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Abstract—The widespread use of intelligent mobile phone
has promoted prosperity of mobile App advertising in recent
years. Based on existing bidding status, this paper presents
the dominant bidding strategy for mobile advertising auction.
Firstly, our study characterizes multiple Nash Equilibria
resulting from different bidding strategies in wGSP (weighted
Generalized Second-Price) auction. Further more, we prove
that advertiser’s rank and utility will not decrease by using the
dominant bidding strategy. We also consider the situation where
the reserve price is set by the mobile advertising platform. It
turns out that that advertiser’s payment will be no less than
reserve price. Finally, a practical implementation for a virtual
market simulates the dynamic bidding process in real world
environments.

Keywords : Mobile App Advertising Auction, wGSP mecha-
nism, Nash Equilibrium, Dominant Bidding Strategy.

I. Introduction

The increasing of mobile communication equipments has

spurred the growth of all kinds of intelligent systems. We

can compare the price of goods, download games and browse

commodities whenever and wherever. With popular game

Plants vs. Zombies creating astonishing record, more and

more advertisers promote their brand on mobile App. App has

become key driving force of the current advertising market

and advertisers’ total spending for advertising on mobile App

will surpass 2.9 billion.

Compared with traditional internet advertising auction(i.e.

sponsored search auction), mobile advertising platform is the

intermediary between the App developer and the advertiser.

When a user use the App, the mobile App advertising platform

would provide suitable advertisements with certain auction

mechanism, such as GSP(Generalized-Second-Price) and

GFP(Generalized-First-Price). The position of advertisement

on the page decides how many clicks the advertisement

receives. The advertiser will pay limited price for user’s click.

This payment will be shared by platform and App developer.

Our research is based on the sponsored search auction.

However, being different from the related literature [7] which

studied the behavior of advertisers and search engine in spon-

sored search auction, mobile advertising platform is between

advertisers and App developer in mobile App advertising

auction. Platform can be accurate to follow advertisement’s

geographical location, time, type, price, brand and previous

average click through rates. Thus, similar to Aggarwal G et

al. [8], we introduce the notion of weight which indicates

the effect of those factors. Our mobile advertising auction

mechanism generally uses the wGSP (weighted Generalized-

Second-Price) mechanism.

Our contribution is to present the dominant bidding strategy

for mobile advertising auction. But our work is different from

Bu T M et al. [4] whose forward looking response function do

not consider the weight. To be closer to the actual situation,

advertisers, in our paper, are ranked by the product of his/her

bid and weight. Another line of work closely related to ours

is [3] in which the author studied multiple Nash Equilibria.

We propose that multiple Nash Equilibria also exist in mobile

advertising auction. Moreover, our work take the reserve

price into account. The payment will be the maximum of the

previous payment and the reserve price. This change may

affect the dominant bidding strategy.

The paper is structured as follows: next we discuss the

related literatures. Section III introduces the basic definitions,

properties and formally describes the mobile advertising auc-

tion model. In Section IV, we firstly analyse the existence of

multiple Nash Equilibria that satisfy the wGSP mechanism.

Then, we propose the dominant bidding strategy with or

without reserve price. Additionally, a practical implementation

for a virtual market is presented to confirm the dominant

bidding strategy. Section V concludes the paper.

II. RelatedWork

Because of the growing popularity of GSP (Generalized

Second-Price) mechanism, this problem has attracted intensive

studies in recent years. Renato G et al. [10] develop a Bayes-

Nash analysis of the generalized second-price (GSP) auction,

their results characterizes the efficient Bayes-Nash equilibrium

of the GSP and provides a necessary and sufficient condition

that guarantees existence of such an equilibrium. Baichun

Xiao et al. [9] proposed sponsored search advertising model,

which was widely used by most web search engines such as

Google, Yahoo. [5], [6] pointed out “locally-free equilibrium”,

when the GSP auction achieved Nash Equilibrium. This notion

could be extended to “global envy free equilibrium”. Namely,

none of the auction participants is willing to suffer a deficit.

Thus, paper [1] put forward that GSP mechanism must satisfy

individual rationality, which means that the price can’t exceed
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value of the advertisements.

The related literature on bidding strategy has also been

growing. Y. Kamijo. [2] explores the bidding behavior of

advertisers in a sealed-bid environment, where each bidder

does not know the current bids of others. It is shown that

the SBT(secure bidding with a trial) bid adjustment process

converges to some equilibrium point in a one-shot game

irrespective of the initial bid profile. [11] presented an

intelligent advertiser for bidding on CPC(Cost Per Click)

sponsored search auctions. The advertiser developed a future

look-ahead bidding plan that enabled it to hold back cash for

more desirable times of the day. Cary M et al. [12] considered

best-response bidding strategies for a repeated auction. Zhou

Y et al. [13] showed that vindictive bidding was prevalent in

sponsored search auctions, and it led to instability of most

traditional Nash Equilibrium.

III. TheModel

A. Basic settings

In this section, we will explain the basic definition and the

mobile advertising auction model. Our payment rule is CPC

(Cost Per Click). It essentially means that advertisers will pay

when a user clicks on their advertisements. In the mobile

App advertising auction environment, assume n risk-neutral

advertisers compete for k (n ≥ k) slots inside the mobile App.

Formally, a bid submitted by advertiser i is denoted by bi. wi

represents advertiser i’s weight which is assigned by mobile

Ad platform. Advertisers are ranked by the product of his/her

bid and weight wi (i.e.wibi). If advertiser i got j-th highest

position among k slots, his payment per click will be pi(k, j),
which is defined as

pi(k, j) =
w( j+1)b( j+1)

wi
(1)

where ( j) denotes the bidder who gets slot j. For any two slots

(m < l), wmb(m) ≥ wlb(l) holds.

Advertisers’ bids constitute the bid vector

b = (b1, b2, ..., bn). xi, j(b) represents the probability of

advertiser i who gets slot j. Each advertiser can be allocated

to one slot at most and each slot can be allocated to one

advertiser at most, too. It can be represented as:

n∑

i=1

xi, j(b) ≤ 1 (2)

k∑

j=1

xi, j(b) ≤ 1 (3)

Moreover, each advertiser i has a privately known information

vi which represents the expected return of per-click to adver-

tiser i. For simplicity, we assume that all the bidders’ private

values would be always different. qi is a factor related to the

quality of advertiser i. Let αi, j denote click-through rate of

advertiser i who got j-th slot among k slots. And it is defined

as follows:

αi, j = e j qi (4)

where e j denotes the impact of slot j. There is αi,1 > αi,2 >
...αi,k for the same advertiser.

We introduce the following five properties for mobile ad-

vertising auction:

Risk neutral: Each advertiser’s target in the auction is to

maximize their expected utility;

Private value: Only advertiser himself knows true value which

is private information;

Independent: The advertiser’s value v1, ..., vn is independent

random variables;

Symmetry: True value is the same probability distribution

from a continuous random variables i.e. F(v);

Individual rationality: Payment of each advertiser can’t ex-

ceed value, otherwise advertiser will quit.

Assume v1 > v2 >, ..., > vn. Then, the necessary conditions

for Nash Equilibrium is

• if n ≤ k,

w(1)b(1) > w(2)b(2) >, ...,w(n)b(n)

• if n > k,

w(1)b(1) > w(2)b(2) >, ...,w(k)b(k) > w(k+1)b(k+1)

Particularly, for ∀i < j and w(i)b(i) = w( j)b( j), advertiser i will

be assigned above advertiser j.

B. Utility of Advertiser

Given bid vector b, the expected click through rate of

advertiser i is defined as

Qi(b) =

k∑

j=1

xi, j(b)αi, j (5)

The expected payment of advertiser i is represented as

follows:

Pi(b) =

k∑

j=1

xi, j(b)αi, j pi(k, j) (6)

Thus, the utility of advertiser i can be represented as:

ui(b) =

k∑

j=1

xi, j(b)αi, j(vi − pi(k, j))

= viQi(b) − Pi(b) (7)

IV. Analysis

A. Multiple Equilibria in Mobile App Advertising Auction

1) Envy-free Equilibrium: If there is 1 ≤ s < a < t ≤ k and

(8),(9), we say that this equilibrium is envy-free.

αi,a(vi − w(a+1)b(a+1)

wi
)

≥ αi,s(vi − w(s+1)b(s+1)

wi
) (8)
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αi,a(vi − w(a+1)b(a+1)

wi
)

≥ αi,t(vi − w(t+1)b(t+1)

wi
) (9)

2) Nash Equilibria Algorithm: While some advertisers

adopt different bidding strategies, they still get the same

allocation in equilibrium. We call these Nash Equilibria “E-

quivalence Class”. For the purpose of calculating the number

of Equivalence Classes, we design the Algorithm 1.

Algorithm 1 Algorithm of Nash equilibria

Input: Different kinds of bidding vector

Output: The number of Nash Equilibria

1: Set m = 0;

2: Select bidding vector, determine the allocation;

3: Determine whether it is the different equivalence class;

4: if It is the same then
5: go to step (2);

6: end if;

7: if It is the different then
8: go on;

9: end if;

10: if The bid vector satisfy Nash Equilibrium (all advertisers

satisfy global envy free equilibrium) then
11: go on;

12: end if;

13: if The bid vector satisfy Nash Equilibrium (all advertisers

satisfy global envy free equilibrium) then
14: go to step (2);

15: end if;

16: go on;

17: m ← m + 1, go to step(2).

According to permutation and combination, we can get the

number of equivalence classes. If n ≤ k holds, the number will

be n! at most. Otherwise, the number will be k!+(n−k)(k−1)!

at most.

B. Dominant Bidding Strategy for Advertiser

1) Without Considering the Reserve Price: Mobile adver-

tising auction allows advertisers to change their bids anytime.

Once some bids are changed, platform will refresh the rank

automatically and instantaneously. All the bidders’ rank and

utility will also be recalculated. Other advertisers can then

have incentive to change their bids to increase their utility.

While other advertisers respond to his/her bid, he/she must

change bid once again to get the higher possible rank, ensuring

his/her utility does not reduce.

Lemma 1: For any t: t < s, the necessary and sufficient

condition for ui(k, s) ≤ ui(k, t) is

bi ≤ es

et
(vi − w(s+1)b(s+1)

wi
) (10)

Proof: If advertiser i gets slot s, the expected utility will

be

ui(k, s) = (vi − w(s+1)b(s+1)

wi
)αi,s

If advertiser i gets slot t, the expected utility will be

ui(k, s) = (vi − w(t+1)b(t+1)

wi
)αi,t

When advertiser i gets slot t, wibi ≥ w(t+1)b(t+1) is satisfied.

Then, the utility of advertiser i at least is:

ui(k, t) = (vi − wi

wi
bi)αi,t

= (vi − bi)αi,t

bi ≤ vi − αi,s

αi,t
(αi,t)(vi − w(s+1)b(s+1)

wi
)

= vi − es

et
(vi − w(s+1)b(s+1)

wi
)

Owing to t < s, we can get αi,s−1 ≤ αi,t,

b′i = vi − es

es−1

(vi − w(s+1)b(s+1)

wi
) (11)

≤ vi − es

et
(vi − w(s+1)b(s+1)

wi
)

If the advertiser i’s bid is b′i and he/she gets slot t′, it will be

obviously that t′ ≤ s and ui(k, s) ≤ ui(k, t′).
According to the above reasoning, we infer the following

theorem.

Theorem 1: Let b−i = (b1, ..., bi−1, bi+1, ..., bn) denote the

bids of all other bidders except i. If the rank of advertiser

i is s, the dominant bidding strategy for advertiser i is

Fi(b−i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

vi s = 1

vi s > k
vi − es

es−1
(vi − w(s+1)

wi
b(s+1)) 2 ≤ s ≤ k

(12)

Proof: First, let’s prove that the dominant bidding strategy

for advertiser i is an Nash Equilibrium strategy . According

to (12), we will have

qielb(s+1) = qi

k∑

j=s

(e j − e j+1)
w( j+1)v( j+1)

wi
(13)

Advertiser i earns

ui(b) =

k∑

j=1

xi, j(b)αi, j(vi − pi(k, j))

= αi,s(vi − b(s+1))

= qi

k∑

j=s

(e j − e j+1)vi − qi

k∑

j=s

(e j − e j+1)
w( j+1)v( j+1)

wi

= qi

k∑

j=s

(e j − e j+1)(vi − w( j+1)v( j+1)

wi
) (14)
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But, if advertiser i changes the bid to get slot φ (φ � s),

he/she will earns

ui(b)′ = qieφ(vi − b(φ+1))

= qi

k∑

j=φ

(e j − e j+1)(vi − w( j+1)v( j+1)

wi
) (15)

For any φ > s, the net utility from this deviation is equal to

�ui(b) = −qi

φ−1∑

j=s

(e j − e j+1)(vi − w( j+1)v( j+1)

wi
) (16)

Since wibi > w(s+1)b(s+1)
>, ..., > w(φ−1)b(φ−1), we know that

�ui(b) < 0.

For φ < s, the net utility is equal to

�ui(b)′ = qi

s−1∑

j=φ

(e j − e j+1)(vi − w( j+1)v( j+1)

wi
) (17)

Since wibi < w(s−1)b(s−1)
<, ..., < w(φ)b(φ), it is obviously that

�ui(b)′ < 0. Hence, the deviation is not profitable and strategy

Fi(b−i) is a Nash Equilibrium strategy.

Then, in this new created Nash Equilibrium, advertiser

i’s rank and utility will not decrease according to Lemma1.

Therefore, Fi(b−i) is advertiser i’s dominant bidding strategy.

2) Considering the Reserve Price: In order to guarantee the

utility of the App developer, mobile advertising platform may

set reserve price for each slot. Then, some advertisers whose

true value is lower than the reserve price may quit the auction.

If advertiser i gets slot j, the payment will be

pi(k, j) = max(
w( j+1)b( j+1)

wi
, r j) (18)

subject to vi ≥ r j

where r j denotes the reserve price of the slot j.
If advertiser i gets slot t (vi ≥ rt), the utility is

ui(k, t) = (vi − pi(k, t))αi,t (19)

where

pi(k, t) = max(
w(t+1)b(t+1)

wi
, rt)

According to wibi ≥ w(s+1)b(s+1), if there exists slot s (vi ≥
rs), the utility of advertiser i would be at least:

ui(k, s) = (vi − wi

wi
bi)αi,s = (vi − bi)αi,s

In order to ensure

ui(k, s) ≥ ui(k, t)

We obtain the following inequality:

(vi − pi(k, t))αi,t ≤ (
wi

wi
bi)αi,s

= (vi − bi)αi,s

bi ≤ vi − et

es
(vi − max(

w(t+1)b(t+1)

wi
, rt) (20)

Then, we get the following corollary:

Corollary 1: If the rank of advertiser i is t and the reserve

price of slot t is rt, the dominant bidding strategy for advertiser

i is as follows:

Gi(b−i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

vi t = 1

vi t > k
vi − et

et−1
(vi − max(

w(t+1)

wi
b(t+1), rt) 2 ≤ t ≤ k

(21)

Proof: If pi(k, t) =
w(t+1)

wi
b(t+1) ≥ rt, the reserve price would

have no effect on the bidding strategies . Therefore, bidding

strategy for advertiser i is the same with (12). Otherwise,

advertiser i should compare the payment with reserve price.

C. Practical implementation for a virtual market

We implemented the dominant bidding strategy for a vir-

tual market. This subsection demonstrates the result of this

implementation.

The initial data is as TABLE I:

TABLE I
Initial Parameters

n = 3 k = 2
����

v1 = 5 v2 = 4.5 v3 = 1

w1 = 3 w2 = 3 w3 = 1.5

α1,1 = 0.2 α1,2 = 0.1
����

α2,1 = 0.2 α2,2 = 0.1
����

b1 = 2 b2 = 3 b3 = 1

Because all advertisers have no incentive to change the bid

in this state, Nash Equilibrium exists for the above bidding

strategies. If advertiser 1 changes the bid to b′
1 based on the

dominant bidding strategy. i.e.

b′1 = v1 − α1,2

α1,1
(v1 − w3b3

w1

)

= 5 − 0.1

0.2
(5 − 1.5

3
)

= 2.75

Then,

u′2(2, 1) = (v2 −
w1b′1
w2

) × α2,1

= (4 − 2.75 × 3

3
) × 0.2

= 0.25

For u′2(2, 1) < u2(2, 1), advertiser 2 must get slot 2 by reducing
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bid. Then,

u′′1 (2, 1) = (v1 −
w2b′2
w1

) × α1,1

= (5 − 6

3
) × 0.2

= 0.6

u′′2 (2, 2) = (v2 − w3b3

w3

) × α2,2

= (4 − 1.5

3
) × 0.2

= 0.35

If advertiser 3 get slot 1 or 2, advertiser 1 or 2 will increase

bid. So advertiser 3 can not get advertising slot and his utility

is 0.

TABLE II shows that bidder 2 has to decrease the bid to

get the optimal utility when bidder 2 changes the bid. After

simulating this bidding process for the virtual market, a new

created Nash Equilibrium exists.

As we expected, both advertiser 1’s utility and the slot

increase, comparing with the initial state.

TABLE II
variety of parameters

����
Previous bidding After adjusted bidding

b1 2 2.75

b2 3 1.5

b3 1 1

u1 0.45 0.6

u2 0.4 0.35

u3 0 0

Rank of advertiser 1 2 1

Rank of advertiser 2 1 2

Rank of advertiser 3 3 3

The results of our implementation for the virtual market

presented in this subsection shows that the dominant bidding

strategy will work in real world environments.

V. Conclusion

This paper discusses two major problems in mobile advertis-

ing auction − multiple Nash Equilibria and dominant bidding

strategy. This paper firstly designs a new mobile advertising

auction model, in which mobile advertising platform allocates

slots to advertisers considering weight. After providing exis-

tence of multiple Nash Equilibria, an algorithm for calculating

the number of “Equivalence Class” is presented. Then, we

put forward dominant bidding strategy. The objective of this

bidding strategy is to increase advertiser’s rank and the utility,

comparing with the previous status. At last, the results of

implementation for the virtual market presented shows that

the dominant bidding strategy will work in real world envi-

ronments.
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