
Title ProbTree: a query-efficient representation of probabilistic
graphs

Author(s) Maniu, S; Cheng, R; Senellart, P

Citation
The 1st International Workshop on Big Uncertain Data (BUDA
2014) in conjunction with SIGMOD/PODS 2014, Snowbird, UT., 22
June 2014.

Issued Date 2014

URL http://hdl.handle.net/10722/203649

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38056392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ProbTree: A Query-Efficient Representation
of Probabilistic Graphs

Technical Paper

Silviu Maniu Reynold Cheng
Department of Computer Science

University of Hong Kong
Pokfulam Road, Hong Kong

{smaniu,ckcheng}@cs.hku.hk

Pierre Senellart
Institut Mines-Télécom; Télécom ParisTech

CNRS LTCI
75634 Parix Cedex 13, France

pierre.senellart@telecom-paristech.fr

ABSTRACT
Information in many applications, such as mobile wireless
systems, social networks, and road networks, is captured by
graphs, in many cases uncertain. We study the problem of
querying a probabilistic graph; in particular, we examine
“source-to-target” queries, such as computing the shortest
path between two vertices. Evaluating ST-queries over prob-
abilistic graphs is #P-hard, as it requires examining an
exponential number of “possible worlds”. Existing solutions
to the ST-query problem, which sample possible worlds, have
two downsides: (i) many samples are needed for reasonable
accuracy, and (ii) a possible world can be very large. To
tackle these issues, we study the ProbTree, a data struc-
ture that stores a succinct representation of the probabilistic
graph. Existing ST-query solutions are executed on top of
this structure, with the number of samples and possible world
sizes reduced.

1. INTRODUCTION

Probabilistic graphs. Graph data are prevalent in many
important and emerging applications. In online social net-
works, such as LinkedIn and Facebook, friends are intercon-
nected to form complex social networks [9]. Mobile devices
form ad-hoc networks through WiFi technologies [11]. In a
road network, cities are connected by roads [1]. In biological
networks, proteins interact with each other in a complex
manner [3]. Substantial research has been devoted to the
effective processing of graph queries, including reachabil-
ity [5], shortest paths [8], frequent subgraphs [16], and graph
patterns [4].

In the applications above, data uncertainty is inherent.
A natural way to capture graph uncertainty is to represent
them as probabilistic graphs [20, 10]. There exist two main
representations of edge uncertainty in probabilistic graphs.
In the edge-existential model, each edge is augmented with a
probability value, which indicates the chance that the edge
exists (Figure 1a). This graph captures the reliability and
failure in computer network connections [10]. It can also
represent the uncertainty in social and biological networks [3].
In the weight-distribution model, each edge is associated with
a probability distribution of weight values [14]. For example,
the traveling time between two vertices in a road network
can be represented by a normal distribution.

ST-queries. The problem of evaluating queries in large prob-
abilistic graphs has been considered only recently. Some
representative works include finding shortest paths and relia-
bility estimation [10], searching nearest neighbors [17], and
mining frequent subgraphs [21]. In this paper, we study the
evaluation of an important query class, known as the source-
to-target query, or ST-query, which are defined over source
vertex s and target vertex t in a probabilistic graph, such
as reachability queries (RQ) and shortest distance queries
(SDQ).

To query a probabilistic graph G, the possible world seman-
tics (PWS) is often used [6]. Conceptually, G is interpreted
as a set of possible worlds, each of which is a definite (non-
probabilistic) graph itself. Each possible world is given a
probability of its existence derived from edge probabilities.
The semantics of evaluating a query q (e.g., an SDQ) on G in-
volves running the deterministic version of q (e.g., computing
the shortest distance between two vertices) on every possible
world. This approach is intractable, due to the exponential
number of of possible worlds, and indeed the problem is
#P-hard [20].

To improve ST-query efficiency, researchers have proposed
sampling solutions [10, 17], where possible worlds with high
existential probabilities are extracted. These algorithms,
which examine fewer possible worlds than the PWS, are
more efficient. However, these solutions suffer from two major
downsides, which can hamper query efficiency significantly:
(i) a possible world can be very large, directly affecting query
efficiency; and (ii) to achieve high accuracy, a lot of possible
world samples may need to be generated.

Our contributions. Our goal is to tackle these issues, so
that an ST-query can be efficiently answered. Our main
idea is to evaluate the query on G(q), a weight-distribution
probabilistic graph derived from G. Let q(s, t) be an ST-
query with source vertex s and target vertex t. The result of
running q(s, t) on G(q) should be similar (ideally, identical)
to that of q(s, t) executed on G. Consider an RQ, q(0, 4),
executed on the graph in Figure 1a. There is only one path
of probability 1 between vertex 0 and 4. Correspondingly,
G(q) is a directed edge 0 → 4, with {1 : 1.00} denoting a
unit-length path between vertex 0 and 4 of probability 1.
Answering q(0, 4) on G(q) is the same as evaluating q(0, 4)
on G – both tell us that vertex 0 reaches vertex 4 with
probability 1. Figure 1c illustrates G(q) for q(1, 4). Here,
edge 3→ 4 is not included, since it does not affect the result
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Figure 1: Illustrating (a) a probabilistic graph; (b) a possible
world; and (c), (d) query-efficient representations

of q(1, 4). Also, the subgraph containing vertex 1, 5, and 6
is abstracted by a directed edge 6 → 1, which means that
there are two paths from vertex 6 to vertex 1, with lengths 1
and 2 and respective probabilities of 0.75 and 0.0625.

In these examples, G(q) is smaller than G. Hence, the pos-
sible world graphs sampled from G(q) are smaller than those
generated from G, increasing both efficiency and accuracy.

How can a small G(q) be obtained? We propose to use a
ProbTree, a structure derived from G. Given a query q(s, t),
the ProbTree is decomposed to yield G(q). We require the
ProbTree to be of size comparable to G. Moreover, the time
for indexing and retrieving a ProbTree should be small. To
achieve these goals, we show that the ProbTree must be in the
form of a tree. In the following we examine structures called
SPQR trees [12], and implement ProbTrees by incorporating
probabilistic graph information into SPQR trees.

2. FORMAL MODEL

Probabilistic graphs. We begin by giving the definition
of a probabilistic graph, modeled as a directed graph with
(finite) distance probability distributions on edges, and the
notion of possible world induced by such a graph.

Definition 1. A probabilistic graph is a triple G = (V,E, p)
where: (i) V is a set of vertices; (ii) E ⊆ V × V is a set

of edges; (iii) p : E → 2Q+×(0,1] is a function that as-
signs to each edge a finite probability distribution of edge
weights, i.e., each edge e is associated with a partial map-
ping p(e) : Q+ → (0, 1] with finite support supp(p(e)) such
that

∑
w∈supp(p(e)) p(e)(w) 6 1. We commonly denote V (G),

E(G), pG the vertices, edges, and probability assignment func-
tion of a given probabilistic graph G.

A given edge e is considered non-existing in the graph with
probability 1−

∑
w∈supp(p(e)) p(e)(w). Probability distribu-

tions on different edges are considered independent.

Definition 2. Let G = (V,E, p) be a probabilistic graph.
The (weighted) graph G = (V,EG, ω) with EG ⊆ V × V and
ω : EG → Q+ is called a possible world of G if EG ⊆ E and
ω is such that, for every edge e ∈ EG, ω(e) ∈ supp(p(e)).
We write G v G. The probability of the possible world G is
defined by:

Pr(G) :=
∏

e∈EG

p(e)(w(e))×
∏

e∈E\EG

1−
∑

w′∈supp(p(e))

p(e)(w′)

 .

ST-queries on probabilistic graphs. In this paper, we fo-
cus on source-target distance query types (or ST-query for
short), which can be answered on the discrete distance distri-
bution of the input pair of vertices. The distance distribution
p(s→ t) between 2 vertices s, t ∈ V is a set of tuples of the
form (di, pi), where pi is the probability that the shortest
distance between s and t is di.

Examples of ST-queries include:
Reachability: probability that t is reachable from vertex

s.
Distance-constraint reachability: probability that t is

reachable from vertex s within distance d.
Expected shortest distance: expected value of the dis-

tance distribution from s to t.
All query types above are computationally hard on proba-

bilistic graphs as shown in [20].

Indexes on probabilistic graphs. To define indexes on
probabilistic graphs, we use the notion of transformation
system.

Definition 3. A probabilistic graph transformation sys-
tem is a pair (index, retrieve) where: (i) index is a function
that takes as input a probabilistic graph G and produces as
output some arbitrary object I = index(G); (ii) retrieve is an
operator that, given an arbitrary (s, t) ST-query q in G (where
s and t are the source and target of the query), and the index
I obtained by applying index on G, produces a probabilistic
graph G(q) = retrieveq(I) such that s and t are vertices of
G(q).

In other words, a transformation encodes a probabilistic
graph into an structure that can be used to build specific
probabilistic graphs for pairs of vertices. Since the pair
of vertices can be found in the target probabilistic graph,
ST-queries on this pair can be run on top of this target graph.

For a transformed graph, there are two classes of important
properties to be taken into account: (i) the loss, quantified as
the difference between the probabilities returned by the trans-
formed graph and those of the original graph, and (ii) the
efficiency, quantified as the time and space cost of evaluation
on the transformed graph. We detail the formalization of
each of the two types below.

We are especially interested in lossless translations, such
that a ST-query produces the same result on the transfor-
mation as on the original probabilistic graph; for generality,
we use a common quantitative notion of loss for a trans-
formation, the mean squared error (MSE). We consider a
transformation lossless if, for all possible queries, its MSE is
equal to 0.

A transformation system is called an efficient represen-
tation if it is efficient for answering a given kind of query.
Formally:



Definition 4. A transformation system (index, retrieve)
is said to be an efficient representation for query class Q if
the following properties are satisfied: (i) index is a polynomial-
time function; (ii) for every probabilistic graph G, |index(G)| =
O(|G|) (i.e., the space occupied by the index is a linear func-
tion of the space occupied by the original graph); (iii) for
every query q ∈ Q retrieveq is linear-time computable.

In addition, we look for representations that allow efficient
query evaluation (for a query class Q) on the transformed
graph: for every probabilistic graph G and query q ∈ Q,
the running time of retrieveq on index(G) together with the
running time of q on G(q) should be as little as possible, and
especially smaller than query evaluation over the original
graph.

3. INDEPENDENCE AND PROBTREE
We now turn to answering an important question: is it

possible to achieve an efficient representation of probabilistic
graphs (with no or limited loss)? We argue next that this
is possible by reducing the independent subgraphs of a prob-
abilistic graph, thus obtaining a tree decomposition of the
graph, called a ProbTree.

Independent subgraphs. By definition, each edge in a prob-
abilistic graph – along with its associated probability distri-
bution – is independent of probability distributions of the
other edges. The principle behind a lossless compression is to
collapse larger subgraphs to edges, such that independence
is maintained:

Definition 5. We define an independent subgraph of a
probabilistic graph G as a connected induced subgraph S ⊆
G with arbitrarily many internal vertices and at most two
endpoint vertices v1, v2 such that: (i) in G, the internal
vertices are connected, in an undirected sense, only to other
internal vertices of S or to the endpoint vertices; (ii) the
endpoints can have links to other vertices in the graph G, to
internal vertices, and to themselves.

We can use these independent subgraphs to reduce the
graph to an equivalent subgraph by replacing S with edges
v1 → v2 and v2 → v1, with v1 and v2 the two endpoints and
associated probability distributions p(v1 → v2), p(v2 → v1)
computed from S. To understand why this is possible, we
need to introduce the notion of joint distance probability
distributions:

Definition 6. Given G = (V,E, p) and a subset V ′ =
{ v1 . . . vn } of V , the joint distance distribution for V ′ in G
is the probability distribution over tuples of n2 integers that
gives for every tuple {d11, . . . , dij , . . . , dnn} the probability:

Pr
[ ∧

16i6n
16j6n

p(vi → vj) = dij
]
.

The above basically characterizes the semantic of the prob-
abilistic graph in terms of ST-queries: a query on any pair of
vertices on the subset V ′ will yield the same result on any two
graphs that have the same joint distribution. A fundamental
result is the following: Independent subgraphs are exactly
those that can be removed from the graph while preserv-
ing joint distance probability distributions for non-removed
vertices.

Theorem 1. Let G = (V,E, p) be a probabilistic graph and
V ′ a non-empty subset of vertices of V that are connected in
G. We assume that, for each edge e ∈ E:∑

w∈supp(p(e))

p(e)(w) < 1.

There exists a probabilistic graph G′ = (V \V ′, E′, p′) such
that the joint distance distributions for V \V ′ is the same in
G′ as in G if and only if V ′ is the set of internal vertices of
an independent subgraph of G.

In other words, Theorem 1 states that the independent
graph approach is the unique manner in which a lossless
compression can be obtained for a probabilistic graph.

ProbTree. Our definition of independent subgraphs relies
on vertices in the graphs which separate the graph into two
independent components. We can decompose the graphs
into the corresponding independent subgraphs in a recursive
way, by repeatedly identifying endpoints and sub-dividing
the subgraphs until it is not longer possible to do so. It is
straightforward to verify that such a recursive decomposition
– our desired index I = index(G) – results in a tree where
nodes are independent subgraphs and edges appear between
subgraphs having common endpoints. We call such a tree
decomposition a ProbTree.

4. SPQR TREES
We introduce in this section one method for obtaining a

ProbTree: SPQR trees. For a graph G, a vertex set S ⊆ V (G)
is called a separator for G if the graph induced by V (G)\S
is disconnected. Given an integer k, a graph G is called
k-connected if V (G)\S is connected for all S ⊆ V (G), |S| < k,
i.e., there exists no separator for G of size less than k. 0-
connected graphs are connected graphs in the usual sense,
1-connected graphs contain cut vertices which disconnect
the graph into biconnected components, and 2-connected
graph have separation pairs of vertices which separate the
graph into triconnected components. These definitions link
directly to our desired properties for independent subgraphs.
Connected, biconnected, and triconnected components are
exactly independent subgraphs of 0, 1 and 2 endpoints, and
we aim to decompose the graph into a tree containing them.

Tutte [19] studied the structure of the triconnected compo-
nents of a graph, and Hopcroft and Tarjan [13] gave optimal
algorithms for decomposition. They showed that the tri-
connected components of a graph are unique and form a
tree in an unique manner. By using the refined triconnected
component decomposition algorithms – SPQR trees [7] – as
“black boxes”, we can construct the ProbTree.

Indexing. Our ProbTree T consists of nodes corresponding
to the triconnected components of the graph. Two types of
edges are present in the bags of the ProbTree: real edges
already existing in G, and skeleton edges, which correspond
to the reduced triconnected components in the tree children.
The decomposition of the graph G in the resulting index
I = index(G) corresponds exactly to the construction of the
SPQR tree, together with the computation of the probability
distributions for each skeleton edge in the graph.

There are three types of internal graphs in an SPQR tree,
and by extension in T [19]: (i) a cycle of at least three
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Figure 2: SPQR tree of the graph in Figure 1.

edges; the corresponding tree bags are called serial or S-bags,
(ii) two vertices having parallel edges; the corresponding
bags are called parallel or P-bags, and (iii) a triconnected
graph not containing any of the above two structures; the
corresponding bags are called rigid or R-bags.

Example 1. We present in Figure 2 the SPQR ProbTree
resulting from the graph in Figure 1. Note that each edge
of the original graph (shown solid, while skeleton edges are
dashed) is present only in one bag, but vertices can be repeated
across bags. The SPQR ProbTree is composed of three S-bags,
one P-bag and one R-bag. Each bag contains the union of
the induced subgraph of G and the skeleton edges. Moreover,
each bag contains a triconnected component.

Take bag (δ) as an example. It consists of three vertices
and two edges of G (1, 2, 6 and 1→ 2, 2→ 6), and a skeleton
edge propagated from node (ε), summarizing paths from 6 to 1
in node (ε) (there is no path from 1 to 6 in node (ε)). Vertices
2 and 6 are a separation pair for the subgraph induced by the
vertices in bags (δ) and (ε), i.e., vertices 1, 2, 5, 6.

Bag (β) is an R-bag, and the bag is a P-node, containing
two parallel undirected skeleton edges, corresponding to the
two branches of the SPQR tree.

Algorithm 1 details the index operator using SPQR trees.
It outputs a ProbTree (T ,B).

The first step is the application of the SPQR tree algo-
rithms from [12], which creates a tree T and a mapping B
from bags of T to sets of vertices of G. We omit here the
details of the SPQR algorithm, as it is not our focus, and we
direct the reader to [12] for an up-to-date description of the
working of the decomposition algorithm. Bags B(n) are then
populated with the original edges from G which are between
vertices in B(n).

The second step is the pre-computation and upwards prop-
agation of distance probabilities of the separation pairs in
T , i.e., function precompute-propagateSPQR. We use here
the observation that the distance distributions between end-
points can be computed in two directions. For example, take
bag (β). Edge 0→ 4 can either be computed as coming from
the independent subgraph defined by bags (α) and (γ), or by
the independent subgraph defined by bags (β), (δ), and (ε).

Algorithm 1: indexSPQR(G)

input : a probabilistic graph G, width parameter w
output : indexSPQR(G) = (T ,B)

1 G← undirected, unweighted graph of G;
2 (B, T )← compute-spqr(G);
3 for n node of T do
4 copy the edges of G to B(n);
5 for l, leaf of T do
6 root T at l; for h← height(T ) to 0 do
7 for node n of T s.t. level(n) = h do
8 precompute-propagateSPQR(B(n), T );

9 root the tree at the node with largest bag;
10 return (T ,B);

This bi-directional computation is very useful for the retrieve
step, as we shall see. We can perform this computation in
an optimal manner, by successively rooting T at each of its
leaves l, and then propagate the computation upwards. For
every node n of T , we first need to collect the computed
distributions of the separation pairs corresponding to bags of
children of n. Then the probability distribution correspond-
ing to the endpoints {v1, v2}, i.e., p(v1 → v2) and p(v2 → v1),
is computed, if it has not been computed previously when
rooting the tree at other leaf bags.

Depending on the type of bag, we have two ways of com-
puting the endpoint distance distributions. For S-bags and
P-bags, these can be computed exactly using convolutions of
distance distributions. In the case of a P-bag, the distance
distributions between endpoints can be computed using a
MIN convolution – denoted in the following as � – of all the
parallel edges in the bag. This computation is linear in the
maximum distance of the input distributions. In the case
of an S-bag, the endpoint distribution can be computed by
applying a SUM convolution of the path between v1 and v2
passing through the other vertices in the bag – denoted as ⊕
– followed by a MIN convolution with the direct edge distri-
bution. The SUM convolution is quadratic in the maximum
distance of the input distributions. For more details on the
computation of convolutions of probability distributions, we
refer the reader to [2].

For R-bags, it is expensive to compute exactly the end-
point distribution in the general case, as the graph present
in the bag can have an arbitrary configuration. In this case,
we can compute the endpoint distribution using sampling,
choosing the number of samples by applying the Chernoff
and Hoeffding inequalities, to obtain an (ε, δ) multiplicative
guarantee. We can then use the per-bag guarantees to com-
pute the overall guarantees on the distributions in the root
bag, in the spirit of [18].

Algorithm 2 shows the pre-computation step. Note that
for P-bags, we do not need to do anything in the second step,
as the collection of children nodes will already take care of
the MIN convolution of the parallel edges.

Retrieval. When answering (s, t) ST-queries on the Prob-
Tree we have two main cases. First, when both s and t are
present in the root node, we only need to query the root bag
without the need to look in the decomposition. The second
case is the most interesting one: when at least one of s, t are
not in the root, but are vertices in the decomposition bags.



Algorithm 2: precompute-propagateSPQR(B, T )

input : bag B, tree T
1 for distribution pc(u→ v) in children of B do
2 p(u→ v)← p(u→ v)� pc(u→ v) ;
3 for edge v1 → v2 between endpoints v1, v2 do
4 if pc(v1 → v2) 6∈ computed(B) then
5 if type(B) = R then
6 pc(v1 → v2)← sample(v1, v2, B) ;
7 else if type(B) = S then
8 p′(v1 → v2)← p(v1 → u1)⊕ · · · ⊕ p(uj → v2)

;
9 pc(v1 → v2)← p(v1 → v2)� p′(v1 → v2) ;

10 add pc(v1 → v2) to computed(B);
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In this case, the query vertices need to be propagated to the
root node.

The bi-directional property of computed new edges means
that we can simply assume that the root of the tree is located
at one of the bags containing s or t, and then propagate only
the edges corresponding to the other query vertex. Which
node is chosen is not important – it is easy to verify that the
number of edges propagated will be the same – so we will
assume we root the tree at the node whose bag contains t in
the following.

The original edges in ancestors of the bags containing the
query vertices are propagated up, all the way to the new root,
in a bottom-up manner. The previous pre-computations of
edges in areas of the graphs not containing the query vertices
and in the subtree of the bags containing the query vertices
are not affected by this change. Recomputing the edges on
these parts of the tree is not necessary, and this ensures that
only a fraction of the bags in the tree is affected by retrieve.
Algorithm 3 presents this operation in detail.

Algorithm 3: retrieveSPQR(T ,B, s, t)
input : ProbTree (T ,B), source s, target t
output : probabilistic graph G

1 root the tree at one of the bags containing t;

2 for h← height(T ) to 0 do
3 for node n of T s.t. level(n) = h do
4 B ← B(n);
5 if V (B) ∩ {s} 6= ∅ then
6 delete pc in parent(B) resulting from B;
7 E(parent(B))← E(parent(B)) ∪ E(B);
8 V (parent(B))← V (parent(B)) ∪ V (B);

9 return B(root(T ))

Example 2. Let us return to the decomposition in Fig-
ure 2, and exemplify how a retrieve operation for the query
pair (1, 4) proceeds. Figure 3 illustrates the execution of
Algorithm 3 for this pair.

First, since 1 and 4 are on the same branch of T , we can
root the tree at bag (β). Moreover, one can notice that there
is no need to recompute endpoint distributions on bags (α),
(γ), and (ε). Hence, the computed edge 6→ 1 is used from
bag (ε) and 0→ 4 from (α). However, the computed edges
6 → 2 and 2 → 6 are not propagated from bag (δ) to bag
(β), as their computation involves a query vertex, in this
case vertex 1. Hence, all vertices and edges from bag (δ) are
propagated to bag (β), and joined by the original edge in (α),
0→ 4. The resulting graph in the new root – bag (β) – is a
graph which outputs equivalent results for the query on (1, 4)
as the original graph in Figure 1a.

Properties. It is easy to check that the above operators de-
fine an efficient representation where queries run faster on the
decompressed graph than on the original graph. Theorem 1
ensures the validity of the approach. The implementation of
SPQR trees of [12] is linear in the size of G. The precompute-

propagate function only pre-computes endpoint distributions
once per bag. The computation itself is polynomial, either
the MIN and SUM convolutions, or the sampling of the R-
bags using a set number of sampling rounds. The above
two results verify Property (i) of Definition 4. Moreover, it
is known that the number of skeleton edges added in the
triconnected components tree is O(E) (more precisely, it is
upper-bounded by 3|E| − 6, as shown in [19]), thus verifying
Property (ii).

Each retrieve outputs a graph that is at most as big as
the original graph, and hence the standard shortest-path
algorithms [8] would execute in less time for each sample.
Moreover, retrieve is linear in the number of tree bags, which
is itself linear in the size of G, verifying Property (iii). Hence
(indexSPQR, retrieveSPQR) is an efficient representation.

Note. SPQR trees are not the only way to decompose a
graph to obtain a ProbTree. We have experimented with
partial fixed-width decompositions of the graph, and found
they can be useful (and indeed, sometimes more efficient
than SPQR trees) when one desires lossless representations,
but with a “weaker” decomposition. Due to space reasons,
we omit them here.

5. EXPERIMENTAL EVALUATION
We now report on our experimental evaluation showing

the efficiency of SPQR trees for indexing probabilistic graphs.

Datasets and setup. We use two probabilistic graph data-
sets, from different application domains:

1. The Wiki dataset, representing Wikipedia1 text inter-
actions between contributors. Each probabilistic edge has
distance 1 and the probability proportional to the number
of positive interactions over the number of total interactions.
Positive interactions represent text interactions which do not
involve the deletion or replacement of another contributor’s
text, and edges in the graphs represent the probability that

1http://en.wikipedia.org/

http://en.wikipedia.org/


Table 1: ProbTree properties (R is the root bag)

Graph Type R vertices R edges T height

Wiki
orig. 109,694 1,568,754 0

SPQR 41,268 296,714 536

NH
orig. 66,627 159,694 0

SPQR 45,777 112,676 9

two authors agree on a topic. The graph has 109,694 vertices
and 1,568,754 edges.

2. The United States road network graphs2, in which the
edges represent roads between geographic locations, and
have weights representing the average driving time. We have
attached to each edge the probability of driving occurring
without incident, chosen uniformly in the interval [0.95, 1].
We have experimented on the NH road network of 66,627
vertices and 159,694 edges.

Our ProbTree framework was implemented in C++, and all
experiments were run on a Linux machine with a quad-core
3.6 GHz CPU and 48 GB of RAM. The deterministic part of
the SPQR decomposition was done using the implementation
in the Open Graph Drawing Framework library3.

ProbTree properties. For the R-bags of the resulting SPQR
tree, we have computed the probabilities of the separation
pairs by using 1,000 rounds of sampling.

Table 1 shows the properties of applying ProbTree on the
four graphs, containing the number of vertices and edges in
the root bag. It can be noted that the best decomposition
for SPQR is achieved in the Wiki graph, which is also the
densest graph. The index operator is very efficient, running in
the order of seconds even on large graphs. In NH the running
time is 23 seconds, while on Wiki it is 40 seconds. Moreover,
the space overhead of I reasonable. Generally, ProbTree only
incurs between roughly 10% (Wiki, 32MB from 30MB for
the original graph) and quadruple (NH, 16MB from 4.5MB
for the original graph) space overhead compared to the space
cost of the original graph.

Running time. For evaluating the execution time and query
accuracy, we used the following experimental setup. For each
dataset, a query workload of 1,000 vertex pairs from the
original graphs were generated. For each query workload, we
generated the ground truth probabilities via 10,000 rounds
of sampling. For each query pair we generated the actual
distance distribution between the vertices, by applying Dijsk-
tra’s shortest path algorithm on every sampling round. For
testing, we executed the workloads for a number of samples
between 10 and 1,000. As Figure 4 shows, the efficiency gains
are important when queries are executed on ProbTree de-
compositions. The gains range from a factor of 2 in the case
of NH to 5 for Wiki. ProbTree based on SPQR performs
extremely well in the denser graph, Wiki.

The retrieve time does not influence significantly the exe-
cution of the queries. In the worst case, SPQR for NH, it
is roughly 2% of the execution time for 1,000 samples, and
under 0.2% for Wiki. Also, the average number of bags
needing re-computation is very small, again under 3% for

2http://www.dis.uniroma.it/challenge9/data/tiger
3http://ogdf.net/
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Figure 5: Relative error vs. time (log-log axis)

NH and under 0.05% for Wiki – out of the total number of
bags in the tree decomposition.

Error vs. time. The question we wish to answer now is the
following: Can such approaches beat sampling algorithms?
That is, is the error vs. time trade-off enough to justify using
indexing, and not simply more sampling rounds? To check
this, we have plotted the running time of applying sampling
on ProbTree versus its error – expressed in terms of the
mean squared error as compared to the ground truth results.
For brevity, we only track the results for reachability – or
2-terminal reliability – queries. As query answers are derived
directly from the distance distribution, results for other types
of queries are equivalent.

Figure 5 presents the results for the NH and Wiki graphs
(note the log-log axes). The black dots represent the results
on sampling the original graph, for sample rounds between
10 and 1,000. Intuitively, we want the points corresponding
to ProbTree (drawn for the same amount of samples) to lie
“below” the line induced by the black points, meaning that
they yield a better time-accuracy trade-off. As seen before,
the gains in execution time when using the decompositions
are important. The results also show that the relative error
can be even slightly improved when using ProbTree. For
instance, note that the white dots in the NH graph are
slightly lower than the corresponding black dots, suggesting
an increase in accuracy. In the case of the Wiki graph, the
errors are lower for SPQR when the number of samples is
less than 500. Note that the error is relatively constant for
SPQR after a point, suggesting a lower bound of error due to
the sampling in the R-bags of the SPQR tree. This suggests
that SPQR in Wiki is best to be used in conjunction with
a lower number of samples, and that its appeal is mainly
directed at denser graphs.

http://www.dis.uniroma.it/challenge9/data/tiger
http://ogdf.net/


Table 2: Distance-constraint reachability running time (sec)
and error ratios (between parentheses) for three estimators
in [15]

Decomp. RHH RHT Dagger

orig. 0.095 (0.122) 0.123 (0.109) 0.631 (0.225)
SPQR 0.050 (0.071) 0.061 (0.073) 0.338 (0.129)

Comparison with other algorithms. One of our arguments
in using ProbTree as a pre-computed index is that it can
be applied directly to existing solutions. To check this, we
apply the distance-constraint reachability (DCR) estimators
studied in [15] to the SPQR decomposition of the NH graph.
We use the RHH, RHT and the Dagger sampling estimator
and apply directly the authors’ implementation. We also
track the error ratio, defined as E = |R̂−R|/R, where R̂ is
the result of an estimator and R is the result of the exact
computation.

Table 2 summarizes the results. First of all, it can be
easily noted that, indeed, applying ProbTree decompositions
directly affects the running time of any of the three estimators,
with a two-fold increase in efficiency. Applying ProbTree
also increases accuracy – in terms of the error ratio – for all
three estimators. These results complement the results in
Figure 5 and suggest that the fact some edges are already
pre-computed minimizes the chance of sampling error.

6. CONCLUSIONS
In this paper, we studied efficient ST-query evaluation

in probabilistic graphs. We formally define the notion of
transformation on such graphs, and propose the ProbTree.
We design an SPQR tree variant of ProbTree, and, through
extensive experiments on real datasets, we show that it
enhances query processing, is easy to compute, and has low
space costs. The graphs produced by ProbTree can also
easily be used by existing querying algorithms.
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