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A new test for the proportionality of two
large-dimensional covariance matrices
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bKLAS and School of Mathematics and Statistics, Northeast Normal University
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Abstract

iid iid .
Let X1y sy Xpg+1 Np(u’b 21) and Yi,- -5 ¥Ynot+1 Np(“?y 22) be two inde-

pendent random samples, where n; < p < no. In this article, we propose a new
test for the proportionality of two large p X p covariance matrices 2 and 3.
By applying modern random matrix theory, we establish the asymptotic normal-
ity property for the proposed test statistic as (p,ny,ny) — oo together with the
ratios p/n; — y; € (0,00) and p/ny — y» € (0, 1) under suitable conditions.
We further showed that these conclusions are still valid if normal populations are
replaced by general populations with finite fourth moments.

Keywords: Covariance matrix, Hypothesis testing, Large-dimensional data,
Limiting spectral distribution, Proportionality, Random F'-matrices.

1. Introduction

With the rapid development and wide applications of computer techniques,
huge data can be collected and stored. This is called as high-dimensional data or
large-dimensional data, see Bai and Silverstein [2]. Many traditional estimation
and test tools are no more valid or perform badly for such large-dimensional data,
since these traditional methods are often based on the classical central asymptotic
theorems assuming a large sample size n and fixed dimension p.

In this article, we consider testing proportionality of large-dimensional covari-
ance matrices from two different populations. The proportionality of covariance

*Corresponding email: zhengsr@nenu.edu.cn

Preprint submitted to Journal of Multivariate Analysis June 10, 2014



matrices is the simplest form of heteroscedasticity between populations, which
has extensive applications in economics, discriminations, etc.

As an instance, consider a quantitative genetic experiment, called paternal
half-sib design. This experiment is conducted under the hypothesis of equal her-
itabilities in the two populations, and it corresponds to the hypothesis of propor-
tionality between population covariance matrices which we will discuss in this
paper. The goal of this experiment is to model measurements of some quantitative
traits in two independent populations of animal offsprings. More detailed descrip-
tion of this experiment can be found in Jensen and Madsen [10]. Other related
examples are: Dargahi-Noubary [4] considered the applications of discrimination
between two normal populations when covariance matrices are proportional. Nel
and Groenewald [14] studied the multivariate Behrens-Fisher problem under the
assumption of proportional covariance matrices. Later, Villa and Pérignon [20] in-
vestigated the sources of time variation in the covariance matrix of interest rates.
In their work, they discussed the similarities among covariance matrices of bond
yields including the cases of equality and proportionality.

Let x1,...,Xp,41 s Np(p1,%1) and yq, ..., Ynyt1 s N,(p2,33) be two
independent random samples, where n; < p < no. To describe the proposed new
test, we define N, = n; + 1 (k = 1, 2) and consider the joint sufficient statistics:

N1 Nl

X = Nilzxi’ \% :Z(Xi_i)(xi_i)Tv

i=1 i=1

and
1 N . N
y = N, > v Vo= (v; =9y =¥ (1
j=1 j=1

for (p1, %) and (p2, X), respectively, where A" denotes the transpose of A.
Thus, X} = Vi /n; is the maximum likelihood estimator of ¥; for k = 1, 2.
The null hypothesis of interest is

Hol 21 = 0'222, (2)

where 02 > 0 is an unknown constant. When o2 = 1, Wilks [21] suggested a

likelihood ratio (LR) test statistic

N . N. . N N
AN:élog\VlH—?zlog\Vg\—Elog]V1+V2],



where N = N; + N,. However, in practice, it is often to use a modified LR test
statistic

ny + N9

Ry = 5 log [Vi] + 22 log [ Vs - log [Vy + Vs,
due to its unbiasedness and monotonicity of the power function (see, Srivastava,
Khatri and Carter [18]; Sugiura and Nagao [19]).

As the sample sizes Ny, N, — o0, the classical central limiting theorem states
that under H, (see [12], Sec. 8.2)

“20y =5 ey and =2y 5 0d 3)
Note that the limiting results in (3) are true only when the variable dimension p
is assumed to be fixed and p < min(Ny, N2). With computer simulations, Bai et
al. [1] showed that, employing the x? approximation (3) for dimensions like 30
or 40, increases dramatically the size of the test. For dimension and sample sizes
(p, N1, Ny) = (40,800, 400), the test size equals 21.2% instead of the nominal
5% level. The result is even worse for the case of (p, N1, Ny) = (80, 1600, 800)
which leads to a 49.5% test size.

For the general case of hypothesis (2) with unknown constant o2, to our knowl-
edge, the first research was done by Federer [6] who developed a maximum like-
lihood method for two groups of normal populations with dimension p < 3. Kim
[11] extensively studied the problem of proportionality between covariance ma-
trices, and showed that the solution of the likelihood equations was unique. This
result was later published by Guttman et al. [9]. Independently, Rao [15] consid-
ered the likelihood ratio test for proportionality of covariance matrices from two
normal populations. As an extension, under normality assumptions, Eriksen [5]
and Flury [8], independently, discussed maximum likelihood estimation of pro-
portional covariance matrices and provided likelihood ratio tests for testing the
hypothesis of proportionality.

Furthermore, Schott [16] considered the test problem of proportional covari-
ance matrices from k different groups and obtained a Wald statistic under general
conditions without normal population assumptions. However, all of the above
work is based on the classical approximating theory which assumes the dimen-
sion of data, p to be held fixed. As it will be shown, this classical approximation
leads to a test size much higher than the nominal test level in the case of large-
dimensional data. All such problems and limitations bring up the need for further
study on proportionality test of covariance matrices.



Based on the modern random matrix theory (RMT), we propose a new test
and further prove that the distribution of the test statistic proposed approximates
to a normal distribution as (p, ny, n2) — oo together with the ratios p/n; — y; €
(0,00) and p/ny — yo € (0, 1) under suitable conditions. The proposed new test
is valid for both Gaussian data and non-Gaussian data with finite fourth moments.

The rest of the article is organized as follows. Section 2 briefly reviews some
preliminary and useful RMT results. In Section 3, we propose a new test and study
its asymptotic normality as (p,ni,ny) — oo. In Section 4, the efficiency of the
proposed test is illustrated by simulation studies. Section 5 presents conclusions
and some discussions. Some technical derivations are put into the Appendix.

2. Review of some useful results of random matrix theory

We first review several results from RMT, which will be used for the proposed
test procedure. For any p x p matrix M with real eigenvalues {\M}?_ | the em-
pirical spectral distribution (ESD) of M, denoted by F™, is defined by

1 p
Fﬁ%x):};E:nMygd, z €R.
=1

We will consider a random matrix M whose ESD FM converges (in a sense to
be precisely) to a limiting spectral distribution (LSD) F™. To make statistical
inference about a parameter 6 = [ f(z)dF™(x), it is natural to use an estimator

é:/}@ﬂ@%@z%}jﬂ@ﬁ,

which is a so-called linear spectral statistic (LSS) of the random matrix M.

Let {&; € C: i,k =1,2,...} and {ny; € C: j,k = 1,2,...} be two indepen-
dent double arrays of 7.7.d. complex variables with mean 0 and variance 1. Writing
& = (&4, &y, &) and 1y = (1j, M2, - -, Mp;)". For any given positive in-
tegers n; and ng, the vectors {&1,...,€&,,} and {my,...,m,,} can be thought as
independent samples of size n; and no, respectively, from some p-dimensional
distribution. Let S; and S, be the associated sample covariance matrices, i.e.,

1 & 1 &
S, = — £ and Sy, = — nh.
1 ny ;S Ez 2 s ;77]77]



Then, the following so-called F-matrix generalizes the classical Fisher-statistic
for the present p-dimensional case,

Vn - Slsz_l, (4)
where n = (ny,ny) and p < ny. Define

U = Ly € (0,400), Yy = L s € (0,1), (5)
n T2

Yn = (UnysYn,) and y = (y1,92). Under suitable moment conditions, the ESD,
FY» of V,, has a LSD, Fy(x) which is given by (see [2], P. 79 or [22])

Fy(dz) = gy(2) g4 (x)dz + (1 — 1/y1) L, >160(de), (6)

where J..(-) denotes the Dirac point measure at ¢, and

e P S G My YU G )
(1—2) (1—12)
gy(ﬂf)—M\/(b—x)(as—a), a<x<b.

B 2mx(y1 + yox)

Define the empirical process Gn = plFY» — Fy,] and let A be the set of
analytic functions in an open region in the complex plane containing the interval
[a, b] which is the support of continuous part of the LSD F}, defined in (6). The
following central limit theorem (CLT) of LSS for a high-dimensional F-matrix
was established in Zheng [22], which will be applied in our work.

Theorem 2.1 For each p, assume that (§;5,:i=1,...,p;71 =1,...,n1) and
(Mijyst =1,...,p;J2 = 1,...,n9) are ii.d. and satisfy E({11) = E(n1) = 0,
Eléul> = Elnul> = L Bléul*, Elnul* < 00,40, = p/m1i — y1 € (0,+00),
and y,, = p/ny — yz € (0,1). Furthermore, let fi, ..., fr € A. Then, the ran-
dom vector (G, (f1), ..., Gn(fy)) weakly converges to a k-dimensional Gaussian



vector with mean vector

1 ! : -
m(f;) = 1311114—71'1}'{::1 fi(2(€)) L 1 - C+r? N ¢+ ya/hr ‘
Bz : yl(l — y2)2 L
27i - h? I¢l=1 7 ))mdc
2mi-h Jige TN gt v

_|_

_|_

and covariance function

cov(fj, fo) = —l1m—j{| 17{ ~ Cl_r( (CQ))dCIdCQ

ri1 272 G)?
o (Bmyl + Bny)(l — y2> M
A2 h2 ]{cu G +y2/h)2dcl
g 7{@ NTAEAISEA ®)

where z(¢) = (1—yo) 2[1+h2+2hRe(C)], h = \/y1 + Y2 — Yy1¥a, Be = E|é11 [ —
3, and 3, = E|n1|* — 3.

This CLT allows for both n = (n;, ny) and p approaching infinity. In the next
section, based on the above CLT, we will develop a test statistic 7, and provide
the limiting distribution of 7, .

3. Formulation of the new test

Let 21/ ? and Eé/ ? be two p X p positive definite matrices such that 3, =
(21/2) and ¥y = (2§/2)2, respectively. Define &; = EII/Q(XZ- — py) and n; =
E_l/ Q(y] p2). Note that all the random vectors {x;}, {y;} and the covariance
matrices ¥; and 3, depend on the dimension p. However, we do not signify
this dependence in notation for ease of statements. After standardizing, the arrays
{&} 1 and {n; }”QJrl contain i.i.d. variables with mean O and variance 1, for
which we can apply Theorem 2.1.

Testing the null hypothesis specified by (2) is equivalent to testing

Hy: 3, P55, = 671, )

6



This is, in fact, a sphericity test. Srivastava [17] discussed this sphericity test for
a single population and proposed a measure of this sphericity. As stated in Srivas-
tava [17] (also see [7]), the above test is invariant for an orthogonal transformation
x — Gx. This test is also invariant under a scalar transformation x — cx. Thus,
without loss of generality, we assume that 22_1/221 22_1/2 = diag(A1, ..., A\p). It
follows from the Cauchy—Schwarz inequality that

(£) = (24

with equality holding if and only if \; = --- = A\, = A, forall7 =1,...,pand
some constant A. Thus, following the idea of Srivastava [17], we suggest testing
Hy: ¥ =1 against H;: ¥ > 1 with

)
( ?:1)‘1'/10)2

Note that tr(3;3;") = 7 A and tr(2, 2,23, 1) = 377 | A% hence, we
propose the following test statistic

2tr(f3
[tr(3

where ﬁ]l and ﬁ]g are unbiased sample covariance matrices. On the other hand, a
scaled distance measure between 023, Y 22122_ /2 and I, can be defined by

- D (10)

2
P YN YO Yl P (R e
tr ) -1, = —D.

(1/p)tr(o—2x; 28, 5,12 [tr(2 25 1)]?

This scaled distance measure was also discussed by Nagao [13] for the sphericity
test of a single population. Thus, it is reasonable to consider the test statistic (10).
Define A = ¥, /?°Cx["/? and B = %, "/°DX; "2, where

N1 N2

C= =3 xi—p)x— ) and D= — 3 (y; — pa)(y; — a)"

n
i=1 25



Note that V,, = AB~! indeed forms a random F-matrix. Then, we define

7o p*tr(CD'CD™1)
"’ [tr(CD-1)?

—p. (11)

As T, and fn have the same asymptotic distribution and CLT under Hy, in the
next, we will consider the CLT of T,.

Theorem 3.1 Suppose that the conditions in Theorem 2.1 hold under Hy and
T, is defined in (10), then, under Hy and as (ny,ny) — 00,

il T — iy — ph2(1 = 15) '] = N(0,1) (12)
with

pr, = (B4 y3) (1 —y2) 7% + Buoyn + Byye, (13)

vr, = 4RI +2y5)(1 —ya) 7t (14)

where h = \/y1 + Y2 — Y11

PROOF. For convenience, we define g;(x) = 2% and g5(z) = x. Let {\;}}_,
be the eigenvalues of the F-matrix V. Following Theorem 2.1, we have, as
(n1,ng) — o0,

1 P (N /o?)? — F,(d
D A KL A,
(1/p) 375 Aj/fo? = [ ga(2) Fy(dx)

where
O = ( m(g1) ) SOLT _ ( v(g1,91) v(91,92) )
m(gz) 7 v(g1,92) v(g2, g2) ’

and Fy(dz) is defined in (6).
Denote (&) = (1 —y2)"2(1 + h% + 2hRef), then the components of p“LT are



given by

1 ! : :
o) = B 00O (e )
ﬁx'yl(l_yQ)Q : ;
T o ﬂug”(é(g))(f Tl

B2l =9a) [ 5 S0 qe
+ 2ih jl{él 19](5(§>>(§+y2/h)3d§’ j=1,2,

and the elements of XM are given by

o(ge ) = _hm_fi| 17{ ) 61 52))d§1d§2

rl1 272 1 gg
~ (Bayr + Byy2) (1 — o)
4m2h? ]|41| 1 (& +y2/h 4
91(6(&2))
g ﬁzl 1 (&2 +y2/h)2d€2 7 hbetl2)

with ﬁx = E’€11|4 — 3 and 61} = E|7711‘4 - 3.
By the Residue theorem, we have

_ h? — y% + 2y2(1 + h2) ﬁmyl + Sﬁyy2 2h2ﬂyy2
m(g) = 1=y + (e 1 T (15)
- Y2 /ByyZ

4h*(2h* +5h% +2)  4(Boyr + Byy2) (1 + h* — yo)?

v(g, 1) = (1= ) + 1= ) , (17)
AR R 2(Bayr + Byya) (1 B — y)
v(gth) = (1 — yg)ﬁ + (1 _ y2)4 ’ (18)
2h? »
o(g2,92) = 4 Dbt Dyt (19)

(I—w)* (I —y2)?
Moreover, let by = [ #*F,(dz) and by = [° xFy(dz). Then, we have

1+h2—y2 1

by = b= .
’ (1—y2)? 1oy

(20)



The details of the above derivations are postponed to the Appendix.
Define g(z1,72) = z1/23 and ag = (1/b%, —2by/b})". Applying the Delta
method (see Casella and Berger [3]), we obtain, as (nq,ny) — 0o,

(1/p) ?:10\]‘/02)2 bo] AN( T, OLT a‘l(;ECLTaO)’

(L) (T \ifo?)? 8 Aokt

that is
Ta — p(bo /b3 — 1) 2, N(agp,CLT, agECLTa()). (21)

Furthermore, substituting the equations (15)—(20) into (21) and after some manip-
ulations, we obtain

T — ph*(1 —yo)~" = N(pr,,vr,)

where 17, and v7, are given in (13) and (14). This is equivalent to the statement
of (12). The proof is completed.

Theorem 3.2 Under the assumptions of Theorem 3.1 and when |3, and
|22 || are bounded, (3, and B, have consistent estimators [3, and (3, given by

A 1=

r —

2

2
1 1 N1 1 N1
_p kz Ni—1 Z (L N_1 — Jk

=

and

~ = =1

i=

1 T LR g : 1 & T LR i
) 1(Yiyi—m§ym) — e |2 | YiYe T w LYY

ﬁy:

where x; = (x;1, . . . ,xip)T andy; = (Y, - - - ,yip)T.

10

2
L A L ’ 1 A L A
p(Nl—l)Zl XX TNy KX | T N ) Zl Xixi_mzlxjxj
= 1= j=
-2

—2



PROOF. We have x = (X1,..., X,)" = X2¢&, where X2 = (a;;), X = (o)
and € = (&,...,&,)". Hence,

E(Xy) = Elam& + -+ apép)?

= Zak] (E§1 ) (Zaij> )

B(XiX7?) = Z@kﬂzy (B¢ —1) (Z ak]) (Z azy) )
j=1

E(X]+- +X2)? = ZEX4 +2)  E(X;X})

k#l
2 p P 2
- () o (S50
j=1 \k= =1 k=1
where
p p p
B(X2 4+ X2)? = E(x'x)?%, Zak], DD ar =) om
k=1 7j=1 k=1 k=1
That is,

1

p
~B(x'x)? Z%k (B¢ — (Z Ukk:)
p e
When ||X|| is bounded, then we have

Eloy, — ol = Elowk + orel - [0k — on

VE Gk + ow)? - E(Grr — owk)? = o(1)

uniformly for k. Then we have

p p
1 .
Z%k Z@%k < ];ZEWI%JC — ol = o(1).
Pi= k=1

11



That is

2
Let the estimator of _F(x'x)* — <Z§.’:1 akk> be

p
N1 ZX;!—Xi'X}—Xj
L St
Np e ()

1 oy 2
= m;(xle> le N1—1 (Zx XZ) ,

where

1 T.\2 1
m;(xzxz) = m;(x X — tr2—|—tr2)

Ny 5, 2 1
= ———(tr¥ iy .
p(Nl_l)(r ) +pr N1—1;(Xx =)

1
+ oV = 1) ;(x Tx; — tr¥)?,

’ 2
1 T 1
pNi(Ny — 1) (Z l ) pN1(N; — 1) <ZZ X;X; —ntrx +n 1"21)

= S R e ey S )

p(N; — 1) N, —
M (xlx; — trE))?
" pNi(N: — 1)

12



Then, we have

i o (£ )
_ X;X; XX | — —
p(Nl—l)Xi:( ) - pNi (N, — 1) N1—1 (Z ) p p

S(xjx; — trY) - (xix; — trX)]
_ b Z(x x; — tr¥)? — 7] Y _ B(x'x — tr%)?
pN1 £ ' pNi(N: — 1) p
1 E(x'x —tr¥)? ;(XZTXZ ~ %) (%, — ir)
= — X, X; — tr} L
pN1 % < ’- p pNi(N —1)
= 0.

Then we obtain the consistent estimator of E(£}) as follows

2
1 Ni (T, \2 1 N1 T, .
P(Ni=1) Zi:l X;X;) PNLI(NM=T) (Zi:l Xixl>

(
» i (3 ity 7h)?
p Lek=1\N; Zsi=1"Vik

+1,

where x; = (z1,. .., 7).
When E(x) is unknown, we also obtain the consistent estimators of F/(£2) as
follows:

13



Then, the consistent estimator of 3, = E(£}) — 3 is as follows

The derivation of By is similar. The proof is completed.

4. Simulation studies

4.1. Large-dimensional Gaussian data

In this section, we perform some simulation studies to evaluate the efficiency
of the new test (LZ test) proposed in Section 3 for testing hypothesis (2) with
large-dimensional Gaussian data. For comparison, we also conduct the Bartlett
test (Bartlett adjusted likelihood ratio test, see Eriksen [5] or Flury [8]) and the
Wald test (see Schott [16]). We generate X, ..., X,,;+1 from N,(0,0°L,) and
Vi, Ynge1 from N, (0, 35) with 3y = (pl"=) for 62 = 0.5,1.0,2.0 and p =
0.0, 0.4, 0.8, respectively. We intend to test the null hypothesis: Hy: ¥, = 023,.
Notice that p = 0 corresponds to the realized size (Type-I error) of the test. The
nominal test level is set as & = 0.05. We simulate 20,000 independent replicates
for different values of (p,ni,ng) under the assumption of p < n, and compare
the above three test. The simulation results are summarized in Table 1. It needs
to point out that the proposed new test allows for p > n, , which means that the
observations from one of two groups can be fewer than the dimension. Table 4
displays the summary of Gaussian data as well as non-gaussian data for the case
of p > ny.

From Table 1, we can see that, as the dimension p increases, both Wald test and
Bartlett test lead to an increasing test size while the proposed LZ test is so stable.
Especially, when the dimension p > 600, both Wald test and Bartlett test are so
worse which almost always reject the null hypothesis; in contrast, our proposed
test remains even accurate.

Figure 1 shows the QQ-plots for the 1,000 observed values of the LZ test
T, with p = 0.0. The values of (p,n;,ny) are chosen as (320,640, 640) and
(500, 50,1000). In both cases, the normality result appears to be satisfied by the

14



Normal Q-Q Plot Normal Q-Q Plot
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- 0
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-3 -2

Theoretical Quantiles Theoretical Quantiles

Figure 1: Normal QQ-Plot for 7}, as in (10) under Hj based on 1000 replicates. The left is for the
case of p < nq; the right is for the case of p > n;.

QQ-plots for large (p, ny,ny) which validates our theoretical asymptotic normal-
ity results. We also check the QQ-plots of 7}, under the alternative hypothesis
(i.e. p > 0). The similar normality property appears to be satisfied, but for the
restriction of space, we ignore the QQ-plots at here.

4.2. Large-dimensional non-Gaussian data

In fact, Theorem 3.1 is valid for general population distributions with finite
fourth moments. To see this, two distributions are considered. One is the gamma
distribution. We generate x; = azgl), t=1,...,ni+1land y; = I‘z§.2), j =
1,... g+ 1withz" = (2 . Zi(;))T and z§.2) = (Zﬁ), e ZJ(;))T consisting
of identical and independent standardized gamma(4, 0.5) random variables so that
they have mean 0 and variance 1, and 0 = (02)"/2 and T, = (pI"=71)/2 for
0?2 =0.5,1.0,2.0 and p = 0.0, 0.4, 0.8, respectively. The nominal test level is set
as a = 0.05. We simulate 20,000 independent replications for different values
of (p,n1,ny) and compute the estimated significance level of the LZ test. The
simulation Results are summarized in Table 2.

Another multivariate distribution considered is a mixture of multivariate nor-
mal distributions. We generate zgl), 1=1,...,n1+1and z§2),j =1,...,n0+1

with each component is i.i.d. from 0.9N(0,1) + 0.1N(0, 32). Let x; = oz." and

i

15



Yy = I‘zgz) with the same values of ¢ and I' as in the case of gamma distribution.

The simulation results are summarized in Table 3.

From Tables 2 and 3, we can see that, our proposed test is still valid for non-
Gaussian data. We also studied the QQ-plots of 7}, based on 1,000 replicates under
the null and alternative hypotheses for the gamma data and mixture of multivariate
normal data. The normality property appears to be satisfied by the QQ-plots for

large (p, n1, n2).

4.3. More simulations on the LZ test

In this section, we continue the simulations of Section 4.1 and 4.2 but with
another different set of values for (p, ny, ny). We set p = 10, 25, 50, 100, ny = 2p,
and ny = p + 95,p + 10,.... The results are displayed in Table 5 and Table 6.
Obviously, when p is too small or when p/ns is close to 1, the LZ test is not so
efficient. Therefore, we recommend the practitioners to be careful to use the LZ
test when p is small or when p/n; is close to 1.

5. Conclusions and future work

In this article, we developed a new test for comparing the proportionality of
large-dimensional covariance matrices from two different population with finite
fourth-moments. Its asymptotic normality is established based on modern random
matrix theory as the dimension increases proportionally with the sample sizes.
Simulation studies show that our proposed method is valid for both Gaussian data
and non-Gaussian data. Our proposed method requires that p < n, but allows for
p = ny. Generalizing our proposed method to the case of p > max(ny, ny) will
be the future work.

6. Appendix

Derivations of (14)
Notice that 0 < s, % < 1. Applying Cauchy integration formula, for any

given r > 1, we have

1 1 2
— dé=0. 22
7|i|:1 (5—r—1+5+r-1 §+yg/h> g (22

16



We know that Reé = (£ + €)/2 and € = ¢! for any ¢ with || = 1. Then for
gi(x) = 2% and §(€) = (1 — y2) ~2(1 + h? + 2hRe€), in the formula

1 ! : -
m(gy) = 1:{?%]{5:1 91(6(€)) (f e T E+rt €+y2/h) &

Be -1 (1 = y2)? ;
MR j{a:l 5100() €+ ?/2/h)3d§
By 3l = o) RaLTLE
T o ]%:1 f0¢ €+ y2/h)3dg
we have
. 1 1 2
lgﬁl o 91(6(¢)) <§ _ 1 + E+r1 £+ y2/h) d

L 1 2 2 2 ! 1 2
_lrlinll(l—y2)4 {7{61[% t+h +h£>](§—7”_1+§+7”_1 §+?J2/h> 4

h 2h(1+h2)]< 1 12 ) }
+7{§|_1L2+ 3 §—T_l+§+T_1 §+ya/h d<

= (13%)4 - [2(h* — y5 + 2y2(1 + h%)) + 0 + 0]
G iﬂ;)4 [P* =y + 2y (1 + 1))
7{5 OO = { jﬁl o Tg(izf}hj P
1 {? S =i
= 27r? . [(1{2—92)4 + O}
TSI
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and

§+1/h _ 1 2 2 o1 (§+1/h)
7{5 OO s = { fé R

h 2h(1+h%)] (E4+1/h)
* 7{5.1 L? L } €t m/h)?)df}
- h(3 + 2h2 — 3y,)
(1—y2)?
R(3 4 2h% 2 3y)
= 27-
(1 —yo)*

X

Thus, we obtain

m(gy) — h* —y3 4+ 2y2(1 + h?)  Boyr + 38yy2 2h25yy2
(1 —yo)* (1 —y2)? (1 =)

Derivations of (15)
For go(z) = x and §(&) = (1 — o) 2(1 + h* + 2hRef), in the formula

! ! : 2
m(gs) = lw}ﬁlﬁ £|:192(5(5)) (5 _ 1 T £+l B §+y2/h) df

Ba: yl(l _y2)2 1
Bl 7{5 ) e e

By - y2(1 — 12) §+1/h
2 7{5 90O Ty
1

T 2 -1 1 1 _ 2
_13?11—47Ti-(1—yz)2]{|=1(1+h + h + h¢ )(€_T_1+§+T_1 §+y2/h) d¢

+

Bm'yl 2 1
h? 4+ hé + hé ) —-——d
+2m.h2fa:1(1+ + h§ + h¢ )<€+y2/h)3 3
By - yo > . E+1/h
e 1+ R+ heé+heH)——""_d
e A
_ 1 : Bey Byy2 .
ST RO G O gy 2 (O
_ Y2 X Y28y

(1—y2)* (I—9)
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Derivations of (16)
For g1(z) = 2% and 6(§) = (1 — y2) " %(1 + h? + 2hRef), in the formula,

_ 0(£1))g1(0(&2))
(g1, 1) = —1;?11% %ﬂ 1%2| ) (61— 165)? d&idé
 (Boys + Byya) (1 — g2) gq(6&) . 1°
42h2 [jilll (& + yz/h)2d€1] '
we have

. 91(0(£1))91(0(&2))
11}31]{&' 17{& =1 (& - T£2 derdee
2 —1\2
&|=1

BN (EAE & — &)

~lim yQ 7{ (14 B2 + héy + her1)? { 7{5 . a i@?; fggx)fgl)zd&] dé

= 17;{{1 m 7{5 1( + h% 4 h& + hETH? 27 - 2h(1 + b2 + héy /r)r?dé

- (217:1‘;58 ]{Ell {(1 + h* + hé&)? + it Z; +hey) + 2h(1 + iz i h§1)2} d&
472 - 2h%(2h* + 5h2 + 2)

- )

(1 —y2)®

and

91(0(&1))
?{ﬁlll (& + 1/2/’1)201€1
B 1 (14 h2 + h& + herH)?
(=)t jl{él 1 (&1 + y2/h)? dé

B 1 2h% + (1 + h? + h&))? 2h(1 + h2)E ! + h2e?
(=)t {?iﬂ 1 (&1 +y2/h)? Ao ?{m 1 (& +y2/h)? 4

-5 i”yz) 2h(1+ B — o) + 0]

B 21
(1—y2)*

2h(1+h2 —yg) y
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So, we derived that

AR (2h* + 5h* +2)  4(Beyn + Byy2) (1 + h* — y)?
(1—yo)® (1—g2) '

0(91791) =

Derivations of (17)
For g1(z) = z* and go(x) = x, we have

o(grg) = —lim- L fmzlgl(a(&)) [;{g%dg] a6

(Bayn + Byy2) (1 — y2)? % g1(6(&1))
Am2h? =1 (§1+y2/h)?

92(0(£2))
=1 (§o +y2/h)?

d&, dgs .

Now, we can derive that

I s 92(5(§2)) d ] d
’}El \&l:lgl( (&) |:j|{§2|:1 12§ — &1 /7)? 2| da
L 1 ) 1o 1+ h% 4 h& + héES!T ]
B 1’}?1] (1 —y2)° 7{511“ R bﬁ‘zl r2(&o — &1 /1) de] da
L 2mi 2 —1\2
= 17}&1 T=wF %&21(1 + h*+ h& + hET)7 - (h+0)déy
.. 2mi-h h_2 2h(1+h2)}
a 17}{{1 (1 —10)° 7{51—1 {ff " &1 dér
_47r2 -2h2(1 + h?)
(1 —y2)" ’
and
92(6(£)) 1 1+ h2 4+ hé + h&H 27i - h
T2t ] = déy = ——— .
]{52|=1 (2 +y2/h)? © (1 —y2)? ]|{£2|=1 (&2 +y2/h)? @ (1 —y2)?

So, we derived that

ARA(L+h?)  2(Bays + Byya) (1 + h? — 110)
(1 —12)S (1 —y2)* '

0(91792) =
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Derivations of (18)
For go(z) = x, we have

vone) = ~lmisf )| f SO G0
~ (Bayr + Byy2) (1 = y)? []{ 92(0(£1)) d
1€1]=1

2
252 2 51} :
4m*h (& +y2/h)
Since that

17}51 l€1]=1 9:0(60)) [7{@:1 r2(&s — 51/7")20152 dé&y
1+ h?+ h& + h& !

Iy 1 2 -1
B lgﬁl (1 —y2)* 7{'511(1 TR ARG+ RET) b{ézll r?(& —&/r)? d&} d

2mi
zlim—j{ 1+ h*+h& +RETH - (h+0)dE
i1 (1 — yo)? |§1\:1( ' v Jdé
27i - h j{ {h2 2h(1 + h?)
_2 _|_ - @@ 7
=1 L& &1

=lim ————
ril (1 —1yp)"

472 . h?
(1 —y2)*’

Then, we have

} d&,

2h? Beyr + Byys
L—y)t (1 —yp)?

,U(gQa 92) = (

Derivations of (19)
Following the definition of F}, (dx) and using the substitution z = (1—y,)(1+
h* — 2hcosf), 0 < 0 < 7, we have

2hsind 2hsinf

b—zx)(x—a) = ———, dx = —d#f,

\/( )( ) (1 o y2)2 (1 _ y2)2

. 1+ h? — 2hcost o — h? + y3 — 2hyscosb
(1 — y2)2 ’ n Y2 (1 — y2>2
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Therefore,

b 1-— b— —
by = / 2 LmwVb=aa)
a 2z (y1 + yot)

_ 4h? /’r (1 + h? — 2hcosh)sin*6

o2n(1— )3 )y h2+y3 — 2hyscosh

B 4h? /27r (1 + h? — 2hcost)sin*0 49

Cdn(1—ye)? Sy h? + y3 — 2hyscost

h? / L+R2 —h(z+27")  —(z*-1? dz
(1= y2)3 Jiojm1 B2+ 43 — hya(z + 277) 422 iz

ih? /‘ (22 — B 1 1)(22 — 1)?

Amye(l = 9ol S 232 - B2, 4 1)
2

B ih? (z—=1/h)(z = h)(z —1)*(z + 1)? B
) I :

do

(letting z = €%)

dz

dmys(1 — yo)3 232 —ya/h)(z — h/y2)

Obviously, there are two poles inside the unit circle: 0 and y,/h. Their corre-
sponding residues are

RO) = —24 Wl - yy> — (1 + h2)]

(h? —y3)(1 — u2)(y2 — h?)
h2y3 '

R(ya/h) =

Hence,

ih? ) 1+ h%—y,
3 - 2w ([R(0) + R(yz/h)] = =)
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On the other hand,

b 1-— b— —
= [ O,
a 27T£C(y1 + ny)
_ 4h* i sin*0 40
—2n(1 — o) Jo R% 4 y3 — 2hyscosh

B 4h* /27r sin*0 40
C An(1—w) o h?+y3 — 2hyacost
h? 1

—( 1 de (lettin L
= : C— Ing z =e
(1 — y2) |z]=1 h? +y35 — hya(z + 271) 422 12 £
h 2 _ 1 2
= - / < % 2) dz
47TZ-y2(1—y2) |z|=1 22(22_ﬂ2+1)

hys2

o GV
A Y2 (1 — yo) /Z|:1 22(z = h/y2)(z — y2/h) 4

There are two poles inside the unit circle: 0 and y,/h. Their corresponding
residues are

2 2 2 2
Yo +h Yy —h
R(0) == R h) = )
0) =2 Rl/h) =2
Hence,
b " 2mi - [R(0) + R(yz/h)] :
= — - 2m1 = .
L dmi- (1 — ) - 1=y,
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Table 1: Sizes and powers of the Wald test, Bartlett test, and proposed LZ test based on
20,000 independent replications using real Gaussian variables with y; = 0.5 and yo =
0.5. Test sizes are calculated under the null hypothesis Hy: 1 = 02%5 with p = 0; the
powers are estimated under the alternative hypothesis H;: 3 # 02X, with p > 0, where
3 = aQIp and Xy = (p‘i*ﬂ)pxp .

» | ponaims) Wald Test Bartlett Test LZ Test
c2=05 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
(40, 80, 80) 0.0514 0.0095 0.0517|0.0755 0.0803 0.0764|0.0656 0.0665 0.0666
(80,160, 160) 0.1435 0.0112 0.1416|0.1103 0.1101 0.1139]0.0681 0.0649 0.0679
0.0 (160, 320, 320) 0.5111 0.0087 0.5128]0.2011 0.1913 0.1935|0.0608 0.0611 0.0576
(320, 640, 640) 0.9784 0.0118 0.9879]0.4827 0.4643 0.4471|0.0580 0.0574 0.0548
(640,1280,1280) | 1.0000 0.0098 1.0000|0.9369 0.9232 0.9457|0.0534 0.0540 0.0542
(40, 80, 80) 0.9887 0.9723 0.99920.9987 0.9974 0.9993]0.2901 0.2905 0.2921
(80,160, 160) 1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000|0.7315 0.7320 0.7288
0.4 (160, 320, 320) 1.0000 1.0000 1.0000|1.0000 1.0000 1.0000|1.0000 1.0000 0.9994
(320, 640, 640) 1.0000 1.0000 1.0000|1.0000 1.0000 1.0000|1.0000 1.0000 1.0000
(640,1280,1280)| 1.0000 1.0000 1.0000|1.0000 1.0000 1.0000|1.0000 1.0000 1.0000
(40, 80, 80) 1.0000 1.0000 1.0000|1.0000 1.0000 1.00000.7153 0.7133 0.7109
(80,160, 160) 1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000{0.9978 0.9982 1.0000
0.8 (160, 320, 320) 1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000|1.0000 1.0000 1.0000
(320, 640, 640) 1.0000 1.0000 1.0000|1.0000 1.0000 1.0000|1.0000 1.0000 1.0000
(640,1280,1280) | 1.0000 1.0000 1.0000|1.0000 1.0000 1.0000|1.0000 1.0000 1.0000

26



Table 2: Sizes and powers of the proposed LZ test based on 20,000 independent replica-
tions using real Gamma variables with y; = 0.5 and y» = 0.5. Test sizes are calculated

under the null hypothesis Hp: ¥

02Xy with p = 0; the powers are estimated un-

der the alternative hypothesis Hi: 31 # 023, with p > 0, where ;7 = 021p and
Ty = (" )pup -

(p. 11, 1) p=20.0 p=04 p=0.8

02=05 10 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(40, 80, 80) 0.0722 0.0726 0.0681|0.2882 0.2899 0.2914|0.7087 0.7083 0.7037
(80, 160, 160) 0.0689 0.0686 0.0697|0.7268 0.7247 0.7252|1.0000 1.0000 1.0000
(160, 320, 320) 0.0615 0.0616 0.0605|1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000
(320, 640, 640) 0.0536 0.0545 0.0543|1.0000 1.0000 1.0000|1.0000 1.0000 1.0000
(640,1280,1280) | 0.0525 0.0548 0.0529|1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000

Table 3: Sizes and powers of the proposed LZ test based on 20,000 independent replica-
tions using real mixture of multivariate normal distributions variables with y; = 0.5 and
yo = 0.5. Test sizes are calculated under the null hypothesis Hy: 31 = 02X, with p = 0;
the powers are estimated under the alternative hypothesis Hy: 31 # 02X, with p > 0,
where X1 = 021p and Xy = (p'i_ﬂ)pxp .

p=20.0 p=04 p =038
(p7 n17n2)
0?2=05 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(40, 80, 80) 0.0834 0.0821 0.0814|0.2977 0.2948 0.2930 |0.6779 0.6743 0.6716
(80,160, 160) 0.0699 0.0770 0.0743|0.7138 0.7149 0.7245 |1.0000 1.0000 1.0000
(160, 320, 320) 0.0648 0.0676 0.0638|1.0000 1.0000 1.00000|1.0000 1.0000 1.0000
(320, 640, 640) 0.0571 0.0586 0.0590|1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000
(640,1280,1280) | 0.0562 0.0523 0.0543 |1.0000 1.0000 1.0000 |1.0000 1.0000 1.0000
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Table 4: Sizes and powers of the proposed LZ test based on 20,000 independent repli-
cations with y; = 10 and yo = 0.5. Test sizes are calculated under the null hypothesis
Hy: X1 = 02X, with p = 0; the powers are estimated under the alternative hypothesis

Hy: 31 # 0?3 with p > 0, where 31 = 02T, and 2p = (pl"=71),,, .

Multivariate Gaussian data

p=20.0 p=04 p=0.38
(p;n1,n2)
02=05 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
(50,5,100) 0.0469 0.0461 0.0469|0.0743 0.0727 0.0775{0.1212 0.1221 0.1166
(100,10,200) | 0.0591 0.0546 0.0549|0.1378 0.1429 0.1372|0.2665 0.2675 0.2677
(200,20,400) | 0.0575 0.0582 0.0620|0.2752 0.2766 0.2740|0.6231 0.6197 0.6262
(500,50,1000) | 0.0536 0.0531 0.0532|0.7774 0.7724 0.7861{0.9987 0.9982 0.9986
(800, 80,1600) | 0.0514 0.0515 0.0526|0.9786 0.9823 0.9847|1.0000 1.0000 1.0000
Multivariate gamma data
(p 1, m2) p=20.0 p=04 p=038
02=05 010 20 0.5 1.0 2.0 0.5 1.0 2.0
(50,5,100) 0.0486 0.0488 0.0493/0.0789 0.0748 0.0757]0.1180 0.1194 0.1131
(100,10,200) | 0.0628 0.0627 0.0610|0.1392 0.1406 0.1413|0.2579 0.2635 0.2626
(200,20,400) | 0.0617 0.0607 0.0620|0.2741 0.2749 0.2709|0.6102 0.5980 0.6064
(500,50, 1000) | 0.0580 0.0544 0.0608|0.8376 0.8158 0.8344|1.0000 0.9995 0.9999
(800, 80,1600) | 0.0548 0.0527 0.0543|0.9980 0.9864 0.9934|1.0000 1.0000 1.0000
Mixture of multivariate Gaussian data
p=20.0 p=04 p=08
(p;n1,n2)
02=05 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
(50,5,100) 0.0608 0.0593 0.0574|0.0806 0.0833 0.0771{0.1103 0.1091 0.1106
(100,10,200) | 0.0838 0.0799 0.0823|0.1501 0.1544 0.1453|0.2463 0.2446 0.2484
(200,20,400) | 0.0756 0.0793 0.0783|0.2698 0.2750 0.2759|0.5716 0.5683 0.5682
(500,50,1000) | 0.0614 0.0608 0.0614|0.8050 0.8274 0.8115|1.0000 0.9978 0.9984
(800,80, 1600) | 0.0590 0.0564 0.0576|0.9964 0.9821 0.9735|1.0000 1.0000 1.0000
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