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E-cadherin (epithelial-cadherin), encoded by theCDH1 gene, is a transmembrane glycoprotein playing a crucial role inmaintaining
cell-cell adhesion. E-cadherin has been reported to be a tumor suppressor and to be down regulated in gastric cancer. Besides genetic
mutations in CDH1 gene to induce hereditary diffuse gastric cancer (HDGC), epigenetic factors such as DNA hypermethylation
also contribute to the reduction of E-cadherin in gastric carcinogenesis. In addition, expression of E-cadherin could be mediated
by infectious agents such as H. pylori (Helicobacter pylori). As E-cadherin is vitally involved in signaling pathways modulating
cell proliferation, survival, invasion, and migration, dysregulation of E-cadherin leads to dysfunction of gastric epithelial cells
and contributes to gastric cancer development. Moreover, changes in its expression could reflect pathological conditions of
gastric mucosa, making its role in gastric cancer complicated. In this review, we summarize the functions of E-cadherin and the
signaling pathways it regulates. We aim to provide comprehensive perspectives in the molecular mechanism of E-cadherin and
its involvement in gastric cancer initiation and progression. We also focus on its applications for early diagnosis, prognosis, and
therapy in gastric cancer in order to open new avenues in this field.

1. Introduction

Gastric cancer (GC) is the third leading cause of cancer-
associated death worldwide [1]. More importantly, it is
predicted that deaths from gastric cancer will rise from the
15th to the 10th cause of mortality from all causes globally
by 2030 [2]. This underlies the emergency of breakthroughs
in molecular mechanism of gastric cancer development to
attenuate its harm. There are two main histological types
of GC according to the World Health Organization (WHO)
and the Laurén classifications, diffuse gastric cancer and
intestinal gastric cancer, with distinct clinicopathological
features [3]. Intestinal gastric cancer is more associated with
environmental factors such as infection ofH. pylori, high salty
diet, smoking, and obesity [4, 5], while diffuse gastric cancer
is composed by noncohesive cells and is more commonly
observed in younger patients, with an obvious hereditary
form. It has been reported that around 10% of the gastric can-
cer cases are familial clustering [6]. And the cases are defined
to be hereditary diffuse gastric cancer (HDGC) by meeting

the following criteria proposed by the International Gastric
Cancer Linkage Consortium (IGCLC): (1) two or more
documented cases of diffuse gastric cancer in first/second
degree relatives, with at least one diagnosed before the age
of 50 or (2) three or more cases of documented diffuse gastric
cancer in first/second degree relatives, independently of age
[7]. Interestingly, it has been reported that around 30% of the
HDGC family harbor germline mutation of CDH1 gene [8].

The CDH1 gene locates in the human chromosome
16q22.1 and comprises 16 exons transcribed into a 4.5 Kb
mRNA and encodes for E-cadherin [9]. E-cadherin is a
calcium-dependent cell-cell adhesionmolecule playing a cru-
cial role in establishing epithelial architecture and maintain-
ing cell polarity and differentiation [10, 11]. Germline muta-
tions ofCDH1 gene predispose an individual to diffuse gastric
cancer, and subsequent inactivation of the second allele of
E-cadherin triggered by methylation, mutation, or loss of
heterozygosity (LOH) leads to HDGC [12, 13]. Moreover, it
has been revealed that cancer cells can disseminate to distant
organs and dramatic alterations exist between cancer cells
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and extracellular-matrix components [14]. This leads to the
attention that alterations in cell-cell adhesion and cell-matrix
adhesion render tumor progression. Therefore, E-cadherin
is pivotal in maintaining the epithelial architecture and cell
polarity, while dysregulation of E-cadherin contributes to
tumor invasion and progression [15], mainly diffuse gastric
carcinoma in this review.

In addition to its role in cell-cell adhesion, E-cadherin
and the cadherin-catenin complex could modulate vari-
ous signaling pathways in epithelial cells, including Wnt
signaling, Rho GTPases, and NF-𝜅B pathway. Therefore,
dysregulation of E-cadherin promotes dysfunctions of these
signaling pathways and influences cell polarity, cell survival,
invasion, and migration in gastric carcinogenesis [16].

In this review, we summarize the function of E-cadherin
and its associated signaling pathways, as well as the dys-
function of E-cadherin in gastric carcinogenesis, with an
emphasis on diffuse gastric cancer. We also focus on the
clinical applications of E-cadherin for diagnosis, prognosis,
and therapy for gastric cancer.

2. Functions and Signaling Pathways
of E-Cadherin

2.1. Structure and Functions of E-Cadherin. The E-cadherin
glycoprotein is composed of three major structural domains:
a single transmembrane domain, connecting with a cyto-
plasmic domain, and an extracellular domain comprising
five tandemly repeated domains called EC1–EC5, which are
exclusive to cadherins [17]. The extracellular domain of E-
cadherin is essential for cell-cell adhesion, as well as for the
correct folding and homo/heterodimerisation of the proteins.
The cytoplasmic domain of E-cadherin interacts with the
catenins (𝛼-, 𝛽-, 𝛾- and p120 catenin) anchored to the
actin cytoskeleton, establishing cadherin-catenin complex
[18]. E-cadherin predominantly expressed at the membrane
of epithelial cells, where it exerts cell-cell adhesion and
suppresses invasion [10, 19]. Conformation of E-cadherin
is only stable upon Ca2+ binding to its highly conserved,
negatively charged extracellular motifs [20]. Its stabilization
at the cell membrane and accurate function occur by associa-
tion to cytoplasmic p120-catenin [21] (Figure 1). The stability
of the cadherin-catenin complex, and its linkage to actin
filaments, forms the core of the Adherens Junction (AJ),
which is vital to inhibit individual epithelial cell motility and
to provide homeostatic tissue architecture [22, 23]. Being
a principal component of AJs, E-cadherin is essential for
cell-cell contact of gastric epithelium. Hence, decrease of E-
cadherin obviously contributes to dissemination of gastric
cancer cell and further tumor progression.

2.2. Signaling Pathways Regulated by E-Cadherin. In addition
to its role in cell-cell adhesion, E-cadherin is involved
in a number of signaling pathways in carcinogenesis. As
downregulation of E-cadherin in epithelial cells results in a
reduced cell polarity and increased migratory and invasive-
growth properties, loss of E-cadherin stimulates active signals
that initiate epithelial mesenchymal transition (EMT) [24,

25]. Based on the various interaction partners of E-cadherin
and the connection of the cytoplasmic cell-adhesion complex
(CCC) to the actin cytoskeleton, a number of signaling
pathways including Wnt signaling, Rho GTPases, and EGFR
are thought to have an active part in the EMT process
[22]. For the Wnt/𝛽-catenin pathway, nonsequestered, free
𝛽-catenins may accumulate in the cytoplasm attributed to
nonfunctional APC (adenomatous polyposis coli) or GSK-
3𝛽 (glycogen synthase kinase 3𝛽) [26]. High level of 𝛽-
catenins in the cytoplasm subsequently translocates into the
nucleus, binds to members of the TCF/LEF1 (Transcription
Factor/Lymphoid enhancer-binding factor 1) family, and
activates the expression ofWnt target genes, including CD44,
c-MYC, cyclin D1, and MMP7 [27]. Activation of these
genes contributes to increased cell proliferation and tumor
progression.Hence, it is supposed that E-cadherin expression
can suppress Wnt/𝛽-catenin signaling by sequestering 𝛽-
catenin at sites of cell-cell contact. Evidence suggests that
the mere presence of the E-cadherin cytoplasmic domain,
rather than E-cadherin adhesive properties, is required to
inhibit Wnt/𝛽-catenin dependent gene expression [28]. In
various cellular systems, it has been demonstrated that
sequestration of 𝛽-catenin by E-cadherin can compete with
the 𝛽-catenin/TCF-mediated transcriptional activity of the
canonical Wnt signaling pathway [22].

Besides the Wnt signaling, another pathway frequently
overexpressed in gastric cancer involves Rho GTPases, with
Rho A, Rac1, and Cdc42 extensively studied [29, 30]. These
molecules are known to play a critical role in cytoskeleton
organization and cell motility [31]. It has been revealed that
increasedRhoAactivity, which led to highermigration capac-
ity, was induced by HDGC-associated E-cadherin missense
mutations in the extracellular domain [32]. In addition, acti-
vation of RhoA through an E-cadherin dependent pathway
involves the role of EGFR (epidermal growth factor receptor)
[33]. Mutations at the E-cadherin extracellular domain may
impair the interaction of E-cadherin and EGFR, lead to
activation of EGFR, and further enhance cellmotility through
activation of RhoA [34]. Moreover, loss of E-cadherin and
release of p120-catenin activate the Rac1-MAPK (mitogen-
activated protein kinase) signaling pathway and promote
transformed cell growth [35]. In summary, inactivation of
E-cadherin leads to dysregulation of its associated signaling
pathways and contributes to the EMT process and tumor
progression.

Interestingly, the E-cadherin/catenin complex appears to
possess the ability to downmodulate NF-𝜅B activity [36].
Importantly, NF-𝜅B regulates the phenotype of epithelial cells
during inflammation, which has been shown instrumental
to inflammation associated carcinogenesis, such as H. pylori
infection in gastric cancer [37]. In mammals, the canonical
NF-𝜅B activation pathway mainly applies to p65:p50 dimers,
which are sequestered in a quiescent state in the cytoplasm
by I𝜅B family members under steady state. On stimulation
by a broad range of inflammatory mediators, including
cytokines and microbial or endogenous danger-associated
molecules, p65:p50 is released after I𝜅B phosphorylation
by the IKK complex and subsequent degradation of this
inhibitor. Finally, the heterodimer is translocated to the
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Figure 1: Schematic structure of E-cadherin and its binding to catenin proteins. The E-cadherin glycoprotein is composed of three major
structural domains: an intracellular domain, a single transmembrane domain, and an extracellular domain comprising five tandemly repeated
domains EC1–EC5. The intracellular domain of E-cadherin interacts with the catenins including 𝛼-, 𝛽-, 𝛾-, and p120 catenin. The catenin
anchors to the actin cytoskeleton, establishing cadherin-catenin complex. Conformation of E-cadherin is only stable upon Ca2+ binding to
its extracellular motifs. Its stabilization at the cell membrane and accurate function occur by association to cytoplasmic p120-catenin.

nucleus and activates the transcription of various target genes
including Bcl-2, IL-6, and TNF [38]. The activation of these
targets increases cell survival; reduces cell apoptosis; and
contributes to inflammation associated cancer development.
In a cellular system, it was shown that a forced overexpression
of E-cadherin reduces NF-𝜅B activation, whereas loss of E-
cadherin results in an increased activity of NF-𝜅B transcrip-
tion factor [39]. In addition, NF-𝜅B suppression might result
from a physical association with the E-cadherin/catenin
complex [40]. Hence, the activation of NF-𝜅B through
downregulation of E-cadherin provides convenience for the
H. pylori infection associated gastric cancer development.

To summarize the above, dysregulation of E-cadherin
leads to dysfunctions of E-cadherin-mediated signaling path-
ways, which alters cell polarity, increases cell survival, and
promotes EMT process as well as cell invasion and migration
[41]. These effects induce cancer initiation and progression,
including gastric cancer (Figure 2).

3. Genetic Mutations and Variants of
E-Cadherin in Diffuse Gastric Cancer

E-cadherin acts as a tumor suppressor and downregulation of
E-cadherin is observed in various cancers [42].Geneticmuta-
tion is one major mechanism for silencing tumor suppressor
genes. Somatic mutations of CDH1 have been identified in
sporadic diffuse gastric cancer [43, 44], colorectal cancer
[45], lobular breast cancer [46, 47], and ovarian cancer
[48]. However, the report of familial gastric cancer without
elevated rate of cancers in other organs suggested that
alterations in the germline induced this inherited cancer
[7, 49]. Germline mutation of CDH1 was first reported
in DNA extracted from lymphocytes of two patients with

gastric cancer and four obligate carriers in New Zealand.The
analysis of exon 2 to exon 16 of CDH1 gene using the single
stranded conformational polymorphism (SSCP) technique
revealed a band shift in exon 7. Direct sequencing identified
a G > T transversion in this exon. This mutation was not
observed in 150 unrelated chromosomes [50]. Since then,
genetic and germline mutations in CDH1 gene have been
analyzed widely in other populations with a family history
of diffuse gastric cancer or patients with early onset diffuse
gastric cancer (EODGC) (Table 1). These mutations lead to
truncated proteins of E-cadherin, abnormal alterations of the
E-cadherin’s calciumbinding sites, or increased its proteolytic
degradation, which inactivate its functions. Inactivation of E-
cadherin decreases cell-cell adhesion and induces aberrant
alternations of E-cadherin-associated signaling pathways
involving in cell proliferation, EMT process, and inflamma-
tion, and so forth. These aberrant changes trigger gastric
cancer development.

4. Epigenetic Alterations and
H. pylori Infection in Regulation of
E-Cadherin Expression

Other than genetic mutations in CDH1 gene to induce down-
regulation of E-cadherin, epigenetic factors alsomodulate the
expression of E-cadherin. DNAmethylation is amajor type of
epigenetic alterations and promoter hypermethylation exerts
such modulation [55]. Germline mutations of CDH1 gene
predispose an individual to HDGC, and promoter hyper-
methylation frequently acts as the second hit to completely
silence the gene. In sporadic diffuse gastric cancer, promoter
hypermethylation of CDH1 is more prevalent than mutation
of the gene [56]. Moreover, it has been well studied that



4 BioMed Research International

E-cadherin

Wnt/𝛽-catenin TCF/LEF1
CD44, c-MYC,

cyclin D1, MMP7
etc.

Rho GTPases Rho A, Rac1,
Cdc42, etc.

EC5 EC4 EC3 EC2 EC1

EC5 EC4 EC3 EC2 EC1

E-cadherin

Cell motility
Cell migration

Cell proliferation
Cancer stem cell

NF-𝜅B

EGFR, Rac-MAPK, etc.
Cell motility
Cell growth

EMT process

BCL-2, IL-6,
TNF, etc.

Cell survival
Decreased apoptosis

Inflammation

E-cadherin

Gastric carcinogenesis

Figure 2: E-cadherin regulated signaling pathways involved in gastric cancer, including Wnt/𝛽-catenin pathway, Rho GTPases, NF-𝜅B
pathway, EGFR, and Rac-MAPK signaling. Activation of these pathways leads to increase in cell proliferation, decrease in cell apoptosis,
cell migration, and inflammation associated gastric cancer development.

Table 1: Genetic mutations of E-cadherin (CDH1) in diffuse gastric cancer in populations.

Population Analytical methods Mutations/variants References
New Zealand SSCP and sequencing 1008G>T in exon 7 [50]
Portuguese PCR-SSCP and sequencing 1901C>T in exon 12 [51]
Chinese PCR-DHPLC and sequencing 2253C>T in exon 14 [52]
Italian SSCP, PCR and sequencing 163+37235G>A variant in intron 2 [53]
Korean PCR, sequencing, and MLPA 1003C>T in exon 7 [54]
SSCP: single stranded conformational polymorphism; PCR: polymerase chain reaction; DHPLC: denaturing high-performance liquid chromatography;MLPA:
multiplex ligation-dependent probe amplification.

H. pylori infection is the strongest risk factor for gastric
cancer development [57, 58]. Importantly,H. pylori infection
modulates the promoter methylation status of abundant
tumor suppressor genes in initiation and progression of
gastric cancer, including CDH1 (E-cadherin) [59]. CDH1
methylation seems to be an early event in H. pylori gastritis.
It has been reported that H. pylori infection is associated
with CDH1 methylation in chronic gastritis patients [60].
Downregulation of E-cadherin by methylation was detected
in precancerous lesions of gastric cancer, indicating that E-
cadherin plays an important role in gastric cancer initiation
[61]. More importantly, H. pylori is an independent risk
factor associated with methylation of E-cadherin in nonle-
sion gastric mucosa from patients with dyspepsia [62]. The
above evidence shows that DNA methylation is critical in
modulating the expression of E-cadherin and such process
can be regulated by H. pylori infection at the early stage of
gastric cancer development. This provides potential clinical
applications for diagnosis, prognosis, and therapeutic targets

in gastric cancer, which will be discussed in the following
part.

5. E-Cadherin in Clinical Applications for
Gastric Cancer

As E-cadherin plays a significant role in cell connection
and its associated signaling pathways modulates epithelial
cell fates and inflammation in gastric mucosa, inactivation
of E-cadherin is critical in gastric cancer initiation and
progression.Hence, evaluation of expression of E-cadherin or
alterations in its encoded CDH1 gene may provide promising
applications for diagnosis, prognosis, or therapeutic targets
for gastric cancer. The expression of E-cadherin is regulated
by numerous factors including genetic mutations, DNA
methylation, and H. pylori infection. It is assumed that
detection of alterations in E-cadherin or its expression could
reflect pathological conditions of stomach.
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5.1. Soluble E-Cadherin as a Biomarker for Gastric Cancer.
The extracellular domain of E-cadherin can be proteolytic
cleaved byADAMs (a disintegrinmetalloproteinases),MMPs
(matrix metalloproteinases), and KLK7 (kallikrein-related
peptidase) under certain pathological stimulus such as H.
pylori infection in the epithelial cells of stomach [63].Thepro-
teolytic cleavage of E-cadherin generates an 80 kDa fragment
which is released from the cell surface into circulation. This
fragment of E-cadherin is termed as soluble E-cadherin [64].
Detection of soluble E-cadherin by ELISA (enzyme-linked
immunosorbent assay) in circulation could indicate the status
of gastric cancer. Two decades ago, it was first reported that
soluble E-cadherin was elevated in serum of patients with
gastric cancer compared with nontumor controls (𝑁 = 22)
[65]. It was later confirmed in a larger sample size of gastric
cancer patients (𝑁 = 81) [66]. This evidence indicates
that soluble E-cadherin may serve as a prospective tumor
marker that accurately reflects the progressive regeneration
of E-cadherin at tumor sites. Furthermore, analysis of soluble
E-cadherin in serum and cancer tissue provides hints for
elucidating the mechanism of decrease of E-cadherin in
cancer cells [67]. Moreover, high concentration of soluble
E-cadherin in the serum of patients with gastric cancer
predicts tumor T4 depth invasion and poor survival [68,
69], suggesting that E-cadherin could be applied as a valid
prognosticmarker for gastric cancer. It has also been revealed
that high levels of soluble E-cadherin in serum 3 to 6 months
after curative surgery could predict recurrence of gastric
carcinoma [70]. The evidence mentioned above indicates
that soluble E-cadherin could serve as a potential biomarker
in diagnosis, prognosis, and tumor recurrence of gastric
cancer.

5.2. Genetic Mutations of E-Cadherin (CDH1) for Clini-
cal Management of Diffuse Gastric Cancer. As germ line
mutation in E-cadherin (CDH1) gene was strongly involved
in hereditary diffuse gastric cancer (HDGC), it was first
proposed guidelines for clinical management of patients with
familial diffuse gastric cancer in 1999. Later, the guidelines
were updated in 2010 [7, 8]. These guidelines suggested
that genetic counseling was essential for the evaluation and
management of HDGC. Individuals with familial diffuse
gastric cancer should take CDH1 genetic screening and
MLPA (multiplex ligation-dependent probe amplification) at
a suggested age [71]. Individuals without CDH1 mutation
should take clinical surveillance by EGD (oesophagogas-
troduodenoscopy), while the ones with CDH1 high risk
missense mutations or truncating mutations was strongly
recommended to take prophylactic gastrectomy and under
close follow-up [8, 49]. The purpose of the guidelines is
to establish a system to collect and collate data centrally,
to combine the research process and clinical practice for
a better patient management for the families affected by
HDGC.

E-cadherin is encoded by the CDH1 gene. CDH1 gene
is transcribed into a 4.5 Kb pre-mRNA. This pre-mRNA
is processed to introns removal and exons connection,

eventually generating distinct mRNA and protein of E-
cadherin. The process of pre-mRNA to mature mRNA is
called splicing. Splicing is regulated by cis-elements and
trans-elements [72]. Abnormal alterations in these elements
may lead to aberrant splice variants or abnormal expression,
inducing dysregulation of maturation of E-cadherin. Abnor-
mal maturation of E-cadherin leads to downregulation of E-
cadherin and contributes to human hereditary diffuse gastric
cancer (HDGC). Although still at the preliminary phase, it
has been pointed out that targeting alternative pre-mRNA
splicing such as the aberrant splice variants or their resulting
products are potential therapeutic targets for HDGC [72].
It was reported that a germ-line splice site mutation (1135 ∧
IVS8 + 5del8ins5) of CDH1 was identified in four members
(father and three daughters) of a family with HDGC [73].
Besides gastric cancer [74, 75], splice site mutations of CDH1
were also revealed in colorectal cancer and breast cancer
[76, 77]. If the products generated from alternative pre-
mRNA splicing of CDH1 are identified, it will be possible to
treat cancer patients more selectively.Through regulating the
altered splice variants of the target gene rather than the whole
target gene of an individual patient, personalized therapies
are possible. However, one of the most important issues to be
resolved is the development of a drug delivery system suitable
for the therapeutics [78, 79].

5.3. H. pylori Infection and DNA Hypermethylation of E-
Cadherin (CDH1) for Clinical Application for Gastric Cancer.
H. pylori infection is involved in promoter hypermethylation
of genes associated with the initiation and progression of
gastric carcinogenesis [59]. Methylation of CDH1 has been
reported to be regulated by H. pylori infection in chronic
gastritis and intestinal metaplasia patients, indicating that E-
cadherin plays an important role in gastric cancer initiation
[60, 62]. Importantly, eradication of H. pylori infection is
able to reverse the hypermethylation status of CDH1, thus
delaying or reversingH. pylori induced gastric carcinogenesis
[60].

In addition to eradication of H. pylori infection, chronic
aspirin use was indicated to be associated with a significantly
lower methylation rates of CDH1 gene (nonuser versus user
36.1% versus 10.8%, 𝑃 = 0.005) in the gastric mucosa
of H. pylori infection positive subjects [80]. Moreover,
chronic NSAID (nonsteroidal anti-inflammatory drug) use
was revealed to be inversely correlated with CIHM (CpG
island hyper methylation) as an independent factor (OR =
0.18, 95% CI = 0.06–0.48) [81]. This suggests that NSAID
can suppress CIHM of E-cadherin in the human gastric
mucosa. Hence, chronic aspirin use or NSAID use may
have suppressive role against methylation-related gastric
carcinogenesis.

On the other hand, epigenetic alterations are reversible,
drugs or chemical compounds with demethylating activity,
such as 5-aza-2-deoxycytidine (5-aza-dC), could be applied
for patients with methylation of multiple tumor suppres-
sor genes [82, 83]. Such therapy could also reverse the
methylation status of CDH1 and lead to reactivate the E-
cadherin. Considering the adverse effects of 5-aza-dC, such
as nonspecific demethylating and inducing genome wide
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hypomethylation, DNMT- (DNA methylation transferase-)
targeted strategy has been proposed and may prove to be
more effective than demethylating agents [84, 85].

6. Conclusions and Future Perspectives

Although alterations in E-cadherin and its expression may
serve as promising biomarkers or therapeutic targets in
gastric cancer, it should be aware of the potential pitfalls
before applying for clinic. For example, it was reported
that concentration of soluble E-cadherin did not elevate
significantly in gastric cancer patients compared with healthy
controls of a study in UK (𝑁 = 45) [86]. This might
be attributed to the influence of age as it seemed that the
concentration of soluble E-cadherin and other adhesion
molecules increased as aging [87, 88]. Hence, comparison of
serum levels of soluble E-cadherin should be considered in
age-matched populations [89].

Moreover, a study of genetic analysis of CDH1 gene in a
Polish population (𝑁 = 86) indicated thatmutations inCDH1
did not contribute to familial diffuse gastric cancer in Poland
[90]. In this study, the entire coding sequence of CDH1 gene
and exon/intron splice sites were applied for sequencing, but
no pathogenic mutations were detected. This case suggested
the need for mutation screening of other tumor suppressor
genes, such asTP53, or screening for other genetic alterations,
such as deletion, in familial diffuse gastric cancer lacking
CDH1 germline mutations [51].

On the other hand, attention should be paid for the
promoting role of E-cadherin in tumor progression of several
epithelial cancers proposed by recent studies. These include
increased E-cadherin expression for supporting intravasation
and tumor cell survival in inflammatory breast cancer [91,
92], E-cadherin associated mesenchymal to epithelial transi-
tion (MET) and activation of the Akt and MAPK signaling
pathways in ovarian carcinoma [93, 94], and E-cadherin
promoting cell proliferation and migration in a subset of
highly aggressive glioblastoma [95, 96].This process involved
E-cadherin overexpression together with the E-cadherin
associated specific signaling networks in the cytoplasm and
nucleus [97]. This evidence indicates that the presence of E-
cadherin as a tumor suppressor or oncoprotein depends on
the specific cell context.

In summary, E-cadherin and its associated signaling
pathways play important roles in maintaining functions of
gastric mucosa. In contrast, dysregulation of these factors
contributes to gastric cancer initiation and progression.
Detection of the expression and aberrant alterations of E-
cadherin are promising for clinical applications for diagnosis,
prognosis and therapy for gastric cancer. However, it should
be aware of the tumor promoting role of E-cadherin in
specific cell context in order not to render development of
other tumors by reactivation of E-cadherin for therapy of
gastric cancer. Further studies of the functions of E-cadherin
and the mechanisms of its tumor suppressing and tumor
promoting roles are still in need for its wide application in
clinic.
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and C. Pañeda, “Silencing human genetic diseases with
oligonucleotide-based therapies,” Human Genetics, vol. 132, no.
5, pp. 481–493, 2013.

[80] T. Tahara, T. Shibata, M. Nakamura et al., “Chronic aspirin
use suppresses CDH1 methylation in human gastric mucosa,”
Digestive Diseases and Sciences, vol. 55, no. 1, pp. 54–59, 2010.

[81] T. Tahara, T. Shibata, H. Yamashita et al., “Chronic nonsteroidal
anti-inflammatory drug (NSAID) use suppresses multiple CpG
islands hyper methylation (CIHM) of tumor suppressor genes
in the human gastric mucosa,”Cancer Science, vol. 100, no. 7, pp.
1192–1197, 2009.

[82] J. K. Christman, “5-Azacytidine and 5-aza-2-deoxycytidine as
inhibitors of DNA methylation: mechanistic studies and their
implications for cancer therapy,” Oncogene, vol. 21, no. 35, pp.
5483–5495, 2002.

[83] R. L. Momparler, “Epigenetic therapy of cancer with 5-aza-2-
deoxycytidine (decitabine),” Seminars in Oncology, vol. 32, no.
5, pp. 443–451, 2005.



BioMed Research International 9

[84] C. Zhao and X. Bu, “Promoter methylation of tumorrelated
genes in gastric carcinogenesis,” Histology and Histopathology,
vol. 27, no. 10, pp. 1271–1282, 2012.

[85] A. J.Murgo, “Innovative approaches to the clinical development
ofDNAmethylation inhibitors as epigenetic remodeling drugs,”
Seminars in Oncology, vol. 32, no. 5, pp. 458–464, 2005.

[86] G. Velikova, R. E. Banks, A. Gearing et al., “Circulating soluble
adhesion molecules E-cadherin, E-selectin, intercellular adhe-
sionmolecule-1 (ICAM-1) and vascular cell adhesionmolecule-
1 (VCAM-1) in patients with gastric cancer,” British Journal of
Cancer, vol. 76, no. 11, pp. 1398–1404, 1997.

[87] M. Juhasz, M. P. A. Ebert, H. U. Schulz et al., “Dual role of
serum soluble E-cadherin as a biological marker of metastatic
development in gastric cancer,” Scandinavian Journal of Gas-
troenterology, vol. 38, no. 8, pp. 850–855, 2003.

[88] E. A. Miles, F. Thies, F. A. Wallace et al., “Influence of age
and dietary fish oil on plasma soluble adhesion molecule
concentrations,”Clinical Science, vol. 100, no. 1, pp. 91–100, 2001.

[89] C. Pedrazzani, S. Caruso, G. Corso et al., “Influence of age
on soluble E-cadherin serum levels prevents its utility as a
disease marker in gastric cancer patients,” Scandinavian Journal
of Gastroenterology, vol. 43, no. 6, pp. 765–766, 2008.

[90] A. Jakubowska, M. Ławniczak, B. Wojnarska et al., “CDH1 gene
mutations do not contribute in hereditary diffuse gastric cancer
in Poland,” Familial Cancer, vol. 9, no. 4, pp. 605–608, 2010.

[91] C. G. Kleer, K. L. Van Golen, T. Braun, and S. D. Merajver, “Per-
sistent E-cadherin expression in inflammatory breast cancer,”
Modern Pathology, vol. 14, no. 5, pp. 458–464, 2001.

[92] M. R. Hoffmeyer, K. M. Wall, and S. F. Dharmawardhane,
“In vitro analysis of the invasive phenotype of SUM 149, an
inflammatory breast cancer cell line,” Cancer Cell International,
vol. 5, article 11, 2005.

[93] N. Auersperg, J. Pan, B. D. Grove et al., “E-cadherin induces
mesenchymal-to-epithelial transition in human ovarian surface
epithelium,” Proceedings of the National Academy of Sciences of
the United States of America, vol. 96, no. 11, pp. 6249–6254, 1999.

[94] P. Reddy, L. Liu, C. Ren et al., “Formation of E-cadherin-
mediated cell-cell adhesion activates akt and mitogen activated
protein kinase via phosphatidylinositol 3 kinase and ligand-
independent activation of epidermal growth factor receptor in
ovarian cancer cells,” Molecular Endocrinology, vol. 19, no. 10,
pp. 2564–2578, 2005.

[95] F. J. Rodriguez, B.W. Scheithauer, C. Giannini, S. C. Bryant, and
R. B. Jenkins, “Epithelial and pseudoepithelial differentiation in
glioblastoma and gliosarcoma: a comparative morphologic and
molecular genetic study,” Cancer, vol. 113, no. 10, pp. 2779–2789,
2008.

[96] L. J. Lewis-Tuffin, F. Rodriguez, C. Giannini et al., “Misregulated
E-cadherin expression associated with an aggressive brain
tumor phenotype,” PLoS ONE, vol. 5, no. 10, Article ID e13665,
2010.

[97] F. J. Rodriguez, L. J. Lewis-Tuffin, and P. Z. Anastasiadis,
“E-cadherin’s dark side: possible role in tumor progression,”
Biochimica et Biophysica Acta: Reviews on Cancer, vol. 1826, no.
1, pp. 23–31, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


