths on the DHT score. 3

General form. We found that the two versions of DHT

above can be generalized as follows:

3The original definition of DHTλ in [9] is a distance measure, which
increases with the average path length between u and v. We negate its score,
which becomes Equation 2, to measure the similarity between u and v.

728



TABLE II: Generalization of DHT variants.

DHT (Equation 3) α β λ

DHTe (Paper [8]) e 0 1/e
DHTλ (Paper [9]) 1/(1− λ) −1/(1− λ) λ

Definition 5. Given two distinct nodes u, v ∈ VG, the

GENERAL FORM OF DHT, denoted by h(u, v), is:

h(u, v) = α
∞
∑

i=1

λiPi(u, v) + β (3)

where α and β are real-valued coefficients, with α 6= 0. We

call λ ∈ (0, 1) the decay factor. Notice that h(u, v) may be

different from h(v, u), since Pi(u, v) may be different from

Pi(v, u) on a weighted and directed graph.

Table II shows how the three parameters of Equation (3)

(i.e., α, β, and λ) are customized for the DHTλ and DHTe

measures. The parameter values for DHTe can be easily

derived by rewriting Equation (1) into the form of Equa-

tion (3). For DHTλ, we first obtain the recursive formula of

Equation (3), by expressing h(u, v) in terms of h(w, v), where

w ∈ Ou. We then compare this with Equation (2) and get

the parameter values of DHTλ. Please refer to our technical

report [33] for the derivation details. In the sequel, the term

“DHT” refers to the general form in Definition 5.

Practical DHT score evaluation. As we can see in Equa-

tion (3), evaluating DHT (i.e., h(u, v)) requires summing up

an infinite number of terms. Let us consider a more practical

way of computing h(u, v):

hd(u, v) = α
d

∑

i=1

λiPi(u, v) + β (4)

where d is the number of steps in a random walk. Notice that

(1) hd(u, v) monotonically increases with d; and (2) h(u, v) =
limd→∞ hd(u, v). Hence, if d is sufficiently large, hd(u, v) can

be regarded as h(u, v). We thus use hd(u, v) to represent a

DHT score. In fact, this way of approximating other random-

walk measures with a limited number of steps has also been

considered in previous works (e.g., [8] and [19]).

We next describe a lemma in [19], which approximates a

random-walk measure having the same form of h(u, v).

Lemma 1. Given that ε ∈ ℜ, if |h(u, v)−hd(u, v)| ≤ ε, then

d ≥ logλ
ε(1−λ)

αλ
.

This result allows us to obtain the minimum value of d such

that the error between h(u, v) and hd(u, v) is bounded by ε.

2-way joins. We can now study efficient solutions for DHT.

Let P and Q be two node sets in VG. Given the values of α,

β, and λ, our goal is to retrieve k pairs of nodes from P and

Q with the highest hd(p, q) values. These hd(p, q) values are

also returned. Next, we study solutions collectively known as

forward processing. In Section VI, we present another class

of solutions known as backward processing algorithms.

B. Forward Processing

Given a node pair (p, q) (where p ∈ P and q ∈ Q), a for-

ward processing algorithm computes hd(p, q) by performing

random walks along edges from p to q. Figure 5(a) illustrates

(a) Forward (b) Backward

Fig. 5: Forward and backward processing.

this process. Here we discuss a simple solution, called F-BJ,

and a faster one, called F-IDJ.

• The Forward Basic Join (or F-BJ) algorithm performs

a 2-way join by computing hd(p, q) for every node pair (p, q),
and then returns the pairs with the k highest values. To evaluate

hd(p, q), we adopt an approach similar to that of [8]. In

particular, a vector r with |VG| entries is used to store the

probabilities of nodes in VG that have been visited by the

walker from p. Initially, r[p] = 1.0, and the rest of entries in

r are set to zero. At iteration i (where i = 1, 2, . . . , d), we

refresh r by performing one step of random walk from every

node u, where u ∈ VG − {q}, to node v ∈ Ou. To do this,

let r′ be another vector of size |VG|. We first assign r′[v] by

the value
∑

u 6=q∧(u,v)∈EG
(r[u] · puv). Then, r′[q] is the same

as Pi(p, q), and we compute hi(p, q) by using Equation (4).

We next overwrite r by r′. This process continues until i = d.

The complexity of F-BJ, which is O(|P ||Q| ·d|EG|), is high,

since the DHT score of every node pair from (P,Q) needs

to be evaluated. We next describe a better method that avoids

scanning all the (p, q) pairs.

• The F-IDJ algorithm. In [19], the Iterative Deepening

Join framework (or IDJ) was proposed to handle any kind of

random-walk measures having the form of Equation (4). The

F-IDJ algorithm was an adaptation of IDJ for evaluating a 2-

way join over DHT scores. It uses the fact that in Equation (4),

λi decreases exponentially with i. Thus, the influence of

Pi(u, v) on hd(u, v) decreases sharply with i. If i is small,

hi(p, q) can be used to approximate hd(p, q) with a high

accuracy; and F-IDJ uses hi(p, q) to prune nodes from P .

Another fact is that hi(p, q) can be quickly computed when i is

small, since fewer random walks are involved. Hence, F-IDJ

computes values of hi(p, q) for small values of i first.

In detail, F-IDJ contains ⌈log d⌉ iterations. In the j-th

iteration (where j = 1, 2, . . . , ⌈log d⌉ − 1), random walks of

up to l = 2j−1 steps are carried out for each node p ∈ P . For

every node pair (p, q) ∈ (P,Q), F-IDJ use the l-step-random

walk information to derive (1) the lower bound of h(p, q),
denoted by h−

d (p, q); and (2) the upper bound of h(p, q)
between p and any q ∈ Q, denoted by h+

d (p,Q). A set B of

k node pairs with the highest h−
d (p, q) scores are maintained.

Let Tk be the k-th largest h−
d (p, q) score of the pairs in B. A

node p0 ∈ P is pruned, if h+
d (p0, Q) < Tk, since none of the

hd(p0, q) values are higher than the scores of the node pairs

in B. This process is repeated for ⌈log d⌉−1 iterations. In the

final iteration, F-IDJ evaluates the actual DHT scores (i.e.,

hd(p, q)) for node pairs that cannot be pruned, based on the

729



solution discussed in F-BJ. The worst-case running time of

F-IDJ is still O(|P ||Q| · d|EG|).
Different from F-BJ, F-IDJ does not perform d steps of

random walks for every node pair in (P,Q). As the number

of iterations increases, the number of nodes in P is reduced.

As pointed out in [19], many nodes in P are pruned in early

iterations at a low computation cost, and very few nodes in P
need to have hd(p, q) computed. This makes F-IDJ run much

faster than F-BJ in our experiments. A detailed discussion of

F-IDJ and its complexity can be found in [33].

The main problem of both F-BJ and F-IDJ is that for

each pair (p, q), they have to perform random walks from p
to q, which significantly affect their running times. We next

examine another type of solution that alleviates this problem.

VI. BACKWARD PROCESSING FOR 2-WAY JOINS

We now study another class of 2-way join algorithms

known as backward processing. Figure 5(b) illustrates its main

intuition: given a node q ∈ Q, we perform backward random

walks over G, in order to compute all the hd(p, q) values for

every p ∈ P . As we shall see, solutions that are developed

based on this idea are faster than their forward processing

counterparts. We first discuss a basic solution in Section VI-A.

Then, Section VI-B presents another algorithm that enables

node pruning, and Section VI-C discusses two node pruning

techniques. Based on these solutions, Section VI-D develops

an “incremental” join algorithm, which facilitates the execu-

tion of getNextNodePair in Algorithm 1.

A. The Backward Basic Join Algorithm (B-BJ)

Similar to F-BJ, the Backward Basic Join (or B-BJ)

computes hd(p, q) for every node (p, q) in (P,Q). However,

these values are obtained in a different manner. Specifically,

for every node q ∈ Q, B-BJ invokes the backWalk proce-

dure to obtain all the values of hd(p, q) for every p ∈ P . After

all the hd(p, q) scores are obtained, the node pairs with the k
highest scores are returned.

The backWalk algorithm takes the node set P , node q,

and step d, as its input. It uses a size-|VG| vector, backProb,
to store the hitting probabilities from every node in VG to

q. Initially, backProb[q] = 1 and backProb[v] = 0 for any

v ∈ VG − {q}. A “backward random walk” is then initiated

from q. Particularly, in each iteration i (i = 1, 2, . . . , d), we

obtain the new hitting probability Pi(u, q) for every u ∈ VG:

Pi(u, q) =

{

∑

(u,v)∈EG∧v 6=q puv · backProb[v] i > 1
∑

(u,v)∈EG
puv · backProb[v] i = 1

(5)

The values of Pi(u, q) are then written back to backProb[u].
By repeating Equation (5) for d times, we obtain the values

of Pi(p, q) (i = 1, 2, . . . , d) for every node p ∈ P . Their

DHT scores can then be computed by using Equation (4).

Figure 5(b) illustrates this.

The backWalk algorithm produces hd(p, q) for every p ∈
P with a complexity of O(d|EG|). Consequently, the running

time of B-BJ is O(|Q| ·d|EG|), which is O
(

|P |
)

times faster

than F-BJ. The space overhead of B-BJ is O(|VG|). The

detail of backWalk and its complexity is in [33].

B. The Backward IDJ Solution Framework

The B-BJ solution can still be expensive, since it has to

perform a d-step backward random walk for every node q in Q.

On the other hand, the Backward IDJ algorithm (or B-IDJ)

allows some nodes in Q to be pruned during the random walk.

Similar to B-BJ, B-IDJ initiates a backward random walk at

q. Let h−
d (p, q) be the lower bound of hd(p, q), and h+

d (P, q)
be the upper bound of hd(p, q) from any node p ∈ P to q. At

the l-th step, B-IDJ collects the following information:

• For each pair (p, q) ∈ (P,Q), compute hl(p, q), which

cannot be larger than hd(p, q) due to Equation 4. We

thus let h−
d (p, q) = hl(p, q).

• For each node q ∈ Q, evaluate

h+
d (P, q) = max

p∈P
{hl(p, q)}+ U

+
l (6)

Here, U+
l is called the upper bound function. In this paper,

we study two kinds of upper bound function, leading to

two variants of B-IDJ. Their details will be addressed in

Section VI-C. Now, let Tk be the k-th largest h−
d (p, q) value.

Then, a node q can be pruned if the following is true:

• For any q ∈ Q, h+
d (P, q) < Tk

Algorithm 2: Backward IDJ (B-IDJ)

Input: graph G; k; node sets P , Q
Output: top-k node pairs in B

1 j ← 1
2 while 2j−1 < d do

3 l← 2j−1, B ← ∅
4 foreach q ∈ Q do

5 score← backWalk(G,P, q, l)
6 foreach p ∈ P do

7 if score[p] > β then

8 insert ((p, q), score[p]) to B
9 pMaxScore←

max(pMaxScore, score[p])

10 qUpper[q]← pMaxScore+ U+
l

11 Tk ← B.getMin()
12 foreach q ∈ Q do

13 if qUpper[q] < Tk then

14 remove q from Q

15 j ← j + 1

16 score← backWalk(G,P, q, d) for q ∈ Q
17 update B with score
18 return B

The above idea is implemented in Algorithm 2. Here, we

use a priority queue B that stores up to k node pairs with

the highest scores. The algorithm iterates itself ⌊log d⌋ times

(Steps 2-15). In the j-th iteration, a backward random walk of

up to l = 2j−1 steps is performed. The rationale is similar to

that of F-IDJ: we exploit the fact that when l is small, random

walks can be quickly computed, and they provide good bounds

of DHT scores. In Steps 4-9, we do the following for all nodes

730



q in Q: Step 5 performs a l-step backward random walk by

invoking backWalk and obtains hl(p, q) for every node p in

P . These values, which can also be considered as h−
d (p, q),

are stored in array score. In Step 8, we insert the node pairs

(p, q) and their hl(p, q) scores to B. We evaluate h+
d (P, q) in

Steps 9 and 10. We compute Tk in Step 11, which is used

to prune a node q from Q (Steps 12-14). After finishing all

the iterations, we perform a d-step backward random walk for

nodes that cannot be pruned (Step 16). Step 17 updates B with

score, and Step 18 returns the top-k node pairs.

In B-IDJ, O
(

log d
)

iterations are needed. Each iteration

requires O
(

|Q| · (l|EG|+ t(U+
l )

)

time, where t(U+
l ) denotes

the time of computing U+
l . We next examine two ways of

implementing U+
l .

C. The B-IDJ-X and B-IDJ-Y Algorithms

1. B-IDJ-X (by setting U+
l as X+

l ). We first claim that:

Lemma 2. h(p, q) ≤ hl(p, q) +X+
l , where

X+
l = α

∞
∑

i=l+1

λi =
αλl+1

1− λ
(7)

which can be derived from the definitions of h(p, q) (Equa-

tion 3) and hd(p, q) (Equation 4). Since hd(p, q) ≤ h(p, q),
hd(p, q) is upper-bounded by hl(p, q) + X+

l . By setting U+
l

as X+
l , we obtain h+

d (P, q) (Equation 6). We call the variant

of B-IDJ where U+
l = X+

l as B-IDJ-X. The time for

computing X+
l is O(l), and the complexity of B-IDJ-X is

O(|Q| · d|EG|). Its space overhead is O(|VG|).
2. B-IDJ-Y (by setting U+

l as Y +
l ). First, we let Vl be

α
∑d

i=l+1 λ
iPi(p, q). We can rewrite hd(p, q) (Equation 4) as:

hd(p, q) = hl(p, q) + Vl (8)

Let Y +
l be an upper bound of Vl. Since hd(p, q) ≤ hl(p, q) +

Y +
l , we can assign U+

l to be Y +
l . We name the version of

B-IDJ where U+
l = Y +

l as B-IDJ-Y.

To maximize the pruning effect, Y +
l should be small. This

requires finding a good upper bound of Pi(p, q), which appears

in Vl. We next study how this can be done.

First, we state the following facts. Their proofs are simple

and can be found in our technical report [33].

Lemma 3. Let Si(p, q) be the probability that a random

walker starting from p reaches q (not necessarily for the first

time) at the i-th step. For any p ∈ P and q ∈ Q,

Pi(p, q) ≤ Si(p, q)

Lemma 4. Let Si(P, q) be the probability that a random

walker starting from any node p ∈ P reaches q at the i-th
step. For any p ∈ P and q ∈ Q,

Si(p, q) ≤ Si(P, q)

Based on Lemmas 3 and 4, we may use Si(P, q) as an upper

bound of Pi(p, q). However, computing Si(P, q) is costly,

since it involves a disjunction of all the events “at the i-th
step, a walker at a node p ∈ P reaches q, and any walker at

node p′ ∈ P−{p} does not reach q”, each of which consists of

many random walks. Notice that these events are not mutually

exclusive. Hence, a summation over all Si(p, q) values for

p ∈ P , which is not smaller than Si(P, q), can be used to

bound Si(P, q). We thus obtain Theorem 1 below.

Theorem 1. For any p ∈ P, q ∈ Q, and 0 ≤ l ≤ d,

hd(p, q) ≤ hl(p, q) + Y +
l (P, q)

where

Y +
l (P, q) = α

d
∑

i=l+1

[

λi ·min(
∑

p∈P

Si(p, q), 1)
]

(9)

Proof: As discussed before, Pi(p, q) ≤ Si(P, q) ≤
∑

p∈P Si(p, q). Also, Pi(p, q) ≤ 1. The theorem holds.

In B-IDJ-Y, U+
l is computed according to Equation (9).

Implementation. To execute B-IDJ-Y, we first compute

the upper bound function (i.e., Y +
l ) for every q ∈ Q and l ∈

[0, d]. Algorithm 2 is then executed. We now briefly explain

how to obtain these Y +
l values; the details can be found in

[33]. Let probV ec be a size-|VG| vector, where probV ec[v]
stores the value of

∑

p∈P Si(p, v), for every v ∈ VG. Initially,

we set probV ec[p] = 1 for every p ∈ P , and other entries

to 0. Then we perform a d-step random walk over all nodes

in VG. In the l-th step, we compute Y +
l (P, q) for each node

q ∈ Q. The running time of calculating all these Y +
l values

is O
(

d|EG|
)

. Thus, the time complexity of B-IDJ-Y is the

same as that of B-IDJ-X (i.e., O(|Q| · d|EG|)). The space

overhead of B-IDJ-Y is O(d|VG|).
Discussions. Let us compare B-IDJ-X and B-IDJ-Y by

considering the following lemma:

Lemma 5. For any q ∈ Q, Y +
l (P, q) ≤ X+

l .

Proof: Based on Equation (9), Y +
l (P, q) ≤ α

∑d

i=l+1 λ
i.

However, in Equation (7), X+
l = α

∑∞
i=l+1 λ

i. Hence, the

lemma holds.

Recall that the upper bound function, U+
l , is assigned to

be X+
l and Y +

l for B-IDJ-X and B-IDJ-Y respectively.

From Lemma 5, we see that B-IDJ-Y uses a tighter upper

bound than B-IDJ-X does. Hence, the pruning power of

B-IDJ-Y is better than that of B-IDJ-X. Compared with

F-IDJ, the performance of a 2-way join using B-IDJ-Y is

enhanced by a factor of |P |. Hence, among all the solutions

for twoWayJoin used in PJ, B-IDJ-Y is the best choice.

We verify these claims experimentally in Section VII.

D. The PJ-i Algorithm

In Step 10 of PJ (Algorithm 1), we execute the procedure

getNextNodePair to obtain the next item in LRi,Rj
. As

mentioned in Section IV, PJ does this by simply running a

2-way join algorithm. If this step is invoked frequently, the

performance of PJ can be affected. Next, let us study a better

way of implementing getNextNodePair.

Recall that in Step 4 of Algorithm 1, PJ evaluates a top-

m 2-way join query (i.e., twoWayJoin) for each edge in Q.

Since the top-m and top-(m+1) join results are highly similar,

the information computed in Step 4 is potentially useful for

the executing getNextNodePair, which yields the (m+1)-
th node pair. Based on this observation, we develop PJ-i,

which is a variant of PJ. The PJ-i algorithm uses B-IDJ to

731



evaluate 2-way joins, and reuses the information produced in

twoWayJoin to execute getNextNodePair. Specifically,

in PJ-i we make the following changes to PJ:

• Using a mutable priority queue, F , for storing the infor-

mation computed in a 2-way join. An entry of F contains four

attributes: a node pair (p, q) which is also the key attribute;

lower and upper bounds of h(p, q), i.e., h−
d (p, q) and h+

d (p, q);
and the number l of random walks used to evaluate the bounds.

The entries in F are arranged in descending order of h+
d (p, q).

We use a hash table H that maps (p, q) to its corresponding

entry in F , so that we can easily retrieve the entry with (p, q).
• A modified B-IDJ, which evaluates a top-m 2-way join

in Step 4 of Algorithm 1. We change B-IDJ by recording

its computed information in F . Specifically, in Algorithm 2,

immediately after Step 8, we consider the following tuple:

s =< (p, q), score[p], score[p] + U+
l , l >

We search the entry e with key (p, q) in F by using H. If

no entry is found, we insert s to F . Otherwise, let e be the

entry found in F . We supersede e with s if the value of l in

e (denoted by e.l) is less than s.l. Thus, we only store the

DHT bound information of h(p, q) computed with the largest

number of random walk steps performed. As discussed before,

the larger is the value of l, the tighter are the DHT bounds.

Similar maintenance operations of F are performed after Step

14. We remove the k entries from F , whose node pairs appear

in B, after Step 17.

• A new getNextNodePair. This procedure is used in

Step 10 of Algorithm 1 for generating a node pair for a 2-

way join on (Ri, Rj) with the next highest DHT score. It is

invoked when the list LRi,Rj
is exhausted. If this node pair is

found in F , then we may not have to run twoWayJoin.

Recall that all the entries in F are sorted in descending

order of h+
d (p, q). Let e1 and e2 be the first two entries

of F , with node pairs (p1, q1) and (p2, q2) respectively. If

e1.h
−
d (p1, q1) > e2.h

+
d (p2, q2), then hd(p1, q1) must be higher

than the DHT scores of node pairs stored in other entries

in F . Hence, (p1, q1) must be the answer. If e.l < d, we

compute hd(p1, q1) by performing a d-step backward random

walk from q1. Then, we update the entries in F for node pairs

affected by this backward processing (i.e., {(p, q1)|p ∈ P}).
The answer < (p1, q1), hd(p1, q1) > is then returned by

getNextNodePair. If it is not clear whether hd(p1, q1) is

the highest DHT score, we “refine” its value, by performing

min(2× e1.l, d)-step backward random walk from q1.

Discussions. Let us now compare the performance between

PJ and PJ-i. We assume that they both use B-IDJ-Y for

performing 2-way joins. The worst-case running time of PJ is

O((M2−m) ·Md|EG|), where M = max(|R1|, . . . , |Rn|). In

PJ-i, we redesign getNextNodePair so that its answer

could be retrieved from the F structure quickly. Its complexity

is O(Md|EG|), which is much faster than PJ. Our experi-

ments, discussed next, also reveals the superiority of PJ-i

over PJ. The space overhead of PJ-i (for storing F and H)

is O(|P ||Q|). In practice, some nodes in Q are pruned, and

the space required is much less. Please refer to our report [33]

for the pseudocodes and complexity analysis of PJ-i.

VII. RESULTS

In Section VII-A, we discuss the experimental setup. We

then study the effectiveness and efficiency of our n-way

join algorithms, in Sections VII-B and VII-C respectively.

Section VII-D reports some results about the 2-way join.

A. Experimental Setup

Datasets. We examine three real graph datasets below:

• DBLP [34] is a graph constructed from bibliographical

records in 2012. It is an undirected and weighted graph with

188k nodes and 1, 140k edges. Two authors are connected if

they have coauthored at least one paper. The edge weight is

the number of papers that they published together. Authors

who published in the same research area form a node set.

• Yeast [35] is a protein-protein interaction (PPI) network,

where two protein nodes are connected if they may interact.

The graph is undirected and unweighted, with 2.4k nodes and

7.2k edges. Nodes in this graph are partitioned into 13 (non-

overlapping) sets based on their types.

• YouTube [36] is a large, undirected, and unweighted graph,

with 1.1 million nodes and 3 million edges. It is extracted

from the video-sharing social network, where users can form

friendship with each other, and create interest groups. We

consider such groups as node sets.

DHT and queries. We use DHTλ as the default DHT

measure, with λ = 0.2, α = 1.25, and β = −1.25. We also

examine DHTe. We require a highly accurate DHT metric,

by setting ε = 10−6, or equivalently, d = 8 (Lemma 1). We

have tested different top-k n-way joins on the above datasets.

By default, k = 50, and n ranges from 2 to 7. We use the

MIN function to calculate the aggregate score f . We will

describe the query graphs used in these queries later. We have

implemented all the multi-way join and 2-way join algorithms

mentioned in this paper. For the AP algorithm, we use F-BJ to

implement twoWayJoin. For PJ, we use B-IDJ-Y instead.

We made these choices because F-BJ and B-IDJ-Y are

respectively the best 2-way join algorithms for AP and PJ

in all our experiments. 4 We set m to 50 for PJ and PJ-i.

For the experiments on execution time of the algorithms, each

data point is an average of running the algorithms for 10

times. Our solutions were implemented in C++ and run on

a 3.40GHz Intel Core processor PC with 4GB memory and

Windows Server 2012.

B. Effectiveness of n-way join

We first study the effectiveness of n-way join queries in

several scenarios. Since all our n-way join algorithms produce

the same answer, we only present the result for PJ-i.

1. Triangle and chain. We first examine the result of a top-5

3-way join on DBLP. The three node sets consist of respective

experts from Database (DB), Artificial Intelligence (AI), and

System (SYS) areas, forming a “triangle” query graph, as

shown in Figure 2(a). For each node set, we select 100 authors

4F-BJ performs the best for AP, because AP computes all node pairs for
each node set, and hence the pruning techniques provided by more advanced
algorithms (e.g., F-IDJ) are not useful.

732



TABLE III: Top-5 3-way join on DBLP.

Triangle Chain

DB AI SYS DB AI SYS

1 Franklin Jordan Patterson Hellerstein Guestrin Stoica

2 Halevy Weld Gribble Madden Guestrin Balakrishnan

3 Deshpande Guestrin Seshan Hellerstein Guestrin Shenker

4 Stonebraker Pfeffer Seltzer Hellerstein Guestrin Maniatis

5 Garofalakis Jordan Brewer Deshpande Guestrin Seshan

who have the highest number of publications. We list the top

5 answers of this query in Table III. In the rank-1 answer, the

three researchers (Franklin, Jordan, and Patterson) indeed work

closely with each other. They are also from the same lab. The

researchers in the rank-2 answer (Halevy, Weld, and Gribble)

also come from the same school. In the rank-3 answer, the

three experts (Stonebraker, Pfeffer, and Seltzer) have worked

on sensor data before. Hence, the people returned by this query

in this experiment are closely connected.

We have also put the same node sets in a “chain query

graph”: AI is linked to DB, which is connected to SYS.

The structure of this query graph is the same as that of

Figure 2(b). The 3-way join results, as shown in Table III,

are quite different from that of the triangle query graph. In

particular, we have verified that the researchers from AI and

SYS did not have close collaboration relationship.

2. Link prediction. Next, we consider the usefulness of

the 2-way join in link prediction. Particularly, we perform a

2-way join on two node sets, and check whether the node

pairs returned by the query correctly predict that an edge will

be generated between the nodes. For the datasets tested, we

distinguish between a test graph T , on which the 2-way join is

applied, and a true graph G, where we verify the correctness of

the prediction. The three datasets described in Section VII-A

are considered to be true graphs. For each dataset, the node

sets (P and Q) and T are defined as follows:

• DBLP: P and Q are respectively DB and AI; T is the

co-authorship graph by retaining only the edges before 1st

January, 2010 from the DBLP website [34].

• Yeast: P and Q are respectively 3-U and 8-D, which are

the two largest partitions of Yeast; T is obtained by randomly

removing half of the edges between the node pairs in (P,Q)
from Yeast.

• YouTube: P and Q are anonymous groups with ids 1 and

5; T is again formed by randomly removing half of the edges

between the node pairs in (P,Q) from YouTube.

To measure link prediction quality, we first perform a top-k
2-way join on T , based on the query graph in Figure 1(b).

For each node pair (p, q) that appears in the top-k result, but

not in T , we classify it as:

• a true positive, if (p, q) in G; or

• a false positive, if (p, q) is not in G.

By varying the value of k, we plot the true and false positives

on ROC curves, and compute their AUC (i.e., area under the

ROC curve). These two metrics are commonly used to measure

accuracy, and is robust to the skewness between possible and

existing edges [37]. Their values range from zero (low) to

one (high). Figure 6(a) shows the ROC curves for the three

datasets. Observe that at a relatively low false positive rate

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

Yeast
DBLP
YouTube

(a) ROC curves.

0 0.2 0.4 0.6 0.8 1
0.92

0.93

0.94

0.95

λ

A
U

C

 

 

DHT
λ

DHT
e

(b) AUC (Yeast).

Fig. 6: Link prediction (2-way join).

TABLE IV: AUC scores for link- and 3-clique-prediction.

Dataset link-prediction 3-clique-prediction

Yeast 0.9453 0.9536

DBLP 0.9222 0.9998

YouTube 0.9544 0.9609

(about 0.1), the joins on the three datasets achieve high true

positive rates at more than 0.7. Their corresponding AUC

scores, as reported in Table IV, are also high (more than 0.9).

Hence, the 2-way joins perform well in link prediction.

3. 3-clique prediction. We next test whether a 3-clique of

a true graph G can be correctly predicted by running a 3-way

join on the test graph T . The three node sets (P , Q, and R)

are connected as a triangle query graph (c.f. Figure 2(a)). The

configuration of each dataset is as follows:

• DBLP: P , Q and R are respectively DB, AI, and SYS;

T is the graph on 1st January, 2010, obtained from [34].

• Yeast: P , Q, and R are groups 3-U, 5-F, and 8-D; T is

derived by randomly removing an edge from each 3-clique in

Yeast, with each node of the 3-clique in P , Q, and R.

• YouTube: P , Q, and R are groups with ids 1, 5 and 88; T
is derived by randomly removing an edge from each 3-clique

in YouTube, with each node of the 3-clique in P , Q, and R.

We use the same prediction quality measure described

previously. Table IV shows that AUC scores for the three

datasets are close to 1. This reflects that the 3-way join is

also effective in predicting 3-way cliques.

4. DHTλ and DHTe. Figure 6(b) shows the AUC for

different values of λ, using the 2-way join with DHTλ as

the similarity measure. We see that the AUC for DHTλ is

consistently higher than 0.94, and attains the highest value

at λ = 0.6. The AUC for DHTe is also high. Hence, both

DHT measures are good candidates for link prediction. The

effectiveness results of the two measures in other experiments

are similar; they are omitted due to limited space.

C. Efficiency of n-way join

We next examine the performance of the n-way join algo-

rithms. Here we present the results for Yeast and DBLP. The

conclusions obtained for YouTube are similar, and are omitted

due to space constraints. The full details can be found in [33].

1) Yeast: Effect of n (Figure 7(a)). We first examine the

performance of the n-way join algorithms under different

values of n. The query graph associated with each n-way

join is a chain, where the node R1 has a directed edge

pointing to R2, R2 points to R3, and so on. Observe that

the running times of all the four algorithms increase with n.

733



2 3 4 5 6 7
10

−2

10
0

10
2

10
4

n

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

NL
AP
PJ
PJ−i

(a) Running time vs. n

2 3 4 5 6
0

100

200

300

400

|E
Q

|

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

AP

PJ

PJ−i

(b) Running time vs. |EQ|

10 50 100 200
10

−2

10
0

10
2

k

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

AP
PJ
PJ−i

(c) Running time vs. k

10 20 50 100 200 500
10

−1

10
0

10
1

m

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

PJ
PJ−i

(d) Running time vs. m

Fig. 7: n-way join on Yeast

2 3 4 5 6
10

1

10
3

10
5

n

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

AP
PJ
PJ−i

(a) Running time vs. n

2 3 4 5 6
0

200

400

600

800

1000

|E
Q

|

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

PJ
PJ−i

(b) Running time vs. |EQ|

10 50 100 200
0

100

200

300

k

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

PJ
PJ−i

(c) Running time vs. k

0 20 50 100 200
60

80

100

120

m

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

PJ
PJ−i

(d) Running time vs. m

Fig. 8: n-way join on DBLP

NL is the slowest, and cannot complete in a reasonable time

at n ≥ 3. The performance of AP is better than NL, since

it computes less number of DHT scores and uses rank join.

It is outperformed by PJ-i by an order of magnitude, since

PJ-i does not generate all node pairs for every pair of node

sets, and needs much less DHT computations than AP. This

is supported by the fact that under a wide range of values

of k, less than 1% of the 2-way join results are included in

the n-way join answers. The execution time of PJ-i is about

20 times faster than PJ. Whenever getNextNodePair is

invoked, PJ-i needs much less time than PJ, which runs a

2-way join from scratch. We next focus on AP, PJ, and PJ-i.

Effect of |EQ| (Figure 7(b)). We next vary the number

of edges in Q that contains 3 nodes. For example, when

|EQ| = 2, the nodes are “chained” by two edges; when

|EQ| = 3, Q forms a 3-clique. The detailed configurations

of Q are described in [33]. Again, AP is the worst, and PJ-i

performs the best. At |EQ = 4|, the respective execution times

of AP, PJ and PJ-i are 210, 32, and 2 seconds.

Effect of k (Figure 7(c)). We next consider a 3-way

join using a chain query graph. With m fixed, when k
increases, the chances of both PJ and PJ-i for running

getNextNodePair increase. PJ-i obtains the next node

F−BJ F−IDJ B−BJ B−IDJ−X         B−IDJ−Y
0.01

0.1

1

10

100

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

(a) 2-way join algorithms

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

0.2

0.4

ε

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

B−BJ
B−IDJ−X
B−IDJ−Y

(b) Running time vs. ε

0.2 0.4 0.6 0.8
0

4

8

12

λ

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

B−BJ
B−IDJ−X
B−IDJ−Y

(c) Running time vs. λ

10 20 50 75 100
10

−2

10
−1

10
0

k

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

B−BJ
B−IDJ−X
B−IDJ−Y

(d) Running time vs. k

Fig. 9: 2-way join on Yeast

pair faster, and consistently outperforms PJ. At k = 200,

PJ-i is 2 orders of magnitude faster PJ. Notice that the both

solutions are faster than AP.

Effect of m (Figure 7(d)). We examine the effect of m
on PJ and PJ-i in a 3-way join that uses a chain query

graph. Recall that both solutions run a top-m 2-way join for

every query graph edge. When m is small (from 10 to 20),

PJ does not acquire enough information through the top-m
join for evaluating the n-way join. Hence, it has to constantly

invoke getNextNodePair, which is essentially a top-s join

(with s > m). This can seriously affect the efficiency of

PJ. PJ-i is less affected, since getNextNodePair can

be done much faster. When m ≥ 100, the performance of

both algorithms converge, since the top-m join results are

sufficient for constructing the n-way join answers, without the

need of invoking getNextNodePair. However, this may be

wasteful, since some 2-way join answers may not contribute

to the n-way join. We further observe that the performance of

PJ-i is less sensitive to m, and hence m can be relatively

easy to set compared with PJ. Our default value of m is 50,

which is the same as k; for PJ-i, its running time is close

to the optimal (at m = 100).

2) DBLP: We perform the same set of experiments for

DBLP. As shown in Figure 8, their trends and conclusions

are similar to that of Yeast. The only difference is that the

database size of DBLP is much larger than Yeast, and so AP

performs badly in most experiments. Hence, we only show

some of its results in Figure 8(a).

D. Efficiency of 2-way join

Finally, we study the performance of 2-way join algorithms.

Due to space constraints, we show the results for Yeast and

DBLP only. The results for YouTube can be found in [33]. For

these experiments, we use the same node sets described in the

link prediction experiment (Section VII-B).

Figure 9 presents the results on Yeast. The running times

of all the five algorithms are shown in Figure 9(a). We

can see that our backward processing algorithms, namely

B-BJ, B-IDJ-X, and B-IDJ-Y, significantly outperform

734



0.2 0.4 0.6 0.8
10

0

10
2

10
4

λ

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

 

 

B−BJ
B−IDJ−X
B−IDJ−Y

(a) Running time vs. λ

1 2 3 4
95

96

97

98

99

100

iteration

n
o
d
e
s
 p

ru
n
e
d
 (

%
)

 

 

B−IDJ−X
B−IDJ−Y

(b) Performance analysis

Fig. 10: 2-way join on DBLP

the forward processing counterparts (i.e., F-BJ and F-IDJ).

Specifically, B-BJ is more than 100 times better than F-BJ,

because it performs backward random walk and addresses

an improvement of a factor of O(|P |). For the same reason,

both B-IDJ variants are two orders of magnitude faster than

F-IDJ. We next focus on the backward processing algorithms.

Effect of ε (Figure 9(b)). Both B-IDJ methods enable the

pruning of nodes from the Q set during their random walks.

Since their pruning is effective, they are 6–8 times better than

the B-BJ, especially when ε is small.

Effect of λ (Figure 9(c)). As λ, the decay factor, increases,

more steps of random walks are needed. Moreover, X+
l

increases with λ, and so the pruning is less effective. Thus, the

running time of B-IDJ-X increases with λ. When λ equals

to 0.9, the B-IDJ-X needs almost the same running time

as B-BJ does. However, by using Y +
l , which is much tighter

and less sensitive to λ, B-IDJ-Y achieves up to 4 times better

performance, at large λ values.

Effect of k (Figure 9(d)). The running time of B-BJ is not

affected by the value of k, since it computes all-pair DHTs.

Both B-IDJ methods consume more time as k increases,

because more results need to be produced. As a result, more

random walks are required, and more nodes in Q need to be

examined. However, they are still better than B-BJ.

Our results for DBLP are shown in Figure 10. Figure 10(a)

shows the running times under different λ, the trend of which

is similar to Figure 9(c). The advantage of B-IDJ-Y is more

profound at large λ. A detailed analysis in Figure 10(b) shows

the fraction of nodes pruned in the first four iterations at

λ = 0.7. B-IDJ-Y prunes more than 96.5% and 98.5% nodes

from Q after the first and the second iterations respectively.

However, B-IDJ-X fails to prune any node in the first two

iterations, since a looser bound is used. Since early iterations

are also cheaper to handle, B-IDJ-Y is highly efficient, and

we use it in our PJ algorithms.

VIII. CONCLUSIONS

The prevalence of graphs in emerging applications has

recently attracted a lot of attention. In this paper, we study

the n-way join operator for graph databases, which can be

used to discover interesting relationship among graph nodes.

The best algorithm for running this query is PJ-i, which

uses B-IDJ-Y, an efficient 2-way join solution. Our extensive

evaluation shows that PJ-i is highly effective and efficient.

We plan to extend the study of n-way join for other proximity

measures on graphs, including Personalized PageRank [20],

SimRank [21], and PathSim [38].

ACKNOWLEDGMENTS

Wangda Zhang and Reynold Cheng were supported by

the Research Grants Council of Hong Kong (RGC Project

HKU 711309E), and the University of Hong Kong (Project

201211159083). We would like to thank the reviewers for their

insightful comments.

REFERENCES

[1] C. Aggarwal and H. Wang, Managing and mining graph data. Springer,
2010.

[2] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” JASIST, 2007.

[3] M. Brand, “A random walks perspective on maximizing satisfaction and
profit,” in SIAM, 2005.

[4] Q. Mei, D. Zhou, and K. Church, “Query suggestion using hitting time,”
in CIKM. ACM, 2008.

[5] D. Aldous and J. Fill, “Reversible markov chains and random walks on
graphs,” 2002.

[6] P. Sarkar and A. Moore, “A tractable approach to finding closest
truncated-commute-time neighbors in large graphs,” in UAI, 2007.

[7] A. Joshi, R. Kumar, B. Reed, and A. Tomkins, “Anchor-based proximity
measures,” in WWW. ACM, 2007.

[8] Z. Guan, J. Wu, Q. Zhang, A. Singh, and X. Yan, “Assessing and ranking
structural correlation in graphs,” in SIGMOD, 2011.

[9] P. Sarkar and A. Moore, “Fast nearest-neighbor search in disk-resident
graphs,” in KDD. ACM, 2010.

[10] M. Roth et al., “Suggesting friends using the implicit social graph,” in
KDD. ACM, 2010, pp. 233–242.

[11] N. Krogan et al., “Global landscape of protein complexes in the yeast
saccharomyces cerevisiae,” Nature, 2006.

[12] J. Dittrich and B. Seeger, “Gess: a scalable similarity-join algorithm for
mining large data sets in high dimensional spaces,” in KDD, 2001.

[13] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in VLDB, 2006.

[14] C. Xiao, W. Wang, X. Lin, J. Yu, and G. Wang, “Efficient similarity
joins for near-duplicate detection,” TODS, 2011.

[15] T. Brinkhoff, H. Kriegel, and B. Seeger, “Efficient processing of spatial
joins using R-trees,” SIGMOD, 1993.

[16] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Distance join queries
on spatial networks,” in SIGSPATIAL GIS. ACM, 2006.

[17] Y. N. Silva, W. G. Aref, and M. H. Ali, “The similarity join database
operator,” in ICDE. IEEE, 2010.

[18] L. Zou, L. Chen, and M. Özsu, “Distance-join: Pattern match query in
a large graph database,” VLDB, 2009.

[19] L. Sun, C. Cheng, X. Li, D. Cheung, and J. Han, “On link-based
similarity join,” VLDB, 2011.

[20] G. Jeh and J. Widom, “Scaling personalized web search,” in WWW.
ACM, 2003, pp. 271–279.

[21] ——, “Simrank: a measure of structural-context similarity,” in KDD.
ACM, 2002.

[22] F. N. Afrati and J. D. Ullman, “Optimizing multiway joins in a map-
reduce environment,” TKDE, 2011.

[23] X. Zhang, L. Chen, and M. Wang, “Efficient multi-way theta-join
processing using mapreduce,” VLDB, 2012.

[24] D. Zhang, V. J. Tsotras, and B. Seeger, “Efficient temporal join process-
ing using indices,” in ICDE. IEEE, 2002.

[25] J. Enderle, M. Hampel, and T. Seidl, “Joining interval data in relational
databases,” in SIGMOD. ACM, 2004.

[26] N. Mamoulis and D. Papadias, “Multiway spatial joins,” TODS, 2001.
[27] A. Corral et al., “Multi-way distance join queries in spatial databases,”

Geoinformatica, vol. 8, no. 4, pp. 373–402, 2004.
[28] K. Schnaitter and N. Polyzotis, “Evaluating rank joins with optimal

cost,” in PODS. ACM, 2008.
[29] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Supporting top-k join

queries in relational databases,” VLDB, 2004.
[30] J. Finger and N. Polyzotis, “Robust and efficient algorithms for rank

join evaluation,” in SIGMOD. ACM, 2009.
[31] J. Hopcroft and D. Sheldon, “Manipulation-resistant reputations using

hitting time,” Algorithms and Models for the Web-Graph, 2007.
[32] P. Sarkar and A. Moore, “Fast dynamic reranking in large graphs,” in

WWW. ACM, 2009.
[33] W. Zhang, R. Cheng, and B. Kao, “Evaluating multi-way joins

over discounted hitting time,” The University of Hong Kong,
http://www.cs.hku.hk/research/techreps/document/TR-2013-07.pdf,
Tech. Rep., 2013.

[34] M. Ley et al., “Dblp-some lessons learned,” VLDB, 2009.
[35] D. Bu et al., “Topological structure analysis of the protein–protein

interaction network in budding yeast,” Nucleic Acids Research, vol. 31,
no. 9, pp. 2443–2450, 2003.

[36] A. Mislove et al., “Measurement and analysis of online social networks,”
in SIGCOMM. ACM, 2007.

[37] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[38] Y. Sun et al., “Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks,” VLDB, 2011.

735


