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Abstract

Let x1, . . . ,xn1+1
iid∼ Np(µ1,Σ1) and y1, . . . ,yn2+1

iid∼ Np(µ2,Σ2) be two inde-
pendent random samples, where n1 6 p < n2. In this article, we propose a new
test for the proportionality of two large p × p covariance matrices Σ1 and Σ2.
By applying modern random matrix theory, we establish the asymptotic normal-
ity property for the proposed test statistic as (p, n1, n2) → ∞ together with the
ratios p/n1 → y1 ∈ (0,∞) and p/n2 → y2 ∈ (0, 1) under suitable conditions.
We further showed that these conclusions are still valid if normal populations are
replaced by general populations with finite fourth moments.

Keywords: Covariance matrix, Hypothesis testing, Large-dimensional data,
Limiting spectral distribution, Proportionality, Random F -matrices.

1. Introduction

With the rapid development and wide applications of computer techniques,
huge data can be collected and stored. This is called as high-dimensional data or
large-dimensional data, see Bai and Silverstein [2]. Many traditional estimation
and test tools are no more valid or perform badly for such large-dimensional data,
since these traditional methods are often based on the classical central asymptotic
theorems assuming a large sample size n and fixed dimension p.

In this article, we consider testing proportionality of large-dimensional covari-
ance matrices from two different populations. The proportionality of covariance
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matrices is the simplest form of heteroscedasticity between populations, which
has extensive applications in economics, discriminations, etc.

As an instance, consider a quantitative genetic experiment, called paternal
half-sib design. This experiment is conducted under the hypothesis of equal her-
itabilities in the two populations, and it corresponds to the hypothesis of propor-
tionality between population covariance matrices which we will discuss in this
paper. The goal of this experiment is to model measurements of some quantitative
traits in two independent populations of animal offsprings. More detailed descrip-
tion of this experiment can be found in Jensen and Madsen [10]. Other related
examples are: Dargahi-Noubary [4] considered the applications of discrimination
between two normal populations when covariance matrices are proportional. Nel
and Groenewald [14] studied the multivariate Behrens-Fisher problem under the
assumption of proportional covariance matrices. Later, Villa and Pérignon [20] in-
vestigated the sources of time variation in the covariance matrix of interest rates.
In their work, they discussed the similarities among covariance matrices of bond
yields including the cases of equality and proportionality.

Let x1, . . . ,xn1+1
iid∼ Np(µ1,Σ1) and y1, . . . ,yn2+1

iid∼ Np(µ2,Σ2) be two
independent random samples, where n1 6 p < n2. To describe the proposed new
test, we define Nk = nk + 1 (k = 1, 2) and consider the joint sufficient statistics:

x̄ =
1

N1

N1∑
i=1

xi, V̂1 =

N1∑
i=1

(xi − x̄)(xi − x̄)>,

and

ȳ =
1

N2

N2∑
j=1

yj, V̂2 =

N2∑
j=1

(yj − ȳ)(yj − ȳ)>, (1)

for (µ1,Σ1) and (µ2,Σ2), respectively, where A> denotes the transpose of A.
Thus, Σ̂k = V̂k/nk is the maximum likelihood estimator of Σi for k = 1, 2.

The null hypothesis of interest is

H0: Σ1 = σ2Σ2, (2)

where σ2 > 0 is an unknown constant. When σ2 = 1, Wilks [21] suggested a
likelihood ratio (LR) test statistic

ΛN =
N1

2
log |V̂1|+

N2

2
log |V̂2| −

N

2
log |V̂1 + V̂2| ,
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where N = N1 + N2. However, in practice, it is often to use a modified LR test
statistic

Λ̃N =
n1

2
log |V̂1|+

n2

2
log |V̂2| −

n1 + n2

2
log |V̂1 + V̂2|,

due to its unbiasedness and monotonicity of the power function (see, Srivastava,
Khatri and Carter [18]; Sugiura and Nagao [19]).

As the sample sizes N1, N2 →∞, the classical central limiting theorem states
that under H0 (see [12], Sec. 8.2)

−2ΛN
D−→ χ2

1
2
p(p+1)

and − 2Λ̃N
D−→ χ2

1
2
p(p+1)

. (3)

Note that the limiting results in (3) are true only when the variable dimension p
is assumed to be fixed and p � min(N1, N2). With computer simulations, Bai et
al. [1] showed that, employing the χ2 approximation (3) for dimensions like 30
or 40, increases dramatically the size of the test. For dimension and sample sizes
(p,N1, N2) = (40, 800, 400), the test size equals 21.2% instead of the nominal
5% level. The result is even worse for the case of (p,N1, N2) = (80, 1600, 800)
which leads to a 49.5% test size.

For the general case of hypothesis (2) with unknown constant σ2, to our knowl-
edge, the first research was done by Federer [6] who developed a maximum like-
lihood method for two groups of normal populations with dimension p 6 3. Kim
[11] extensively studied the problem of proportionality between covariance ma-
trices, and showed that the solution of the likelihood equations was unique. This
result was later published by Guttman et al. [9]. Independently, Rao [15] consid-
ered the likelihood ratio test for proportionality of covariance matrices from two
normal populations. As an extension, under normality assumptions, Eriksen [5]
and Flury [8], independently, discussed maximum likelihood estimation of pro-
portional covariance matrices and provided likelihood ratio tests for testing the
hypothesis of proportionality.

Furthermore, Schott [16] considered the test problem of proportional covari-
ance matrices from k different groups and obtained a Wald statistic under general
conditions without normal population assumptions. However, all of the above
work is based on the classical approximating theory which assumes the dimen-
sion of data, p to be held fixed. As it will be shown, this classical approximation
leads to a test size much higher than the nominal test level in the case of large-
dimensional data. All such problems and limitations bring up the need for further
study on proportionality test of covariance matrices.
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Based on the modern random matrix theory (RMT), we propose a new test
and further prove that the distribution of the test statistic proposed approximates
to a normal distribution as (p, n1, n2)→∞ together with the ratios p/n1 → y1 ∈
(0,∞) and p/n2 → y2 ∈ (0, 1) under suitable conditions. The proposed new test
is valid for both Gaussian data and non-Gaussian data with finite fourth moments.

The rest of the article is organized as follows. Section 2 briefly reviews some
preliminary and useful RMT results. In Section 3, we propose a new test and study
its asymptotic normality as (p, n1, n2) → ∞. In Section 4, the efficiency of the
proposed test is illustrated by simulation studies. Section 5 presents conclusions
and some discussions. Some technical derivations are put into the Appendix.

2. Review of some useful results of random matrix theory

We first review several results from RMT, which will be used for the proposed
test procedure. For any p × p matrix M with real eigenvalues {λMi }

p
i=1, the em-

pirical spectral distribution (ESD) of M, denoted by FM
n , is defined by

FM
n (x) =

1

p

p∑
i=1

11[λMi 6x], x ∈ R.

We will consider a random matrix M whose ESD FM
n converges (in a sense to

be precisely) to a limiting spectral distribution (LSD) FM. To make statistical
inference about a parameter θ =

∫
f(x)dFM(x), it is natural to use an estimator

θ̂ =

∫
f(x)dFM

n (x) =
1

p

p∑
i=1

f(λMi ) ,

which is a so-called linear spectral statistic (LSS) of the random matrix M.
Let {ξki ∈ C: i, k = 1, 2, . . .} and {ηkj ∈ C: j, k = 1, 2, . . .} be two indepen-

dent double arrays of i.i.d. complex variables with mean 0 and variance 1. Writing
ξi = (ξ1i, ξ2i, . . . , ξpi)

> and ηj = (η1j, η2j, . . . , ηpj)
>. For any given positive in-

tegers n1 and n2, the vectors {ξ1, . . . , ξn1} and {η1, . . . ,ηn2} can be thought as
independent samples of size n1 and n2, respectively, from some p-dimensional
distribution. Let S1 and S2 be the associated sample covariance matrices, i.e.,

S1 =
1

n1

n1∑
i=1

ξiξ
>
i and S2 =

1

n2

n2∑
j=1

ηjη
>
j .
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Then, the following so-called F -matrix generalizes the classical Fisher-statistic
for the present p-dimensional case,

Vn = S1S
−1
2 , (4)

where n = (n1, n2) and p < n2. Define

yn1 =
p

n1

→ y1 ∈ (0,+∞), yn2 =
p

n2

→ y2 ∈ (0, 1), (5)

yn = (yn1 , yn2) and y = (y1, y2). Under suitable moment conditions, the ESD,
FVn
n , of Vn has a LSD, Fy(x) which is given by (see [2], P. 79 or [22])

Fy(dx) = gy(x)11[a,b](x)dx+ (1− 1/y1)11[y1>1]δ0(dx), (6)

where δc(·) denotes the Dirac point measure at c, and

h =
√
y1 + y2 − y1y2 , a =

(1− h)2

(1− y2)2
, b =

(1 + h)2

(1− y2)2
,

gy(x) =
(1− y2)

2πx(y1 + y2x)

√
(b− x)(x− a) , a < x < b .

Define the empirical process G̃n = p[F Vn
n − Fyn ] and let Ã be the set of

analytic functions in an open region in the complex plane containing the interval
[a, b] which is the support of continuous part of the LSD Fy defined in (6). The
following central limit theorem (CLT) of LSS for a high-dimensional F-matrix
was established in Zheng [22], which will be applied in our work.

Theorem 2.1 For each p, assume that (ξij1: i = 1, . . . , p; j1 = 1, . . . , n1) and
(ηij2: i = 1, . . . , p; j2 = 1, . . . , n2) are i.i.d. and satisfy E(ξ11) = E(η11) = 0,
E|ξ11|2 = E|η11|2 = 1, E|ξ11|4, E|η11|4 < ∞, yn1 = p/n1 → y1 ∈ (0,+∞),
and yn2 = p/n2 → y2 ∈ (0, 1). Furthermore, let f1, . . . , fk ∈ Ã. Then, the ran-
dom vector (G̃n(f1), . . . , G̃n(fk)) weakly converges to a k-dimensional Gaussian
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vector with mean vector

m(fj) = lim
r↓1

1

4πi

∮
|ζ|=1

fj(z(ζ))

[
1

ζ − r−1
+

1

ζ + r−1
− 2

ζ + y2/hr

]
dζ

+
βx · y1(1− y2)2

2πi · h2

∮
|ζ|=1

fj(z(ζ))
1

(ζ + y2/h)3
dζ

+
βy · y2(1− y2)

2πi · h

∮
|ζ|=1

fj(z(ζ))
ζ + 1/h

(ζ + y2/h)3
dζ, (7)

and covariance function

cov(fj, f`) = − lim
r↓1

1

2π2

∮
|ζ1|=1

∮
|ζ2|=1

fj(z(ζ1))f`(z(ζ2))

(ζ1 − rζ2)2
dζ1dζ2

− (βxy1 + βyy2)(1− y2)2

4π2h2

∮
|ζ1|=1

fj (z(ζ1))

(ζ1 + y2/h)2
dζ1

×
∮
|ζ2|=1

f` (z(ζ2))

(ζ2 + y2/h)2
dζ2, (8)

where z(ζ) = (1−y2)−2[1+h2+2hRe(ζ)], h =
√
y1 + y2 − y1y2, βx = E|ξ11|4−

3, and βy = E|η11|4 − 3.

This CLT allows for both n = (n1, n2) and p approaching infinity. In the next
section, based on the above CLT, we will develop a test statistic Tn and provide
the limiting distribution of Tn .

3. Formulation of the new test

Let Σ
1/2
1 and Σ

1/2
2 be two p × p positive definite matrices such that Σ1 =

(Σ
1/2
1 )2 and Σ2 = (Σ

1/2
2 )2, respectively. Define ξi = Σ

−1/2
1 (xi − µ1) and ηj =

Σ
−1/2
2 (yj − µ2). Note that all the random vectors {xi}, {yj} and the covariance

matrices Σ1 and Σ2 depend on the dimension p. However, we do not signify
this dependence in notation for ease of statements. After standardizing, the arrays
{ξi}n1+1

i=1 and {ηj}n2+1
j=1 contain i.i.d. variables with mean 0 and variance 1, for

which we can apply Theorem 2.1.
Testing the null hypothesis specified by (2) is equivalent to testing

H0: Σ
−1/2
2 Σ1Σ

−1/2
2 = σ2Ip. (9)

6



This is, in fact, a sphericity test. Srivastava [17] discussed this sphericity test for
a single population and proposed a measure of this sphericity. As stated in Srivas-
tava [17] (also see [7]), the above test is invariant for an orthogonal transformation
x → Gx. This test is also invariant under a scalar transformation x → cx. Thus,
without loss of generality, we assume that Σ

−1/2
2 Σ1Σ

−1/2
2 = diag(λ1, . . . , λp). It

follows from the Cauchy–Schwarz inequality that(
p∑
i=1

λi

)2

6 p

(
p∑
i=1

λ2i

)
,

with equality holding if and only if λ1 = · · · = λp = λ, for all i = 1, . . . , p and
some constant λ. Thus, following the idea of Srivastava [17], we suggest testing
H0: Ψ = 1 against H1: Ψ > 1 with

Ψ =
(
∑p

i=1 λ
2
i /p)

(
∑p

i=1 λi/p)
2 .

Note that tr(Σ1Σ
−1
2 ) =

∑p
i=1 λi and tr(Σ1Σ

−1
2 Σ1Σ

−1
2 ) =

∑p
i=1 λ

2
i ; hence, we

propose the following test statistic

Tn =
p2tr(Σ̂1Σ̂

−1
2 Σ̂1Σ̂

−1
2 )

[tr(Σ̂1Σ̂
−1
2 )]2

− p, (10)

where Σ̂1 and Σ̂2 are unbiased sample covariance matrices. On the other hand, a
scaled distance measure between σ−2Σ−1/22 Σ1Σ

−1/2
2 and Ip can be defined by

tr

( σ−2Σ
−1/2
2 Σ1Σ

−1/2
2

(1/p)tr(σ−2Σ
−1/2
2 Σ1Σ

−1/2
2 )

− Ip

)2
 =

p2tr(Σ1Σ
−1
2 Σ1Σ

−1
2 )

[tr(Σ1Σ
−1
2 )]2

− p.

This scaled distance measure was also discussed by Nagao [13] for the sphericity
test of a single population. Thus, it is reasonable to consider the test statistic (10).

Define A = Σ
−1/2
1 CΣ

−1/2
1 and B = Σ

−1/2
2 DΣ

−1/2
2 , where

C =
1

n1

N1∑
i=1

(xi − µ1)(xi − µ1)
∗ and D =

1

n2

N2∑
j=1

(yj − µ2)(yj − µ2)
∗.
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Note that Vn = AB−1 indeed forms a random F-matrix. Then, we define

T̃n =
p2tr(CD−1CD−1)

[tr(CD−1)]2
− p. (11)

As Tn and T̃n have the same asymptotic distribution and CLT under H0, in the
next, we will consider the CLT of T̃n.

Theorem 3.1 Suppose that the conditions in Theorem 2.1 hold under H0 and
Tn is defined in (10), then, under H0 and as (n1, n2)→∞,

v
−1/2
Tn

[Tn − µTn − ph2(1− y2)−1]
D−→ N(0, 1) , (12)

with

µTn = (h2 + y22)(1− y2)−2 + βxy1 + βyy2, (13)

vTn = 4h2(h2 + 2y22)(1− y2)−4 , (14)

where h =
√
y1 + y2 − y1y2.

PROOF. For convenience, we define g1(x) = x2 and g2(x) = x. Let {λi}pi=1

be the eigenvalues of the F-matrix Vn. Following Theorem 2.1, we have, as
(n1, n2)→∞,

p

 (1/p)
∑p

j=1(λj/σ
2)2 −

∫
g1(x)Fy(dx)

(1/p)
∑p

j=1 λj/σ
2 −

∫
g2(x)Fy(dx)

 D−→ N(µCLT,ΣCLT),

where

µCLT =

(
m(g1)

m(g2)

)
, ΣCLT =

(
v(g1, g1) v(g1, g2)

v(g1, g2) v(g2, g2)

)
,

and Fy(dx) is defined in (6).
Denote δ(ξ) = (1− y2)−2(1 +h2 + 2hReξ), then the components of µCLT are

8



given by

m(gj) = lim
r↓1

1

4πi

∮
|ξ|=1

gj(δ(ξ))

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

+
βx · y1(1− y2)2

2πi · h2

∮
|ξ|=1

gj(δ(ξ))
1

(ξ + y2/h)3
dξ

+
βy · y2(1− y2)

2πih

∮
|ξ|=1

gj(δ(ξ))
ξ + 1/h

(ξ + y2/h)3
dξ, j = 1, 2,

and the elements of ΣCLT are given by

v(gk, gl) = − lim
r↓1

1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

gk(δ(ξ1))gl(δ(ξ2))

(ξ1 − rξ2)2
dξ1dξ2

− (βxy1 + βyy2)(1− y2)2

4π2h2

∮
|ξ1|=1

gk(δ(ξ1))

(ξ1 + y2/h)2
dξ1

×
∮
|ξ2|=1

gl(δ(ξ2))

(ξ2 + y2/h)2
dξ2 , k, l ∈ {1, 2},

with βx = E|ξ11|4 − 3 and βy = E|η11|4 − 3.
By the Residue theorem, we have

m(g1) =
h2 − y22 + 2y2(1 + h2)

(1− y2)4
+
βxy1 + 3βyy2

(1− y2)2
+

2h2βyy2
(1− y2)3

, (15)

m(g2) =
y2

(1− y2)2
+

βyy2
(1− y2)

, (16)

v(g1, g1) =
4h2(2h4 + 5h2 + 2)

(1− y2)8
+

4(βxy1 + βyy2)(1 + h2 − y2)2

(1− y2)6
, (17)

v(g1, g2) =
4h2(1 + h2)

(1− y2)6
+

2(βxy1 + βyy2)(1 + h2 − y2)
(1− y2)4

, (18)

v(g2, g2) =
2h2

(1− y2)4
+
βxy1 + βyy2

(1− y2)2
. (19)

Moreover, let b0 =
∫∞
0
x2Fy(dx) and b1 =

∫∞
0
xFy(dx). Then, we have

b0 =
1 + h2 − y2
(1− y2)3

, b1 =
1

1− y2
. (20)

9



The details of the above derivations are postponed to the Appendix.
Define g(x1, x2) = x1/x

2
2 and a0 = (1/b21,−2b0/b

3
1)
>. Applying the Delta

method (see Casella and Berger [3]), we obtain, as (n1, n2)→∞,

p

[
(1/p)

∑p
j=1(λj/σ

2)2

(1/p2)(
∑p

j=1 λj/σ
2)2
− b0
b21

]
D−→ N

(
a>0µ

CLT, a>0Σ
CLTa0

)
,

that is
Tn − p(b0/b21 − 1)

D−→ N
(
a>0µ

CLT, a>0Σ
CLTa0

)
. (21)

Furthermore, substituting the equations (15)–(20) into (21) and after some manip-
ulations, we obtain

Tn − ph2(1− y2)−1
D−→ N(µTn , vTn) ,

where µTn and vTn are given in (13) and (14). This is equivalent to the statement
of (12). The proof is completed.

Theorem 3.2 Under the assumptions of Theorem 3.1 and when ‖Σ1‖ and
‖Σ2‖ are bounded, βx and βy have consistent estimators β̂x and β̂y given by

β̂x =

1
p(N1−1)

N1∑
i=1

(
x>ixi − 1

N1

N1∑
i=1

x>ixi

)2

− 1
pN1(N1−1)

[
N1∑
i=1

(
x>ixi − 1

N1

N1∑
j=1

x>jxj

)]2

1
p

p∑
k=1

 1
N1−1

N1∑
i=1

(
xik − 1

N1

N1∑
j=1

xjk

)2
2 −2

and

β̂y =

1
p(N2−1)

N2∑
i=1

(
y>iyi − 1

N2

N2∑
i=1

y>iyi

)2

− 1
pN2(N2−1)

[
N2∑
i=1

(
y>iyi − 1

N2

N2∑
j=1

y>jyj

)]2

1
p

p∑
k=1

 1
N2−1

N2∑
i=1

(
yik − 1

N2

N2∑
j=1

yjk

)2
2 −2

where xi = (xi1, . . . , xip)
> and yi = (yi1, . . . , yip)

>.
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PROOF. We have x = (X1, . . . , Xp)
> = Σ

1
2
1 ξ, where Σ

1
2
1 = (aij), Σ = (σkk)

and ξ = (ξ1, . . . , ξp)
>. Hence,

E(X4
k) = E(ak1ξ1 + · · ·+ akpξp)

4

=

p∑
j=1

a4kj · (Eξ41 − 1) +

(
p∑
j=1

a2kj

)2

,

E(X2
kX

2
l ) =

p∑
j=1

a2kja
2
lj · (Eξ41 − 1) +

(
p∑
j=1

a2kj

)(
p∑
j=1

a2lj

)
,

E(X2
1 + · · ·+X2

p )2 =

p∑
i=1

E(X4
i ) + 2

∑
k 6=l

E(X2
kX

2
l )

=

p∑
j=1

(
p∑

k=1

a2kj

)2

· (Eξ41 − 1) +

(
p∑
j=1

p∑
k=1

a2kj

)2

,

where

E(X2
1 + · · ·+X2

p )2 = E(x>x)2, σkk =

p∑
k=1

a2kj,

p∑
j=1

p∑
k=1

a2kj =

p∑
k=1

σkk.

That is,
1

p
E(x>x)2 =

1

p

p∑
j=1

σ2
kk · (Eξ41 − 1) +

1

p

(
p∑
j=1

σkk

)2

.

When ‖Σ‖ is bounded, then we have

E|σ̂2
kk − σ2

kk| = E|σ̂kk + σkk| · |σ̂kk − σkk|

6
√
E(σ̂kk + σkk)2 · E(σ̂kk − σkk)2 = o(1)

uniformly for k. Then we have

E

∣∣∣∣∣1p
p∑

k=1

σ̂2
kk −

1

p

p∑
k=1

σ2
kk

∣∣∣∣∣ 6 1

p

p∑
k=1

E|σ̂2
kk − σ2

kk| = o(1).

11



That is
1

p

p∑
k=1

σ̂2
kk −

1

p

p∑
k=1

σ2
kk

P→ 0.

Let the estimator of 1
p
E(x>x)2 − 1

p

(∑p
j=1 σkk

)2
be

1

N1p

N1∑
i=1

(x>ixi)
2 − 1

p

∑
i<j

x>ixi · x>jxj(
N1

2

)
=

1

p(N1 − 1)

∑
i

(x>ixi)
2 − 1

pN1(N1 − 1)

(∑
i

x>ixi

)2

,

where

1

p(N1 − 1)

∑
i

(x>ixi)
2 =

1

p(N1 − 1)

∑
i

(x>ixi − trΣ + trΣ)2

=
N1

p(N1 − 1)
(trΣ)2 +

2

p
trΣ · 1

N1 − 1

∑
i

(x>ixi − trΣ)

+
1

p(N1 − 1)

∑
i

(x>ixi − trΣ)2,

1

pN1(N1 − 1)

(∑
i

x>ixi

)2

=
1

pN1(N1 − 1)

(∑
i

x>ixi − ntrΣ + ntrΣ

)2

=
N1

p(N1 − 1)
(trΣ)2 +

2

p
trΣ · 1

N1 − 1

∑
i

(x>ixi − trΣ)

+
[
∑N1

i=1(x
>
ixi − trΣ)]2

pN1(N1 − 1)
.

12



Then, we have

1

p(N1 − 1)

∑
i

(x>ixi)
2 − 1

pN1(N1 − 1)

(∑
i

x>ixi

)2

−
(
E(x>x)

p
− (trΣ)2

p

)

=
1

pN1

∑
i

(x>ixi − trΣ)2 −

∑
i 6=j

(x>ixi − trΣ) · (x>jxj − trΣ)]

pN1(N1 − 1)
− E(x>x− trΣ)2

p

=
1

pN1

∑
i

(x>ixi − trΣ)2 − E(x>x− trΣ)2

p
−

∑
i 6=j

(x>ixi − trΣ) · (x>jxj − trΣ)]

pN1(N1 − 1)

P→ 0.

Then we obtain the consistent estimator of E(ξ41) as follows

1
p(N1−1)

∑N1

i=1(x
>
ixi)

2 − 1
pN1(N1−1)

(∑N1

i=1 x>ixi

)2
1
p

∑p
k=1(

1
N1

∑N1

i=1 x
2
ik)

2
+ 1,

where xi = (xi1, . . . , xip)
>.

When E(x) is unknown, we also obtain the consistent estimators of E(ξ21) as
follows:

1
p(N1−1)

N1∑
i=1

(
x>ixi − 1

N1

N1∑
i=1

x>ixi

)2

− 1
pN1(N1−1)

[
N1∑
i=1

(
x>ixi − 1

N1

N1∑
j=1

x>jxj

)]2

1
p

p∑
k=1

 1
N1−1

N1∑
i=1

(
xik − 1

N1

N1∑
j=1

xjk

)2
2 +1.

13



Then, the consistent estimator of βx = E(ξ41)− 3 is as follows

β̂x =

1
p(N1−1)

N1∑
i=1

(
x>ixi − 1

N1

N1∑
i=1

x>ixi

)2

− 1
pN1(N1−1)

[
N1∑
i=1

(
x>ixi − 1

N1

N1∑
j=1

x>jxj

)]2

1
p

p∑
k=1

 1
N1−1

N1∑
i=1

(
xik − 1

N1

N1∑
j=1

xjk

)2
2 −2.

The derivation of β̂y is similar. The proof is completed.

4. Simulation studies

4.1. Large-dimensional Gaussian data
In this section, we perform some simulation studies to evaluate the efficiency

of the new test (LZ test) proposed in Section 3 for testing hypothesis (2) with
large-dimensional Gaussian data. For comparison, we also conduct the Bartlett
test (Bartlett adjusted likelihood ratio test, see Eriksen [5] or Flury [8]) and the
Wald test (see Schott [16]). We generate x1, . . . ,xn1+1 from Np(0, σ

2Ip) and
y1, . . . ,yn2+1 from Np(0,Σ2) with Σ2 = (ρ|i−j|) for σ2 = 0.5, 1.0, 2.0 and ρ =
0.0, 0.4, 0.8, respectively. We intend to test the null hypothesis: H0: Σ1 = σ2Σ2.
Notice that ρ = 0 corresponds to the realized size (Type-I error) of the test. The
nominal test level is set as α = 0.05. We simulate 20,000 independent replicates
for different values of (p, n1, n2) under the assumption of p < n2 and compare
the above three test. The simulation results are summarized in Table 1. It needs
to point out that the proposed new test allows for p > n1 , which means that the
observations from one of two groups can be fewer than the dimension. Table 4
displays the summary of Gaussian data as well as non-gaussian data for the case
of p > n1.

From Table 1, we can see that, as the dimension p increases, both Wald test and
Bartlett test lead to an increasing test size while the proposed LZ test is so stable.
Especially, when the dimension p > 600, both Wald test and Bartlett test are so
worse which almost always reject the null hypothesis; in contrast, our proposed
test remains even accurate.

Figure 1 shows the QQ-plots for the 1,000 observed values of the LZ test
Tn with ρ = 0.0. The values of (p, n1, n2) are chosen as (320, 640, 640) and
(500, 50, 1000). In both cases, the normality result appears to be satisfied by the

14
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Figure 1: Normal QQ-Plot for Tn as in (10) under H0 based on 1000 replicates. The left is for the
case of p < n1; the right is for the case of p > n1.

QQ-plots for large (p, n1, n2) which validates our theoretical asymptotic normal-
ity results. We also check the QQ-plots of Tn under the alternative hypothesis
(i.e. ρ > 0). The similar normality property appears to be satisfied, but for the
restriction of space, we ignore the QQ-plots at here.

4.2. Large-dimensional non-Gaussian data
In fact, Theorem 3.1 is valid for general population distributions with finite

fourth moments. To see this, two distributions are considered. One is the gamma
distribution. We generate xi = σz

(1)
i , i = 1, . . . , n1 + 1 and yj = Γz

(2)
j , j =

1, . . . , n2 + 1 with z
(1)
i = (Z

(1)
i1 , ..., Z

(1)
ip )> and z

(2)
j = (Z

(2)
j1 , . . . , Z

(2)
jp )> consisting

of identical and independent standardized gamma(4, 0.5) random variables so that
they have mean 0 and variance 1, and σ = (σ2)1/2 and Γp×p = (ρ|i−j|)1/2 for
σ2 = 0.5, 1.0, 2.0 and ρ = 0.0, 0.4, 0.8, respectively. The nominal test level is set
as α = 0.05. We simulate 20,000 independent replications for different values
of (p, n1, n2) and compute the estimated significance level of the LZ test. The
simulation Results are summarized in Table 2.

Another multivariate distribution considered is a mixture of multivariate nor-
mal distributions. We generate z

(1)
i , i = 1, . . . , n1 + 1 and z

(2)
j , j = 1, . . . , n2 + 1

with each component is i.i.d. from 0.9N(0, 1) + 0.1N(0, 32). Let xi = σz
(1)
i and

15



yj = Γz
(2)
j with the same values of σ and Γ as in the case of gamma distribution.

The simulation results are summarized in Table 3.
From Tables 2 and 3, we can see that, our proposed test is still valid for non-

Gaussian data. We also studied the QQ-plots of Tn based on 1,000 replicates under
the null and alternative hypotheses for the gamma data and mixture of multivariate
normal data. The normality property appears to be satisfied by the QQ-plots for
large (p, n1, n2).

4.3. More simulations on the LZ test
In this section, we continue the simulations of Section 4.1 and 4.2 but with

another different set of values for (p, n1, n2). We set p = 10, 25, 50, 100, n1 = 2p,
and n2 = p + 5, p + 10, . . .. The results are displayed in Table 5 and Table 6.
Obviously, when p is too small or when p/n2 is close to 1, the LZ test is not so
efficient. Therefore, we recommend the practitioners to be careful to use the LZ
test when p is small or when p/n2 is close to 1.

5. Conclusions and future work

In this article, we developed a new test for comparing the proportionality of
large-dimensional covariance matrices from two different population with finite
fourth-moments. Its asymptotic normality is established based on modern random
matrix theory as the dimension increases proportionally with the sample sizes.
Simulation studies show that our proposed method is valid for both Gaussian data
and non-Gaussian data. Our proposed method requires that p < n2 but allows for
p > n1. Generalizing our proposed method to the case of p > max(n1, n2) will
be the future work.

6. Appendix

Derivations of (14)
Notice that 0 < y2,

y2
h
< 1. Applying Cauchy integration formula, for any

given r > 1, we have∮
|ξ|=1

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ = 0 . (22)

16



We know that Reξ = (ξ + ξ̄)/2 and ξ̄ = ξ−1 for any ξ with |ξ| = 1. Then for
g1(x) = x2 and δ(ξ) = (1− y2)−2(1 + h2 + 2hReξ), in the formula

m(g1) = lim
r↓1

1

4πi

∮
|ξ|=1

g1(δ(ξ))

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

+
βx · y1(1− y2)2

2πi · h2

∮
|ξ|=1

g1(δ(ξ))
1

(ξ + y2/h)3
dξ

+
βy · y2(1− y2)

2πi · h

∮
|ξ|=1

g1(δ(ξ))
ξ + 1/h

(ξ + y2/h)3
dξ

we have

lim
r↓1

∮
|ξ|=1

g1(δ(ξ))

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

= lim
r↓1

1

(1− y2)4

{∮
|ξ|=1

[2h2 + (1 + h2 + hξ)2]

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

+

∮
|ξ|=1

[
h

ξ2
+

2h(1 + h2)

ξ

](
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

}
=

2πi

(1− y2)4
·
[
2(h2 − y22 + 2y2(1 + h2)) + 0 + 0

]
=

4πi

(1− y2)4
· [h2 − y22 + 2y2(1 + h2)] ,

∮
|ξ|=1

g1(δ(ξ))
1

(ξ + y2/h)3
dξ =

1

(1− y2)4

{∮
|ξ|=1

2h2 + (1 + h2 + hξ)2

(ξ + y2/h)3
dξ

+

∮
|ξ|=1

[
h

ξ2
+

2h(1 + h2)

ξ

]
1

(ξ + y2/h)3
dξ

}
= 2πi ·

[
h2

(1− y2)4
+ 0

]
= 2πi · h2

(1− y2)4
,
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and∮
|ξ|=1

g1(δ(ξ))
ξ + 1/h

(ξ + y2/h)3
dξ =

1

(1− y2)4

{∮
|ξ|=1

[2h2 + (1 + h2 + hξ)2]
(ξ + 1/h)

(ξ + y2/h)3
dξ

+

∮
|ξ|=1

[
h

ξ2
+

2h(1 + h2)

ξ

]
(ξ + 1/h)

(ξ + y2/h)3
dξ

}
= 2πi ·

[
h(3 + 2h2 − 3y2)

(1− y2)4
+ 0

]
= 2πi · h(3 + 2h2 − 3y2)

(1− y2)4
.

Thus, we obtain

m(g1) =
h2 − y22 + 2y2(1 + h2)

(1− y2)4
+
βxy1 + 3βyy2

(1− y2)2
+

2h2βyy2
(1− y2)3

.

Derivations of (15)
For g2(x) = x and δ(ξ) = (1− y2)−2(1 + h2 + 2hReξ), in the formula

m(g2) = lim
r↓1

1

4πi

∮
|ξ|=1

g2(δ(ξ))

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

+
βx · y1(1− y2)2

2πi · h2

∮
|ξ|=1

g2(δ(ξ))
1

(ξ + y2/h)3
dξ

+
βy · y2(1− y2)

2πi · h

∮
|ξ|=1

g2(δ(ξ))
ξ + 1/h

(ξ + y2/h)3
dξ

= lim
r↓1

1

4πi · (1− y2)2

∮
|ξ|=1

(1 + h2 + hξ + hξ−1)

(
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + y2/h

)
dξ

+
βx · y1
2πi · h2

∮
|ξ|=1

(1 + h2 + hξ + hξ−1)
1

(ξ + y2/h)3
dξ

+
βy · y2

2πi · h(1− y2)

∮
|ξ|=1

(1 + h2 + hξ + hξ−1)
ξ + 1/h

(ξ + y2/h)3
dξ

=
1

4πi · (1− y2)2
· 2πi · (2y2 + 0) +

βxy1
h2
· 0 +

βyy2
2πi · h(1− y2)

· 2πi · (h+ 0)

=
y2

(1− y2)2
+

y2βy
(1− y2)

.
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Derivations of (16)
For g1(x) = x2 and δ(ξ) = (1− y2)−2(1 + h2 + 2hReξ), in the formula,

v(g1, g1) = − lim
r↓1

1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

g1(δ(ξ1))g1(δ(ξ2))

(ξ1 − rξ2)2
dξ1dξ2

−(βxy1 + βyy2)(1− y2)2

4π2h2

[∮
|ξ1|=1

g1(δ(ξ1))

(ξ1 + y2/h)2
dξ1

]2
.

we have

lim
r↓1

∮
|ξ1|=1

∮
|ξ2|=1

g1(δ(ξ1))g1(δ(ξ2))

(ξ1 − rξ2)2
dξ1dξ2

= lim
r↓1

1

(1− y2)8

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )2
[∮
|ξ2|=1

(1 + h2 + hξ2 + hξ−12 )2

(ξ1 − rξ2)2
dξ2

]
dξ1

= lim
r↓1

1

(1− y2)8

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )2
[∮
|ξ2|=1

(1 + h2 + hξ2 + hξ−12 )2

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

= lim
r↓1

1

(1− y2)8

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )2 · 2πi · 2h(1 + h2 + hξ1/r)r
2dξ1

=
2πi · 2h

(1− y2)8

∮
|ξ1|=1

[
(1 + h2 + hξ1)

3 +
h2(1 + h2 + hξ1)

ξ21
+

2h(1 + h2 + hξ1)
2

ξ1

]
dξ1

= −4π2 · 2h2(2h4 + 5h2 + 2)

(1− y2)8
,

and∮
|ξ1|=1

g1(δ(ξ1))

(ξ1 + y2/h)2
dξ1

=
1

(1− y2)4

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )2

(ξ1 + y2/h)2
dξ1

=
1

(1− y2)4

[∮
|ξ1|=1

2h2 + (1 + h2 + hξ1)
2

(ξ1 + y2/h)2
dξ1 +

∮
|ξ1|=1

2h(1 + h2)ξ−11 + h2ξ−21

(ξ1 + y2/h)2
dξ1

]
=

2πi

(1− y2)4
[2h(1 + h2 − y2) + 0]

=
2πi

(1− y2)4
· 2h(1 + h2 − y2) ,
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So, we derived that

v(g1, g1) =
4h2(2h4 + 5h2 + 2)

(1− y2)8
+

4(βxy1 + βyy2)(1 + h2 − y2)2

(1− y2)6
.

Derivations of (17)
For g1(x) = x2 and g2(x) = x, we have

v(g1, g2) = − lim
r↓1

1

2π2

∮
|ξ1|=1

g1(δ(ξ1))

[∮
|ξ2|=1

g2(δ(ξ2))

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

−(βxy1 + βyy2)(1− y2)2

4π2h2

∮
|ξ1|=1

g1(δ(ξ1))

(ξ1 + y2/h)2
dξ1

∮
|ξ1|=1

g2(δ(ξ2))

(ξ2 + y2/h)2
dξ2 .

Now, we can derive that

lim
r↓1

∮
|ξ1|=1

g1(δ(ξ1))

[∮
|ξ2|=1

g2(δ(ξ2))

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

= lim
r↓1

1

(1− y2)6

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )2
[∮
|ξ2|=1

1 + h2 + hξ2 + hξ−12

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

= lim
r↓1

2πi

(1− y2)6

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )2 · (h+ 0)dξ1

= lim
r↓1

2πi · h
(1− y2)6

∮
|ξ1|=1

[
h2

ξ21
+

2h(1 + h2)

ξ1

]
dξ1

= −4π2 · 2h2(1 + h2)

(1− y2)6
,

and∮
|ξ2|=1

g2(δ(ξ2))

(ξ2 + y2/h)2
dξ2 =

1

(1− y2)2

∮
|ξ2|=1

1 + h2 + hξ2 + hξ−12

(ξ2 + y2/h)2
dξ2 =

2πi · h
(1− y2)2

.

So, we derived that

v(g1, g2) =
4h2(1 + h2)

(1− y2)6
+

2(βxy1 + βyy2)(1 + h2 − y2)
(1− y2)4

.
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Derivations of (18)
For g2(x) = x, we have

v(g2, g2) = − lim
r↓1

1

2π2

∮
|ξ1|=1

g2(δ(ξ1))

[∮
|ξ2|=1

g2(δ(ξ2))

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

−(βxy1 + βyy2)(1− y2)2

4π2h2

[∮
|ξ1|=1

g2(δ(ξ1))

(ξ1 + y2/h)2
dξ1

]2
.

Since that

lim
r↓1

∮
|ξ1|=1

g2(δ(ξ1))

[∮
|ξ2|=1

g2(δ(ξ2))

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

= lim
r↓1

1

(1− y2)4

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 )

[∮
|ξ2|=1

1 + h2 + hξ2 + hξ−12

r2(ξ2 − ξ1/r)2
dξ2

]
dξ1

= lim
r↓1

2πi

(1− y2)4

∮
|ξ1|=1

(1 + h2 + hξ1 + hξ−11 ) · (h+ 0)dξ1

= lim
r↓1

2πi · h
(1− y2)6

∮
|ξ1|=1

[
h2

ξ21
+

2h(1 + h2)

ξ1

]
dξ1

= − 4π2 · h2

(1− y2)4
,

Then, we have

v(g2, g2) =
2h2

(1− y2)4
+
βxy1 + βyy2

(1− y2)2
.

Derivations of (19)
Following the definition ofFy(dx) and using the substitution x = (1−y2)−2(1+

h2 − 2hcosθ), 0 < θ < π, we have√
(b− x)(x− a) =

2hsinθ

(1− y2)2
, dx =

2hsinθ

(1− y2)2
dθ,

x =
1 + h2 − 2hcosθ

(1− y2)2
, y1 + y2x =

h2 + y22 − 2hy2cosθ

(1− y2)2
.
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Therefore,

b0 =

∫ b

a

x2 ·
(1− y2)

√
(b− x)(x− a)

2πx(y1 + y2x)
dx

=
4h2

2π(1− y2)3

∫ π

0

(1 + h2 − 2hcosθ)sin2θ

h2 + y22 − 2hy2cosθ
dθ

=
4h2

4π(1− y2)3

∫ 2π

0

(1 + h2 − 2hcosθ)sin2θ

h2 + y22 − 2hy2cosθ
dθ

=
h2

π(1− y2)3

∫
|z|=1

1 + h2 − h(z + z−1)

h2 + y22 − hy2(z + z−1)
· −(z2 − 1)2

4z2
· dz

iz
(letting z = eiθ)

=
ih2

4πy2(1− y2)3

∫
|z|=1

(z2 − 1+h2

h
z + 1)(z2 − 1)2

z3(z2 − h2+y22
hy2

z + 1)
dz

=
ih2

4πy2(1− y2)3

∫
|z|=1

(z − 1/h)(z − h)(z − 1)2(z + 1)2

z3(z − y2/h)(z − h/y2)
dz

Obviously, there are two poles inside the unit circle: 0 and y2/h. Their corre-
sponding residues are

R(0) = −2 +
(h2 + y22)[(h2 + y22)− y2(1 + h2)]

h2y22

R(y2/h) =
(h2 − y22)(1− y2)(y2 − h2)

h2y22
.

Hence,

b0 =
ih2

4πy2(1− y2)3
· 2πi · ([R(0) +R(y2/h)] =

1 + h2 − y2
(1− y2)3

.
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On the other hand,

b1 =

∫ b

a

x ·
(1− y2)

√
(b− x)(x− a)

2πx(y1 + y2x)
dx

=
4h2

2π(1− y2)

∫ π

0

sin2θ

h2 + y22 − 2hy2cosθ
dθ

=
4h2

4π(1− y2)

∫ 2π

0

sin2θ

h2 + y22 − 2hy2cosθ
dθ

=
h2

π(1− y2)

∫
|z|=1

1

h2 + y22 − hy2(z + z−1)
· −(z2 − 1)2

4z2
· dz

iz
(letting z = eiθ)

=
h

4πi · y2(1− y2)

∫
|z|=1

(z2 − 1)2

z2(z2 − h2+y22
hy2

z + 1)
dz

=
h

4πi · y2(1− y2)

∫
|z|=1

(z2 − 1)2

z2(z − h/y2)(z − y2/h)
dz

There are two poles inside the unit circle: 0 and y2/h. Their corresponding
residues are

R(0) =
y22 + h2

hy2
, R(y2/h) =

y22 − h2

hy2
.

Hence,

b1 =
h

4πi · y2(1− y2)
· 2πi · [R(0) +R(y2/h)] =

1

1− y2
.
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Table 1: Sizes and powers of the Wald test, Bartlett test, and proposed LZ test based on
20,000 independent replications using real Gaussian variables with y1 = 0.5 and y2 =
0.5. Test sizes are calculated under the null hypothesis H0: Σ1 = σ2Σ2 with ρ = 0; the
powers are estimated under the alternative hypothesisH1: Σ1 6= σ2Σ2 with ρ > 0, where
Σ1 = σ2Ip and Σ2 = (ρ|i−j|)p×p .

ρ (p, n1, n2)
Wald Test Bartlett Test LZ Test

σ2 = 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(40, 80, 80) 0.0514 0.0095 0.0517 0.0755 0.0803 0.0764 0.0656 0.0665 0.0666

(80, 160, 160) 0.1435 0.0112 0.1416 0.1103 0.1101 0.1139 0.0681 0.0649 0.0679

0.0 (160, 320, 320) 0.5111 0.0087 0.5128 0.2011 0.1913 0.1935 0.0608 0.0611 0.0576

(320, 640, 640) 0.9784 0.0118 0.9879 0.4827 0.4643 0.4471 0.0580 0.0574 0.0548

(640, 1280, 1280) 1.0000 0.0098 1.0000 0.9369 0.9232 0.9457 0.0534 0.0540 0.0542

(40, 80, 80) 0.9887 0.9723 0.9992 0.9987 0.9974 0.9993 0.2901 0.2905 0.2921

(80, 160, 160) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7315 0.7320 0.7288

0.4 (160, 320, 320) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994

(320, 640, 640) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(640, 1280, 1280) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(40, 80, 80) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7153 0.7133 0.7109

(80, 160, 160) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9978 0.9982 1.0000

0.8 (160, 320, 320) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(320, 640, 640) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(640, 1280, 1280) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2: Sizes and powers of the proposed LZ test based on 20,000 independent replica-
tions using real Gamma variables with y1 = 0.5 and y2 = 0.5. Test sizes are calculated
under the null hypothesis H0: Σ1 = σ2Σ2 with ρ = 0; the powers are estimated un-
der the alternative hypothesis H1: Σ1 6= σ2Σ2 with ρ > 0, where Σ1 = σ2Ip and
Σ2 = (ρ|i−j|)p×p .

(p, n1, n2)
ρ = 0.0 ρ = 0.4 ρ = 0.8

σ2 = 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(40, 80, 80) 0.0722 0.0726 0.0681 0.2882 0.2899 0.2914 0.7087 0.7083 0.7037

(80, 160, 160) 0.0689 0.0686 0.0697 0.7268 0.7247 0.7252 1.0000 1.0000 1.0000

(160, 320, 320) 0.0615 0.0616 0.0605 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(320, 640, 640) 0.0536 0.0545 0.0543 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(640, 1280, 1280) 0.0525 0.0548 0.0529 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3: Sizes and powers of the proposed LZ test based on 20,000 independent replica-
tions using real mixture of multivariate normal distributions variables with y1 = 0.5 and
y2 = 0.5. Test sizes are calculated under the null hypothesisH0: Σ1 = σ2Σ2 with ρ = 0;
the powers are estimated under the alternative hypothesis H1: Σ1 6= σ2Σ2 with ρ > 0,
where Σ1 = σ2Ip and Σ2 = (ρ|i−j|)p×p .

(p, n1, n2)
ρ = 0.0 ρ = 0.4 ρ = 0.8

σ2 = 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(40, 80, 80) 0.0834 0.0821 0.0814 0.2977 0.2948 0.2930 0.6779 0.6743 0.6716

(80, 160, 160) 0.0699 0.0770 0.0743 0.7138 0.7149 0.7245 1.0000 1.0000 1.0000

(160, 320, 320) 0.0648 0.0676 0.0638 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000

(320, 640, 640) 0.0571 0.0586 0.0590 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(640, 1280, 1280) 0.0562 0.0523 0.0543 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 4: Sizes and powers of the proposed LZ test based on 20,000 independent repli-
cations with y1 = 10 and y2 = 0.5. Test sizes are calculated under the null hypothesis
H0: Σ1 = σ2Σ2 with ρ = 0; the powers are estimated under the alternative hypothesis
H1: Σ1 6= σ2Σ2 with ρ > 0, where Σ1 = σ2Ip and Σ2 = (ρ|i−j|)p×p .

Multivariate Gaussian data

(p, n1, n2)
ρ = 0.0 ρ = 0.4 ρ = 0.8

σ2 = 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(50, 5, 100) 0.0469 0.0461 0.0469 0.0743 0.0727 0.0775 0.1212 0.1221 0.1166

(100, 10, 200) 0.0591 0.0546 0.0549 0.1378 0.1429 0.1372 0.2665 0.2675 0.2677

(200, 20, 400) 0.0575 0.0582 0.0620 0.2752 0.2766 0.2740 0.6231 0.6197 0.6262

(500, 50, 1000) 0.0536 0.0531 0.0532 0.7774 0.7724 0.7861 0.9987 0.9982 0.9986

(800, 80, 1600) 0.0514 0.0515 0.0526 0.9786 0.9823 0.9847 1.0000 1.0000 1.0000

Multivariate gamma data

(p, n1, n2)
ρ = 0.0 ρ = 0.4 ρ = 0.8

σ2 = 0.5 01.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(50, 5, 100) 0.0486 0.0488 0.0493 0.0789 0.0748 0.0757 0.1180 0.1194 0.1131

(100, 10, 200) 0.0628 0.0627 0.0610 0.1392 0.1406 0.1413 0.2579 0.2635 0.2626

(200, 20, 400) 0.0617 0.0607 0.0620 0.2741 0.2749 0.2709 0.6102 0.5980 0.6064

(500, 50, 1000) 0.0580 0.0544 0.0608 0.8376 0.8158 0.8344 1.0000 0.9995 0.9999

(800, 80, 1600) 0.0548 0.0527 0.0543 0.9980 0.9864 0.9934 1.0000 1.0000 1.0000

Mixture of multivariate Gaussian data

(p, n1, n2)
ρ = 0.0 ρ = 0.4 ρ = 0.8

σ2 = 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

(50, 5, 100) 0.0608 0.0593 0.0574 0.0806 0.0833 0.0771 0.1103 0.1091 0.1106

(100, 10, 200) 0.0838 0.0799 0.0823 0.1501 0.1544 0.1453 0.2463 0.2446 0.2484

(200, 20, 400) 0.0756 0.0793 0.0783 0.2698 0.2750 0.2759 0.5716 0.5683 0.5682

(500, 50, 1000) 0.0614 0.0608 0.0614 0.8050 0.8274 0.8115 1.0000 0.9978 0.9984

(800, 80, 1600) 0.0590 0.0564 0.0576 0.9964 0.9821 0.9735 1.0000 1.0000 1.0000
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