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NONPARAMETRIC MAXIMUM LIKELIHOOD APPROACH TO
MULTIPLE CHANGE-POINT PROBLEMS1

BY CHANGLIANG ZOU, GUOSHENG YIN, LONG FENG

AND ZHAOJUN WANG

Nankai University, University of Hong Kong, Nankai University
and Nankai University

In multiple change-point problems, different data segments often follow
different distributions, for which the changes may occur in the mean, scale or
the entire distribution from one segment to another. Without the need to know
the number of change-points in advance, we propose a nonparametric max-
imum likelihood approach to detecting multiple change-points. Our method
does not impose any parametric assumption on the underlying distributions
of the data sequence, which is thus suitable for detection of any changes in
the distributions. The number of change-points is determined by the Bayesian
information criterion and the locations of the change-points can be estimated
via the dynamic programming algorithm and the use of the intrinsic order
structure of the likelihood function. Under some mild conditions, we show
that the new method provides consistent estimation with an optimal rate. We
also suggest a prescreening procedure to exclude most of the irrelevant points
prior to the implementation of the nonparametric likelihood method. Simula-
tion studies show that the proposed method has satisfactory performance of
identifying multiple change-points in terms of estimation accuracy and com-
putation time.

1. Introduction. The literature devoted to change-point models is vast, par-
ticularly in the areas of economics, genome research, quality control, and signal
processing. When there are notable changes in a sequence of data, we can typically
break the sequence into several data segments, so that the observations within each
segment are relatively homogeneous. In the conventional change-point problems,
the posited models for different data segments are often of the same structure but
with different parameter values. However, the underlying distributions are typ-
ically unknown, and thus parametric methods potentially suffer from model mis-
specification. The least-squares fitting is the standard choice for the MCP, while its
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performance often deteriorates when the error follows a heavy-tailed distribution
or when the data contain outliers.

Without imposing any parametric modeling assumption, we consider the multi-
ple change-point problem (MCP) based on independent data {Xi}ni=1, such that

Xi ∼ Fk(x), τk−1 ≤ i ≤ τk − 1, k = 1, . . . ,Kn + 1; i = 1, . . . , n,(1.1)

where Kn is the true number of change-points, τk’s are the locations of these
change-points with the convention of τ0 = 1 and τKn+1 = n + 1, and Fk is the
cumulative distribution function (C.D.F.) of segment k satisfying Fk �= Fk+1. The
number of change-points Kn is allowed to grow with the sample size n.

Although extensive research has been conducted to estimate the number of
change-points Kn and the locations of these change-points τk’s, most of the work
assumes that Fk’s belong to some-known parametric functional families or that
they differ only in their locations (or scales). For a comprehensive coverage on
single change-point problems (Kn = 1), see Csörgő and Horváth (1997). The stan-
dard approach to the MCP is based on least-squares or likelihood methods via a
dynamic programming (DP) algorithm in conjunction with a selection procedure
such as the Bayesian information criterion (BIC) for determining the number of
change-points [Yao (1988); Yao and Au (1989); Chen and Gupta (1997); Bai and
Perron (1998, 2003); Braun, Braun and Müller (2000); Hawkins (2001); Lavielle
(2005)]. By reframing the MCP in a variable selection context, Harchaoui and
Lévy-Leduc (2010) proposed a penalized least-squares criterion with a LASSO-
type penalty [Tibshirani (1996)]. Chen and Zhang (2012) developed a graph-based
approach to detecting change-points, which is applicable in high-dimensional data
and non-Euclidean data. Other recent development in this area includes Rigaill
(2010), Killick, Fearnhead and Eckley (2012) and Arlot, Celisse and Harchaoui
(2012).

Our goal is to develop an efficient nonparametric procedure for the MCP in (1.1)
without imposing any parametric structure on the Fk’s; virtually any salient differ-
ence between two successive C.D.F.’s (say, Fk and Fk+1) would ensure detection
of the change-point asymptotically. In the nonparametric context, most of the ex-
isting work focuses on the single change-point problem by using some seminorm
on the difference between pre- and post-empirical distributions at the change-point
[Darkhovskh (1976); Carlstein (1988); Dümbgen (1991)]. Guan (2004) studied a
semiparametric change-point model based on the empirical likelihood, and ap-
plied the method to detect the change from a distribution to a weighted one. Zou
et al. (2007) proposed another empirical likelihood approach without assuming
any relationship between the two distributions. However, extending these methods
to the MCP is not straightforward. Lee (1996) proposed to use the weighted em-
pirical measure to detect two different nonparametric distributions over a window
of observations and then run the window through the full data sequence to detect
the number of change-points. Although the approach of Lee (1996) is simple and
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easy to implement, our simulation studies show that even with elaborately cho-
sen tuning parameters the estimates of the locations τk’s as well as the number of
change-points are not satisfactory. This may be partly due to the “local” nature of
the running window, and thus the information in the data is not fully and efficiently
utilized. Matteson and James (2014) proposed a new estimation method, ECP, un-
der multivariate settings, which is based on hierarchical clustering by recursively
using a single change-point estimation procedure.

Observing the connection between multiple change-points and goodness-of-fit
tests, we propose a nonparametric maximum likelihood approach to the MCP.
Our proposed nonparametric multiple change-point detection (NMCD) proce-
dure can be regarded as a nonparametric counterpart of the classical least-
squares MCP method [Yao (1988)]. Under some mild conditions, we demonstrate
that the NMCD can achieve the optimal rate, Op(1), for the estimation of the
change-points without any distributional assumptions. Due to the use of empirical
distribution functions, technical arguments for controlling the supremum of the
nonparametric likelihood function are nontrivial and are interesting in their own
rights. As a matter of fact, some techniques regarding the empirical process have
been nicely integrated with the MCP methodologies. In addition, our theoretical
results are applicable to the situation with a diverging number of change-points,
that is, when the number of change-points, Kn, grows as n goes to infinity. This
substantially enlarges the scope of applicability of the proposed method, from a
traditional fixed dimensionality to a more challenging high-dimensional setting.

In the proposed NMCD procedure, the number of change-points, Kn, is deter-
mined by the BIC. Given Kn, the DP algorithm utilizes the intrinsic order structure
of the likelihood to recursively compute the maximizer of the objective function
with a complexity of O(Knn

2). To exclude most of the irrelevant points, we also
suggest an initial screening procedure so that the NMCD is implemented in a much
lower-dimensional space. Compared with existing parametric and nonparametric
approaches, the proposed NMCD has satisfactory performance of identifying mul-
tiple change-points in terms of estimation accuracy and computation time. It offers
robust and effective detection capability regardless of whether the Fk’s differ in the
location, scale, or shape.

The remainder of the paper is organized as follows. In Section 2, we first de-
scribe how to recast the MCP in (1.1) into a maximization problem and then intro-
duce our nonparametric likelihood method followed by its asymptotic properties.
The algorithm and practical implementation are presented in Section 3. The nu-
merical performance and comparisons with other existing methods are presented
in Section 4. Section 5 contains a real data example to illustrate the application of
our NMCD method. Several remarks draw the paper to its conclusion in Section 6.
Technical proofs are provided in the Appendix, and the proof of a corollary and
additional simulation results are given in the supplementary material [Zou et al.
(2014)].
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2. Nonparametric multiple change-point detection.

2.1. NMCD method. Assume that Z1, . . . ,Zn are independent and identi-
cally distributed from F0, and let F̂n denote the empirical C.D.F. of the sample,
then nF̂n(u) ∼ Binomial(n,F0(u)). If we regard the sample as binary data with
the probability of success F̂n(u), this leads to the nonparametric maximum log-
likelihood

n
{
F̂n(u) log

(
F̂n(u)

) + (
1 − F̂n(u)

)
log

(
1 − F̂n(u)

)}
.

In the context of (1.1), we can write the joint log-likelihood for a candidate set of
change-points (τ ′

1 < · · · < τ ′
L) as

Lu

(
τ ′

1, . . . , τ
′
L

) =
L∑

k=0

(
τ ′
k+1 − τ ′

k

){
F̂

τ ′
k+1

τ ′
k

(u) log
(
F̂

τ ′
k+1

τ ′
k

(u)
)

(2.1)
+ (

1 − F̂
τ ′
k+1

τ ′
k

(u)
)

log
(
1 − F̂

τ ′
k+1

τ ′
k

(u)
)}

,

where F̂
τ ′
k+1

τ ′
k

(u) is the empirical C.D.F. of the subsample {Xτ ′
k
, . . . ,Xτ ′

k+1−1} with

τ ′
0 = 1 and τ ′

L+1 = n + 1. To estimate the change-points 1 < τ ′
1 < · · · < τ ′

L ≤ n,
we can maximize (2.1) in an integrated form

Rn

(
τ ′

1, . . . , τ
′
L

) =
∫ ∞
−∞

Lu

(
τ ′

1, . . . , τ
′
L

)
dw(u),(2.2)

where w(·) is some positive weight function so that Rn(·) is finite, and the integral
is used to combine all the information across u. The rationale of using (2.2) can
be clearly seen from the behavior of its population counterpart. For simplicity, we
assume that there exists only one change-point τ1, and let τ1/n → q1 ∈ (0,1) and
τ ′

1/n → θ ∈ (0,1). Through differentiation with respect to θ , it can be verified that
the limiting function of Lu(τ

′
1)/n,

Qu(θ) = θ
{
F

(1)
θ (u) log

(
F

(1)
θ (u)

) + (
1 − F

(1)
θ (u)

)
log

(
1 − F

(1)
θ (u)

)}
+ (1 − θ)

{
F

(2)
θ (u) log

(
F

(2)
θ (u)

) + (
1 − F

(2)
θ (u)

)
log

(
1 − F

(2)
θ (u)

)}
,

increases as θ approaches q1 from both sides, where

F
(1)
θ (u) = min(q1, θ)F1(u) + max(θ − q1,0)F2(u)

min(q1, θ) + max(θ − q1,0)
and

F
(2)
θ (u) = max(q1 − θ,0)F1(u) + min(1 − θ,1 − q1)F2(u)

max(q1 − θ,0) + min(1 − θ,1 − q1)
,

are the limits of F̂
τ ′

1
1 (u) and F̂ n+1

τ ′
1

(u), respectively. This implies that the function∫ ∞
−∞ Qu(θ) dw(u) attains its local maximum at the true location of the change-

point, q1.
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REMARK 1. The log-likelihood function (2.1) is essentially related to the two-
sample goodness-of-fit (GOF) test statistic based on the nonparametric likelihood
ratio [Einmahl and McKeague (2003); Zhang (2006)]. To see this, let Z1, . . . ,Zn

be independent, and suppose that Z1, . . . ,Zn1 have a common continuous dis-
tribution function F1, and Zn1+1, . . . ,Zn have F2. We are interested in testing
the null hypothesis H0 that F1(u) = F2(u) for all u ∈ (−∞,∞) against H1 that
F1(u) �= F2(u) for some u ∈ (−∞,∞). For each fixed u ∈ (−∞,∞), a natural
approach is to apply the likelihood ratio test,

Gu = n1

{
F̂

n1+1
1 (u) log

(
F̂

n1+1
1 (u)

F̂n(u)

)
+ (

1 − F̂
n1+1
1 (u)

)
log

(
1 − F̂

n1+1
1 (u)

1 − F̂n(u)

)}

+ n2

{
F̂ n+1

n1+1(u) log
(

F̂ n+1
n1+1(u)

F̂n(u)

)
+ (

1 − F̂ n+1
n1+1(u)

)
log

(1 − F̂ n+1
n1+1(u)

1 − F̂n(u)

)}
,

where F̂n(u) corresponds to the C.D.F. of the pooled sample. By noting that
n1F̂

n1+1
1 (u) + n2F̂

n+1
n1+1(u) = nF̂n(u), Gu would be of the same form as (2.1)

with L = 1 up to a constant which does not depend on the segmentation point n1.
Einmahl and McKeague (2003) considered using Gu to test whether there is at
most one change-point.

In the two-sample GOF test, Zhang (2002, 2006) demonstrated that by choos-
ing appropriate weight functions w(u) we can produce new omnibus tests that are
generally much more powerful than the conventional ones such as Kolmogorov–
Smirnov, Cramér–von Mises and Anderson–Darling test statistics. If we take
dw(u) = {F̂n(u)(1 − F̂n(u))}−1 dF̂n(u), and also note that Lu is zero for u ∈
(−∞,X(1)) and u ∈ (X(n),∞) where X(1) < · · · < X(n) represent the order statis-
tics, the objective function in (2.2) can be rewritten as

Rn

(
τ ′

1, . . . , τ
′
L

)
=

∫ X(n)

X(1)

Lu

(
τ ′

1, . . . , τ
′
L

){
F̂n(u)

(
1 − F̂n(u)

)}−1
dF̂n(u)(2.3)

= n

L∑
k=0

n−1∑
l=2

(
τ ′
k+1 − τ ′

k

) F̂kl log F̂kl + (1 − F̂kl) log(1 − F̂kl)

l(n − l)
,

where F̂kl = F̂
τ ′
k+1

τ ′
k

(X(l)). As recommended by Zhang (2002), we take a common

“continuity correction” by replacing F̂kl with F̂kl −1/{2(τ ′
k+1 −τ ′

k)} for all k and l.
To determine L in the MCP, we observe that Qu(θ) is a convex function with

respect to θ , and thus

max
τ ′

1<···<τ ′
L

Rn

(
τ ′

1, . . . , τ
′
L

) ≤ max
τ ′

1<···<τ ′
L+1

Rn

(
τ ′

1, . . . , τ
′
L+1

)
,
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which means that the maximum log-likelihood maxτ ′
1<···<τ ′

L
Rn(τ

′
1, . . . , τ

′
L) is a

nondecreasing function in L. Hence, we can use Schwarz’s Bayesian informa-
tion criterion (BIC) to strike a balance between the likelihood and the number of
change-points by incorporating a penalty for large L. More specifically, we iden-
tify the value of L by minimizing

BICL = − max
τ ′

1<···<τ ′
L

Rn

(
τ ′

1, . . . , τ
′
L

) + Lζn(2.4)

and ζn is a proper sequence going to infinity. Yao (1988) used the BIC with ζn =
logn to select the number of change-points and showed its consistency in the least-
squares framework. However, the traditional BIC tends to select a model with some
spurious change-points. Detailed discussions on the choice of ζn and other tuning
parameters are given in Section 3.2.

2.2. Asymptotic theory. In the context of change-point estimation, it is well
known that the points around the true change-point cannot be distinguished asymp-
totically with a fixed change magnitude. In the least-squares fitting, the total
variation with perfect segmentation is asymptotically equivalent to that with an es-
timate of the change-point in a neighborhood of the true change-point [Yao and Au
(1989)]. For example, suppose that there is only one change-point τ with a change
size δ, then we can only achieve δ2|τ̂MLE − τ | = Op(1) as n → ∞, where τ̂MLE
denotes the maximum likelihood estimator (MLE) of τ [see Chapter 1 of Csörgő
and Horváth (1997)]. For single change-point nonparametric models, Darkhovskh
(1976) obtained a rate of op(n), Carlstein (1988) derived a rate of O(nα) a.s. (al-
most surely) for any α > 1/2, and Dümbgen (1991) achieved a rate of Op(1). The
estimator in Lee (1996) is shown to be consistent a.s. and the differences between
the estimated and true locations of change-points are of order O(logn) a.s.

Let Gn(L) = {τ̂1, . . . , τ̂L} denote the set of estimates of the change-points using
the proposed NMCD. The next theorem establishes the desirable property for the
NMCD estimator when Kn is prespecified—Gn(Kn) is asymptotically close to the
true change-point set. Let CKn(δn) contain all the sets in the δn-neighborhood of
the true locations,

CKn(δn)

= {(
τ ′

1, . . . , τ
′
Kn

)
: 1 < τ ′

1 < · · · < τ ′
Kn

≤ n,
∣∣τ ′

s − τs

∣∣ ≤ δn for 1 ≤ s ≤ Kn

}
,

where δn is some positive sequence. Denote Fk,θ = θFk + (1 − θ)Fk+1 for 0 <

θ < 1. For r = 1, . . . ,Kn, define

η(u;Fr,Fr,θ ) = Fr(u) log
(

Fr(u)

Fr,θ (u)

)
+ (

1 − Fr(u)
)

log
(

1 − Fr(u)

1 − Fr,θ (u)

)
,

which is the Kullback–Leibler distance between two Bernoulli distributions with
respective success probabilities Fr(u) and Fr,θ (u). Hence, whenever Fr(u) �=
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Fr+1(u), and accordingly Fr(u) �= Fr,θ (u), η(u;Fr,Fr,θ ) is strictly larger than
zero. Furthermore, for r = 1, . . . ,Kn, define

ηr(u) = η(u;Fr,Fr,1/2) + η(u;Fr+1,Fr,1/2).

To establish the consistency of the proposed NMCD, the following assumptions
are imposed:

(A1) F1, . . . ,FKn+1 are continuous and Fk �= Fk+1 for k = 1, . . . ,Kn.
(A2) Let λn = min1≤k≤Kn+1(τk − τk−1); λn → ∞ as n → ∞.

(A3) F̂n(u)
a.s.→ F(u) uniformly in u, where F(u) is the C.D.F. of the pooled

sample.
(A4) ηmin ≡ min1≤r≤Kn

∫ 1
0 ηr(u)/{F(u)(1 − F(u))}dF(u) is a positive con-

stant.

Assumption (A1) is required in some exponential tail inequalities as detailed in
the proof of Lemma 2, while the Fk’s can be discrete or mixed distributions in
practice. Assumption (A2) is a standard requirement for the theoretical develop-
ment in the MCP, which allows the change-points to be asymptotically distin-
guishable. Assumption (A3) is a technical condition that is trivially satisfied by
the Glivenko–Cantelli theorem when Kn is finite. Generally, it can be replaced by

the conditions that limn→∞
∑Kn+1

k=1 (τk − τk−1)/nFk(u) exists and
∑Kn+1

k=1 {(τk −
τk−1)/n supu |F̂ τk

τk−1
(u) − Fk(u)|} converges to 0 a.s. By the Dvoretzky–Kiefer–

Wolfowitz inequality, the latter one holds if
∑∞

n=1 Kn exp(−2λnε
2/K2

n) < ∞ for
any ε > 0. Assumption (A4) means that the smallest signal strength among all the
changes is bounded away from zero.

We may consider relaxing λn → ∞ in assumption (A2) by allowing ηmin → ∞
as n → ∞. It is intuitive that if two successive distributions are very different, then
we do not need a very large λn to locate the change point. For the mean change
problem, Niu and Zhang (2012) and Hao, Niu and Zhang (2013) revealed that
in order to obtain the Op(1) consistency, a condition δλn > 32 logn is required,
where δ is the minimal jump size at the change-points (similar to ηmin). In our
nonparametric setting, such an extension warrants future investigation.

THEOREM 1. Under assumptions (A1)–(A4), if K3
n(logKn)

2(log δn)
2/δn →

0 and δn/λn → 0, then

Pr
{
Gn(Kn) ∈ CKn(δn)

} → 1 as n → ∞.

Under the classical mean change-point model, Yao and Au (1989) studied the
property of the least-squares estimator,

arg min
τ ′

1<···<τ ′
Kn

Kn+1∑
k=1

τ ′
k−1∑

i=τ ′
k−1

{
Xi − μ̂

(
τ ′
k−1, τ

′
k

)}2
,(2.5)
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where μ̂(τ ′
k−1, τ

′
k) denotes the average of the observations {Xτ ′

k−1
, . . . ,Xτ ′

k−1}. It
is well known that the least-squares estimator is consistent with the optimal rate
Op(1), when the number of change-points is known (and does not depend on n)
and the change magnitudes are fixed; see Hao, Niu and Zhang (2013) and the
references therein. Under a similar setting with Kn ≡ K , we can establish the same
rate of Op(1) for our nonparametric approach.

COROLLARY 1. Under assumptions (A1), (A2) and (A4), |τ̂s − τs | = Op(1)

for s = 1, . . . ,K .

The proof is similar to that of Theorem 1, which is provided in the supple-
mentary material [Zou et al. (2014)]. With the knowledge of K , we can obtain
an optimal rate of Op(1) without specifying the distributions, which is consistent
with the single change-point case in Dümbgen (1991).

The next theorem establishes the consistency of the NMCD procedure with the
BIC in (2.4). Let K̂n = arg min1≤L≤
Kn

BICL, where 
Kn is an upper bound on the
true number of change-points.

THEOREM 2. Under assumptions (A1)–(A4), λn/(
Knζn) → ∞, ζn =

K3

n(log 
Kn)
2(logn)2+c with any c > 0, then Pr(K̂n = Kn) → 1 as n → ∞.

It is remarkable that in the conventional setting where 
Kn is bounded, we
can use ζn of order (logn)2+c instead of its least-squares counterpart logn in
Yao (1988). In conjunction with Theorem 1, this result implies that Pr{Gn(K̂) ∈
CK((logn)2+c)} → 1 with a fixed number of change-points.

3. Implementation of NMCD.

3.1. Algorithm. One important property of the proposed maximum likelihood
approach is that (2.3) is separable. The optimum for splitting cases 1, . . . , n into L

segments conceptually consists of first finding the rightmost change-point τ̂L, and
then finding the remaining change-points from the fact that they constitute the
optimum for splitting cases 1, . . . , τ̂L into L − 1 segments. This separability is
called Bellman’s “principle of optimality” [Bellman and Dreyfus (1962)]. Thus,
(2.3) can be maximized via the DP algorithm and fitting such a nonparametric
MCP model is straightforward and fast. The total computational complexity is
O(Ln2) for a given L; see Hawkins (2001) and Bai and Perron (2003) for the
pseudo-codes of the DP. Hawkins (2001) suggested using the DP on a grid of
m � n values. Harchaoui and Lévy-Leduc (2010) proposed using a LASSO-type
penalized estimator to achieve a reduced version of the least-squares method. Niu
and Zhang (2012) developed a screening and ranking algorithm to detect DNA
copy number variations in the MCP framework.
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Due to the DP’s computational complexity in n2, an optimal segmentation of
a very long sequence could be computationally intensive; for example, DNA se-
quences nowadays are often extremely long [Fearnhead and Vasileiou (2009)].
To alleviate the computational burden, we introduce a preliminary screening step
which can exclude most of the irrelevant points and, as a consequence, the NMCD
is implemented in a much lower-dimensional space.

Screening algorithm.

(i) Choose an appropriate integer nI which is the length of each subsequence
of the data, and take the estimated change-point set O = ∅.

(ii) Initialize γi = 0 for i = 1, . . . , n; and for i = nI , . . . , n−nI , update γi to be
the Cramér–von Mises two-sample test statistic for the samples {Xi−nI +1, . . . ,Xi}
and {Xi+1, . . . ,Xi+nI

}.
(iii) For i = nI , . . . , n−nI , define k = arg maxi−nI <j≤i+nI

γj . If k = i, update
O = O ∪ {i}.

Intuitively speaking, this screening step finds the most influential points that
have the largest local jump sizes quantified by the Cramér–von Mises statistic, and
thus helps to avoid including too many candidate points around the true change-
point. As a result, we can obtain a candidate change-point set, O, of which the
cardinality, |O|, is usually much smaller than n. Finally, we run the NMCD proce-
dure within the set O using the DP algorithm to find the solution of

arg max
τ ′

1<···<τ ′
L∈O

Rn

(
τ ′

1, . . . , τ
′
L

)
.

Apparently, the screening procedure is fast because it mainly requires calcu-
lating n − 2nI + 1 Cramér–von Mises statistics. In contrast, Lee (1996) used a
thresholding step to determine the number of change-points. The main difference
between Lee (1996) and Niu and Zhang (2012) lies in the choice of the local test
statistic; the former uses some seminorm of empirical distribution functions and
the latter is based on the two-sample mean difference.

We next clarify how to choose nI , which formally establishes the consistency
of the screening procedure.

PROPOSITION 1. Under assumptions (A1)–(A2), if nI / logn → ∞ and
nI /λ

1/2
n → 0, then we have Pr{O ∈ H|O|(logn)} → 1, where

Hl(δn) = {(
τ ′

1, . . . , τ
′
l

)
: 1 < τ ′

1 < · · · < τ ′
l ≤ n, and for each 1 ≤ r ≤ Kn

there exists at least a τ ′
s so that |τ ′

s − τr | ≤ δn

}
.

This result follows by verifying condition (A3) in Lee (1996); see Example II
of Dümbgen (1991). With probability tending to one, the screening algorithm
can at least include one δn-neighborhood of the true location set by choosing
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an appropriate nI . Given a candidate L, the computation of NMCD reduces to
O(L|O|n), which is of order O(
K2

n |O|n) in conjunction with the BIC. Both the
R and FORTRAN codes for implementing the entire procedure are available from
the authors upon request.

3.2. Selection of tuning parameters. We propose to take dw(u) = {F̂n(u)(1 −
F̂n(u))}−1 dF̂n(u), which is found to be more powerful than simply using dw(u) =
dF̂n(u). The function {F̂n(u)(1 − F̂n(u))}−1 attains its minimum at F̂n(u) = 1/2,
that is when u is the median of the sample. Intuitively, when two successive
distributions mainly differ in their centers, both choices of dw(u) would be
powerful because a large portion of observations are around the center. How-
ever, if the difference between two adjacent distributions lies in their tails, using
dw(u) = dF̂n(u) may not work well because only very limited information is in-
cluded in the integral of (2.2). In contrast, our weight would be larger for those
more extreme observations (far way from the median).

To better understand this, we analyze the term ηmin, which reflects the detection
ability to a large extent. Consider a special case

Xi ∼
{

U(0,1), 1 ≤ i ≤ n/2,

U(1,2), n/2 + 1 ≤ i ≤ n

and thus

η1(u) =
(
u log 2 + (1 − u) log

1 − u

1 − u/2

)
I (0 < u < 1)

+
(
(u − 1) log

2(u − 1)

u
+ (2 − u) log

2 − u

1 − u/2

)
I (1 < u < 2).

It is easy to check that ηmin = ∫ 2
0 η1(u)/{F(u)(1 − F(u))}dF(u) is unbounded,

while the counterpart
∫ 2

0 η1(u) dF (u) is finite. Consequently, the NMCD proce-
dure would be more powerful by using the weight {F̂n(u)(1 − F̂n(u))}−1 dF̂n(u).

Under the assumption that ζn = 
K3
n(log 
Kn)

2(logn)2+c with c > 0 and
λn/(
Knζn) → ∞, we establish the consistency of the BIC in (2.4) for model se-
lection. The choice of ζn depends on 
Kn and λn which are unknown. The value of

Kn depends on the practical consideration of how many change-points are to be
identified, while λn reflects the length of the smallest segment. For practical use,
we take 
Kn to be fixed and recommend ζn = (logn)2+c/2 with c = 0.1. A small
value of c helps to prevent underfitting, as one is often reluctant to miss any im-
portant change-point. The performance of NMCD insensitive to the choice of 
Kn,
as long as 
Kn is not too small, which is also to avoid underfitting. We suggest

Kn = |O|, that is, the cardinality of the candidate change-point set in the screening
algorithm.
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4. Simulation studies.

4.1. Model setups. To evaluate the finite-sample performance of the proposed
NMCD procedure, we conduct extensive simulation studies, and also make com-
parisons with existing methods. We calculate the distance between the estimated
set Ĝn and the true change-point set Ct [Boysen et al. (2009)],

ξ(Ĝn‖Ct ) = sup
b∈Ct

inf
a∈Ĝn

|a − b| and ξ(Ct‖Ĝn) = sup
b∈Ĝn

inf
a∈Ct

|a − b|,

which quantify the over-segmentation error and the under-segmentation error, re-
spectively. A desirable estimator should be able to balance both quantities. In ad-
dition, we consider the average Rand index [Fowlkes and Mallows (1983)], which
measures the discrepancy of two sets from an average viewpoint.

Following model (I) introduced by Donoho and Johnstone (1995), we generate
the Blocks datasets, which contains Kn = 11 change-points:

Model (I): Xi =
Kn∑
j=1

hjJ (nti − τj ) + σεi, J (x) = {
1 + sgn(x)

}
/2,

{τj /n} = {0.1,0.13,0.15,0.23,0.25,0.40,0.44,0.65,0.76,0.78,0.81},
{hj } = {2.01,−2.51,1.51,−2.01,2.51,−2.11,1.05,2.16,

− 1.56,2.56,−2.11},
where there are n equally spaced covariates ti in [0,1]. Three error distributions
for εi are considered: N(0,1), Student’s t distribution with three degrees of free-
dom t(3), and the standardized (zero mean and unit variance) chi-squared distri-
bution with one degree of freedom χ2

(1). The Blocks datasets with n = 1000, as
depicted in the top three plots of Figure A.1 in the supplementary material [Zou
et al. (2014)], are generally considered difficult for multiple change-point estima-
tion due to highly heterogeneous segment levels and lengths.

In a more complicated setting with both location and scale changes, we consider
model (II) with Kn = 4:

Model (II): Xi =
Kn∑
j=1

hjJ (nti − τj ) + σεi

∑Kn
j=1 J (nti−τj )∏

j=1

vj ,

{hj } = {3,0,−2,0}, {τj /n} = {0.20,0.40,0.65,0.85} and

{vj } = {1,5,1,0.25},
where all the other setups are the same as those of model (I). As shown by the
bottom three plots in Figure A.1, there are two location changes and two scale
changes.
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In addition, we include a simulation study when the distributions differ in the
skewness and kurtosis. In particular, we consider

Model (III): Xi ∼ Fj (x), τj /n = {0.20,0.50,0.75}, j = 1,2,3,4,

where F1(x), . . . ,F4(x) correspond to the standard normal, the standardized χ2
(3)

(with zero mean and unit variance), the standardized χ2
(1), and the standard normal

distribution, respectively. Because there is no mean or variance difference between
the Fj ’s, as depicted in the left panel of Figure A.4, the estimation for such a
change-point problem is rather difficult. All the simulation results are obtained
with 1000 replications.

4.2. Calibration of tuning parameters. To study the sensitivity of the choice
of ζn, Figure 1(a) shows the curves of |K̂n − Kn| versus the value of β with
ζn = β(logn)2.1/2 under model (I). Clearly, the estimation is reasonably well with
a value of β around 1. For more adaptive model selection, a data-adaptive com-
plexity penalty in Shen and Ye (2002) could be considered.

In the screening procedure, the choice of nI needs to balance the computation
and underfitting. By Proposition 1, nI ∈ (logn,λ

1/2
n ), while λn is typically un-

known. In practice, we recommend to choose nI = �(logn)3/2/2�, which is the
smallest integer that is larger than (logn)3/2/2. Figure 1(b) shows the curves of
under-segmentation errors versus the value of β with nI = �β(logn)3/2/2� under
model (I). In a neighborhood of β = 1, our method provides a reasonably effective
reduction of the subset O and the performance is relatively stable. In general, we

FIG. 1. The performance of NMCD under model (I) with n = 1000 and σ = 0.5 when the tuning
parameters vary: (a) the curves of |K̂n −Kn| versus the value of β; (b) the curves of ξ(Ĝn‖Ct ) versus
the value of β .
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do not recommend a too large value of nI so as to avoid underfitting. From the re-
sults shown in Section 4.6, the choice of ζn = (logn)2.1/2 and nI = �(logn)3/2/2�
works also well when the number of change-points increases as the sample size in-
creases.

4.3. Comparison between NMCD and PL. Firstly, under model (I) with loca-
tion changes only, we make a comparison of NMCD with the parametric likelihood
(PL) method which coincides with the classical least-squares method in (2.5) un-
der the normality assumption [Yao (1988)]. We also consider a variant of NMCD
by using dw(u) = dF̂n(u) (abbreviated as NMCD*). The comparison is conducted
with and without knowing the true number of change-points Kn, respectively. Ta-
ble 1 presents the average values of ξ(Ĝn‖Ct ) and ξ(Ct‖Ĝn) for n = 500 and 1000
and σ = 0.5 when Kn is known to be 11. To gain more insight, we also present
the standard deviations of the two distances in parentheses. Simulation results with
other values of σ can be found in the supplementary material [Zou et al. (2014)].

As expected, the PL has superior efficiency for the case with normal errors, since
the parametric model is correctly specified. The NMCD procedure also offers sat-
isfactory performance and the differences in the two ξ values between NMCD and
PL are extremely small, while both methods significantly outperform the NMCD*
procedure. For the cases with t(3) and χ2

(1) errors, the NMCD procedure almost
uniformly outperforms the PL in terms of estimation accuracy of the locations.
Not only are the distance values of ξ(Ĝn‖Ct ) and ξ(Ct‖Ĝn) smaller, but the corre-
sponding standard deviations are also much smaller using the NMCD.

TABLE 1
Comparison of the parametric likelihood (PL), NMCD, and NMCD* methods when the number of

change-points Kn is specified (known) under models (I) and (II), respectively. The standard
deviations are given in parentheses

ξ( ̂Gn‖Ct ) ξ(Ct‖ ̂Gn)

Model Error n PL NMCD NMCD* PL NMCD NMCD*

(I) N(0,1) 500 0.96 (1.19) 0.96 (1.14) 1.16 (1.15) 0.96 (1.19) 0.96 (1.14) 1.16 (1.15)
1000 0.91 (1.15) 0.97 (1.16) 1.06 (1.21) 0.91 (1.15) 0.97 (1.16) 1.06 (1.21)

t(3) 500 13.6 (12.0) 3.77 (4.48) 3.86 (4.33) 14.3 (18.4) 3.95 (7.51) 3.97 (7.63)
1000 20.2 (21.3) 2.58 (2.50) 2.90 (2.72) 21.9 (34.5) 2.56 (2.40) 2.90 (2.72)

χ2
(1)

500 1.39 (2.91) 0.70 (0.80) 0.80 (1.22) 1.13 (1.57) 0.70 (0.80) 0.81 (1.41)
1000 1.05 (2.15) 0.59 (0.77) 0.58 (0.71) 0.99 (1.38) 0.59 (0.77) 0.58 (0.71)

(II) N(0,1) 500 1.59 (1.72) 2.35 (2.42) 3.34 (4.96) 1.59 (1.72) 2.35 (2.42) 3.34 (4.96)
1000 1.58 (1.52) 2.68 (2.59) 2.74 (2.89) 1.58 (1.52) 2.68 (2.59) 2.74 (2.89)

t(3) 500 13.6 (25.8) 4.75 (6.87) 6.42 (8.84) 7.52 (10.2) 4.54 (5.19) 6.05 (6.42)
1000 16.4 (40.2) 4.10 (3.88) 5.27 (7.20) 10.3 (18.0) 4.10 (3.88) 5.24 (6.85)

χ2
(1)

500 6.36 (11.3) 1.57 (2.12) 1.65 (2.90) 5.88 (8.93) 1.57 (2.12) 1.65 (2.90)
1000 4.80 (67.8) 1.17 (1.45) 1.49 (2.10) 4.80 (7.82) 1.17 (1.45) 1.49 (2.10)
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TABLE 2
Comparison of the PL and NMCD methods when the number of change-points Kn is unknown

(Kn is selected using the BIC) under models (I) and (II), respectively. The standard deviations are
given in parentheses

Parametric likelihood (PL) NMCD

Model Error n ξ( ̂Gn‖Ct ) ξ(Ct‖ ̂Gn) | ̂Kn − Kn| ξ( ̂Gn‖Ct ) ξ(Ct‖ ̂Gn) | ̂Kn − Kn|
(I) N(0,1) 500 0.93 (1.08) 2.16 (6.57) 0.09 (0.31) 0.96 (1.34) 0.99 (1.05) 0.00 (0.04)

1000 0.94 (1.14) 2.30 (10.3) 0.05 (0.25) 0.96 (1.25) 1.01 (1.25) 0.00 (0.04)
t(3) 500 2.91 (2.92) 39.0 (24.9) 6.05 (3.47) 3.34 (4.22) 8.64 (15.2) 0.36 (0.88)

1000 2.94 (3.02) 95.2 (48.8) 9.70 (4.14) 2.54 (2.78) 10.0 (26.8) 0.36 (0.75)
χ2

(1)
500 0.85 (0.99) 49.5 (23.6) 10.9 (4.69) 0.73 (0.95) 1.36 (5.59) 0.05 (0.28)

1000 0.85 (1.05) 111 (46.2) 14.2 (4.06) 0.53 (0.69) 0.89 (4.28) 0.02 (0.20)

(II) N(0,1) 500 1.66 (1.61) 2.22 (5.56) 0.04 (0.22) 2.28 (2.31) 4.45 (8.54) 0.13 (0.37)
1000 1.69 (1.50) 1.71 (1.52) 0.01 (0.11) 2.19 (2.11) 3.93 (10.6) 0.06 (0.27)

t(3) 500 5.77 (6.57) 24.1 (20.0) 1.58 (1.56) 5.18 (6.18) 14.1 (16.5) 0.75 (1.01)
1000 5.59 (6.26) 62.4 (41.3) 2.72 (2.21) 4.50 (4.44) 17.0 (28.4) 0.47 (0.87)

χ2
(1)

500 5.03 (6.19) 43.1 (16.0) 4.71 (2.66) 1.67 (2.39) 7.27 (12.6) 0.43 (0.80)
1000 5.00 (6.29) 91.1 (31.1) 6.22 (3.23) 1.26 (1.50) 9.45 (22.7) 0.28 (0.70)

Next, we consider the Kn unknown case, for which both the NMCD and PL
procedures are implemented by setting 
Kn = 30 and using the BIC to choose
the number of change-points. The average values of the distances ξ(Ĝn‖Ct ) and
ξ(Ct‖Ĝn) are tabulated in Table 2. In addition, we also present the average values
of |K̂n − Kn| with standard deviations in parentheses, which reflect the overall es-
timation accuracy of Kn. Clearly, the two methods have comparable performances
under the normal error, while the proposed NMCD significantly outperforms PL
in terms of ξ(Ct‖Ĝn) and |K̂n −Kn| for the two nonnormal cases, because the effi-
ciency of the BIC used in PL relies heavily on the parametric assumption. When we
compare the results across Tables 1 and 2, the standard deviations for the distance
measures increase from the Kn known to the Kn unknown cases, as estimating Kn

further enlarges the variability.
We turn to the comparison between NMCD and PL under model (II) in which

both location and scale changes are exhibited. In this situation, the standard least-
squares method (2.5) does not work well because it is constructed for location
changes only. To further allow for scale changes under the PL method, we consider

arg min
τ ′

1<···<τK′
n

L∑
k=1

(
τ ′
k+1 − τ ′

k

)
log σ̂ 2

k ,(4.1)

where σ̂ 2
k = (τ ′

k+1 − τ ′
k)

−1 ∑τ ′
k−1

i=τ ′
k−1

{Xi − μ̂(τ ′
k−1, τ

′
k)}2, and the BIC is modified

accordingly. The bottom panels of Tables 1 and 2 tabulate the values of ξ(Ĝn‖Ct )
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and ξ(Ct‖Ĝn) when Kn is specified in advance and estimated by using the BIC,
respectively. Clearly, the NMCD method delivers a satisfactory detection perfor-
mance for the normal case and performs much better than the PL method for the
two nonnormal cases. Therefore, the conclusion remains that the PL method is
generally sensitive to model specification, while the NMCD does not depend on
any parametric modeling assumption and thus is much more robust.

4.4. Comparisons of NMCD with other nonparametric methods. We consider
the methods of Lee (1996) and Matteson and James (2014), as they also do not
make any assumptions regarding the nature of the changes. The NMCD is imple-
mented with the initial nonparametric screening procedure, and Kn is selected by
the BIC. In both our screening procedure and Lee’s (1996) method, the window
is set as nI = �(logn)3/2/2�, and the threshold value of the latter is chosen as
(logn)3/4. The ECP method of Matteson and James (2014) is implemented using
the “ecp” R package with the false alarm rate 0.05 and α = 1.

Table 3 shows the comparison results based on ξ(Ĝn;Ct ) ≡ ξ(Ĝn‖Ct ) +
ξ(Ct‖Ĝn), |K̂n − Kn|, and the Rand index under models (I)–(III) with σ = 0.5,
respectively. Lee’s (1996) method is unable to produce a reasonable estimate for
Kn and the resulting models are much overfitted in all the cases, which indicates
that its “local” nature incurs substantial loss of the information. Under model (I),
the NMCD performs better than ECP for normal and χ2

(1) errors, while the op-
posite is true for the t error distribution. Under model (II), the ECP also exhibits

TABLE 3
Comparison of NMCD, Lee’s (1996) method and Matteson and James’s (2014) ECP in terms of

ξ(Ĝn;Ct ), Rand and |K̂n − Kn| under models (I)–(III) with σ = 0.5

ξ( ̂Gn;Ct ) Rand | ̂Kn − Kn|
Model Error n Lee ECP NMCD Lee ECP NMCD Lee ECP NMCD

(I) N(0,1) 500 84.9 6.03 2.62 0.920 0.994 0.992 28.5 0.07 0.01
1000 176 7.42 2.23 0.915 0.997 0.994 43.2 0.07 0.00

t(3) 500 86.7 4.95 8.94 0.920 0.995 0.988 27.5 0.06 0.22
1000 177 7.29 7.63 0.914 0.997 0.993 42.9 0.08 0.02

χ2
(1)

500 85.0 4.67 3.00 0.921 0.995 0.992 28.3 0.06 0.02
1000 176 5.67 2.80 0.915 0.997 0.994 43.1 0.05 0.01

(II) N(0,1) 500 69.0 17.6 14.4 0.832 0.980 0.980 33.8 0.06 0.11
1000 140 17.5 14.4 0.830 0.990 0.987 51.3 0.07 0.03

t(3) 500 69.3 16.8 20.4 0.833 0.982 0.974 33.7 0.10 0.25
1000 141 12.5 21.4 0.830 0.992 0.983 51.6 0.06 0.13

χ2
(1)

500 67.9 8.25 10.5 0.833 0.989 0.983 34.0 0.05 0.12
1000 139 10.2 12.6 0.830 0.994 0.987 51.2 0.07 0.09

(III) 500 120 394 78.2 0.822 0.446 0.894 35.4 1.73 0.53
1000 243 452 43.9 0.818 0.714 0.965 52.8 1.22 0.19
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certain advantage, especially for Student’s t and χ2
(1) error distributions. Both the

NMCD and ECP methods significantly outperform that of Lee (1996) in models
(I) and (II). Under model (III), both the methods of ECP and Lee (1996) appear
not working well, while the NMCD still produces reasonable detection results. As
the divergence measure used in the ECP is essentially similar to Euclidean dis-
tances, the ECP is expected to perform well when the distributions differ in the
first two moments, which however is not the case for model (III). The advantages
of NMCD are mainly due to the joint use of the nonparametric likelihood and
the weight function w(u) = {F̂n(u)(1 − F̂n(u))}−1 dF̂n(u). Based on the empir-
ical distribution functions, the nonparametric likelihood approach is capable of
detecting various types of changes. In addition, the difference between two adja-
cent distributions under model (III) does not lie in their centers, and thus using our
proposed w(u) would provide certain improvement as discussed in Section 3.2.
Due to the use of DP, our procedure is much faster than the ECP.

4.5. Comparison of NMCD and LSTV. Harchaoui and Lévy-Leduc (2010)
proposed the least-squares total variation method (LSTV) to estimate the loca-
tions of multiple change-points. By reframing the MCP in a variable selection con-
text, they use a penalized least-squares criterion with a LASSO-type penalty. The
LSTV enjoys efficient computation using the least angle regression [Efron et al.
(2004)], while it does not provide competitive performance relative to the classical
least-squares method with the DP, even when the true number of change-points is
known. To improve the performance, the so-called LSTV* was further developed
by incorporating a reduced version of the DP. Roughly speaking, the LSTV plays
essentially a similar role in the LSTV* as our screening procedure in the NMCD.
We conduct comparisons between LSTV, LSTV* and NMCD under model (I) only
as the former two methods are not effective for scale changes in model (II). The
LSTV procedure is implemented until the cardinality of the active set is exactly
Kn = 11, and both the NMCD and LSTV* procedures are implemented by setting

Kn = 30 and using the BIC to estimate the number of change-points.

The results in Table 4 show that the proposed NMCD and LSTV* substantially
outperform LSTV in terms of both ξ(Ĝn‖Ct ) and ξ(Ct‖Ĝn). Moreover, the NMCD
performs uniformly better than LSTV*, which may be partly explained by the
fact that the induced shrinkage of LASSO often results in significant bias toward
zero for large regression coefficients [Fan and Li (2001)]. Consequently, the LSTV
also suffers from such bias, which in turn may lead to unsatisfactory estimation of
the locations τk’s. In Table 4, we also report the average computation time of the
NMCD and LSTV* methods using an Intel Core 2.2 MHz CPU. For a large sample
size, NMCD is much faster.

4.6. Performance of NMCD with a diverging number of change-points. To ex-
amine the setting that the number of change-points increases with the sample size,
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TABLE 4
Comparison of NMCD, LSTV and LSTV* under model (I)

LSTV LSTV* NMCD

n σ ξ( ̂Gn‖Ct ) ξ(Ct‖ ̂Gn) ξ( ̂Gn‖Ct ) ξ(Ct‖ ̂Gn) | ̂Kn − Kn| ξ( ̂Gn‖Ct ) ξ(Ct‖ ̂Gn) | ̂Kn − Kn|
500 0.1 20.2 31.2 1.14 1.88 0.18 0.00 0.00 0.00

0.25 23.4 29.4 1.08 2.05 0.18 0.07 0.07 0.00
0.5 26.1 27.0 2.10 3.14 0.17 1.39 1.30 0.03

1000 0.1 43.1 60.2 2.82 2.21 0.15 0.00 0.00 0.00
0.25 46.2 59.4 3.23 2.24 0.16 0.04 0.04 0.00
0.5 48.4 51.0 4.45 2.49 0.17 1.20 1.20 0.01

Computation time per run n = 500 : 0.102 n = 500 : 0.054
(in seconds) n = 1000 : 0.776 n = 1000 : 0.24

we choose seven increasing sample sizes, n = 1000, 1500, 2000, 3000, 5000, 7500
and 10,000, under models (I) and (II), respectively. The number of change-points
in model (I) is chosen as Kn = �0.4n1/2�, corresponding to the values of 13, 16,
18, 22, 29, 35 and 40. In each replication, we randomly generate the jump sizes
hj as follows: h2k−1 = −1.5 + ν2k−1 and h2k = 1.5 + ν2k , k = 1, . . . , �Kn/2�,
where νj ∼ N(0,0.22). In model (II), we take Kn = �0.2n1/2�, and we only con-
sider the scale changes (i.e., hj = 0 for all j ) and the inflation (deflation) sizes
vj are chosen as: v2k−1 = 1/(5 + ν2k−1) and v2k = 5 + ν2k , k = 1, . . . , �Kn/2�,
where νj ∼ N(0,0.22). We take the error distributions to be t(3) and χ2

(1) in mod-

els (I) and (II), respectively. We fix σ = 0.5, and generate {τj /n}Kn

j=1 from U(0,1).
All the tuning parameters are the same as those in Section 4.3.

Figure 2 depicts the curves of ξ(Ĝn‖Ct ), ξ(Ct‖Ĝn), and 100|K̂n −Kn| versus the
sample size, respectively. For both models, all the distance values are reasonably
small and the three curves are generally stable. This demonstrates that the NMCD
is able to deliver satisfactory detection performance with a diverging number of
change-points. From all these numerical studies, we conclude that the proposed
NMCD is a viable alternative approach to the MCP if we take into account its
efficiency, computational speed, and robustness to error distributions and change
patterns.

5. Example. For illustration, we apply the proposed NMCD procedure to
identify changes in the isochore structure, which refers to the proportion of the
G + C composition in the large-scale DNA bases rather than A or T [Oliver et al.
(2004); Fearnhead and Vasileiou (2009)]. Such genetic information is important to
understand the evolution of base composition, mutation and recombination rates.
Figure 3 shows the G + C content in percentage of a chromosome sequence with
long homogeneous genome regions characterized by well-defined mean G + C
contents.
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FIG. 2. The performance of NMCD under models (I) and (II) when the number of change-points
increases with the sample size: the solid, dashed and dotted lines represent ξ(Ĝn‖Ct ), ξ(Ct‖Ĝn), and
100|K̂n − Kn| versus the sample size, respectively.

As the data sequence appears to be complicated without any obvious pattern and
the sample size is large with n = 8811, identification of multiple change-points is
very challenging. The data appear to contain quite a few outlying observations,
and thus we expect that our nonparametric scheme would produce more robust
detection results.

We take the upper bound for the number of change-points as 
Kn = 100, and
set nI = �(logn)3/2/2� = 14 and ζn = (logn)2/2 ≈ 41. After the initial screening
procedure, 305 candidate points remain, which dramatically reduces the dimen-
sionality of change-point detection. The BIC selection criterion further leads to the
estimated number of change-points K̂n = 43. The entire procedure is completed
in 54 seconds using an Intel Core 2.2 MHz CPU. It can be seen from Figure 3 that
the change-point estimates are generally reasonable based on the proposed NMCD
procedure. It can detect some local and sharp features as well as those long un-
changed data segments. For comparison, we also apply the LSTV* to the same
dataset, and exhibit the result in Figure 3. The estimated number of change-points
using LSTV* is K̂n = 26. We can see that both methods perform well, and the
line segments of the two methods are largely overlapping, except that the NMCD
tends to detect relatively more picks or sharp changes. Some large changes could
be overlooked by LSTV* due to the LASSO-type bias for large coefficients. This
also explains that the number of change-points identified by the LSTV* is smaller
than that of the proposed NMCD.

We performed the Shapiro–Wilk goodness-of-fit tests for normality on the 44
segments identified by NMCD and found that 34 tests are significant under the
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FIG. 3. Illustration of a chromosome sequence with long homogeneous genome regions charac-
terized by the mean G + C contents, together with the estimated changepoints using the proposed
NMCD and LSTV*, respectively. The red and blue solid lines represent the sample means in each
segmentation estimated by NMCD and LSTV*, respectively.

0.01 nominal level. As an example, Figure 4 shows the normal QQ-plot of the
fifth segment, from which we can conclude that its distribution is far from normal.
Furthermore, the density estimation of two consecutive segments (the 5th and 6th)
shown in Figure 4 indicates that the two distributions differ not only in the loca-
tion but also in the scale and shape. In light of these characteristics, our NMCD
procedure is more desirable than those parametric methods which need to specify
the mean or scale changes in advance.

6. Concluding remarks. In the MCP, we have proposed a nonparametric
likelihood-based method for detection of multiple change-points. The consistency
of the proposed NMCD procedure is established under mild conditions. The true
number of change-points is assumed to be unknown, and the BIC is used to choose
the number of change-points. To facilitate the implementation of NMCD, we sug-
gest a DP algorithm in conjunction with a screening procedure, which has been
shown to work well, particularly in large datasets. The computational scheme is
fast and competitive with existing methods and, furthermore, numerical compar-
isons show that NMCD is able to strike a better balance for over- and under-
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FIG. 4. The first plot: normal QQ-plot of the 5th segment by using the NMCD; the second plot:
density estimation of the 5th segment; the third plot: density estimation of the 6th segment.

segmentation errors with nonnormal data and even has comparable performance
with the parametric model under the correctly specified distributional assump-
tion.

The proposed method is based on the assumption that there exists at least one
change point. In practical applications, we need to use some tests within the non-
parametric context to verify this assumption. The tests proposed by Einmahl and
McKeague (2003) and Zou et al. (2007) are suited for this purpose. Our proposed
NMCD is an omnibus method, and thus cannot diagnose whether a change occurs
in the location, scale, or shape. To further determine which parameter changes,
additional nonparametric tests need to be used as an auxiliary tool. Moreover, re-
search is warranted to extend our method to other settings, such as the autocorre-
lated observations, multivariate cases [Matteson and James (2014)], and multiple
structural changes in linear models [Bai and Perron (1998)].

APPENDIX

First of all, we present a lemma in Wellner (1978). Let Gn(u) denote the em-
pirical C.D.F. of a random sample of n uniform random variables on (0,1), and
define ‖Gn(u)/u‖t

s ≡ sups≤u≤t (Gn(u)/u) and G−1
n (u) = inf{s :Gn(s) ≥ u}.

LEMMA 1. For all λ ≥ 0 and 0 ≤ a ≤ 1,

(i) Pr(‖Gn(u)/u‖1
a ≥ λ) ≤ exp{−nah(λ)},
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(ii) Pr(‖u/Gn(u)‖1
a ≥ λ) ≤ exp{−nah(1/λ)},

(iii) Pr(‖u/G−1
n (u)‖1

a ≥ λ) ≤ exp{−naf (1/λ)},
(iv) Pr(‖G−1

n (u)/u‖1
a ≥ λ) ≤ exp{−naf (λ)},

(v) Pr(|‖Gn(u)/u − 1‖1
a| ≥ λ) ≤ 2 exp(−nah(1 + λ)),

where h(x) = x(logx − 1) + 1 and f (x) = x + log(1/x) − 1.

Before proceeding further, we state a key lemma, which allows us to control the
supremum of the likelihood function.

LEMMA 2. Suppose that assumptions (A1)–(A2) hold and Kn(log δn)/δn →
0. Let wn ≡ CεKn(logKn)

2(log(δnKn))
2, then

lim
n→∞Kn Pr

{
sup

τm−1≤k<l<τm−1+δn

ξm(k, l) ≥ wn

}
< ε,

where

ξm(k, l) = nkl

∫ X(n)

X(1)

{
F̂ l

k(u) log
(

F̂ l
k(u)

Fm(u)

)

+ (
1 − F̂ l

k(u)
)

log
(

1 − F̂ l
k(u)

1 − Fm(u)

)}
dF̂n(u)

F̂n(u)(1 − F̂n(u))
,

nkl = l − k and Cε is given in the proof.

PROOF. Without loss of generality, suppose that Fm is uniform on [0,1] and
0 < X1 < · · · < Xn < 1. Then we have

ξm(k, l) = nkl

∫ X(n)

X(1)

H
(
F̂ l

k(u), u
){

F̂n(u)
(
1 − F̂n(u)

)}−1
dF̂n(u),(A.1)

where

H(x, y) = x log
(

x

y

)
+ (1 − x) log

(
1 − x

1 − y

)
.

By setting an = 3h−1(1+α)δ−1
n log(δnKn) ≡ Dαδ−1

n log(δnKn), 0 < α < 1/2, and
noting that h(1 + α) > 0, we write

ξm(k, l)

= nkl

(∫ an

X(1)

+
∫ 1−an

an

+
∫ X(n)

1−an

)
H

(
F̂ l

k(u), u
){

F̂n(u)
(
1 − F̂n(u)

)}−1
dF̂n(u)

≡ �1 + �2 + �3.
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First, we provide an upper bound for Kn Pr(supk,l �1 ≥ wn/3), where �1 ≡
�11 + �12 with

�11 = nkl

∫ an

X(1)

F̂ l
k(u)

u
log

(
F̂ l

k(u)

u

)
u

F̂n(u)(1 − F̂n(u))
dF̂n(u),

�12 = nkl

∫ an

X(1)

1 − F̂ l
k(u)

1 − u
log

(
1 − F̂ l

k(u)

1 − u

)
1 − u

F̂n(u)(1 − F̂n(u))
dF̂n(u).

To show this, we choose λε1 such that as n → ∞,

Kn Pr
(∥∥u/F̂n(u)

∥∥1
X(1)

> logKnλε1
)

≤ Kn Pr
(∥∥∥∥ nu

(τm − τm−1)F̂
τm
τm−1(u)

∥∥∥∥1

X(1)

> λε1 logKn

)
≤ n−1(τm − τm−1)K

2
neλε1 exp

{−n−1(τm − τm−1)λε1 logKn

}
< ε/12,

based on assumption (A2) and the fact that

Pr
(∥∥u/Gn(u)

∥∥1
X(1)

> λ
) ≤ Pr

(∥∥G−1
n (u)/u

∥∥1
1/n ≥ λ

) ≤ eλ exp{−λ}
by using Lemma 1(iv). Similarly,

Kn Pr
{∥∥F̂−1

n (u)/u
∥∥1

1/n > λε1 logKn

}
< ε/12.

Also, we consider the event Am ≡ ⋃
k,l{‖F̂ l

k(u)/u‖1
0 > λε2Knδn/nkl}, and thus

Kn Pr(Am) = Kn Pr
(⋃

k,l

nkl

δn

∥∥F̂ l
k(u)/u

∥∥1
0 > λε2Kn

)

≤ Kn Pr
(⋃

k,l

∥∥F̂ τm−1+δn
τm−1

(u)/u
∥∥1

0 > λε2Kn

)

= Kn Pr
(∥∥F̂ τm−1+δn

τm−1
(u)/u

∥∥1
0 > λε2Kn

) ≤ eλ−1
ε2 < ε/12

by choosing a proper λε2. In parallel, let Bm ≡ ⋃
k,l{‖(1 − F̂ l

k(u))/(1 − u)‖1
0 >

λε2Knδn/nkl}, and we have

Kn Pr
(∥∥(1 − u)/

(
1 − F̂n(u)

)∥∥1
0 > λε1 logKn

)
< ε/12

and Kn Pr(Bm) < eλ−1
ε2 < ε/12.

For the interaction of the events 
Am, ‖u/F̂n(u)‖1
0 ≤ λε1 logKn, and∥∥F̂−1

n (u)/u
∥∥1

1/n ≤ λε1 logKn,



992 ZOU, YIN, FENG AND WANG

we have

�11 = nkl

∫ an

X(1)

F̂ l
k(u)

u
log

(
F̂ l

k(u)

u

)
u

F̂n(u)

1

(1 − F̂n(u))
dF̂n(u)

≤ −nkl

Knδn

nkl

λε2 log
(

Knδn

nkl

λε2

)
λε1 logKn log

(
1 − F̂−1

n (an)
)

≤ −Knδnλε2 log(Knδnλε2)λε1 logKn log(1 − λε1an logKn)

≤ Kn(logKn)
2δnanλε2λ

2
ε1

log(δnKn)
(
1 + o(1)

)
as n → ∞. Consequently, as n → ∞,

Kn Pr
(
sup
k,l

�11 ≥ wn/6
)

≤ Kn Pr(Am) + Kn Pr
(∥∥F̂−1

n (u)/u
∥∥1

1/n > λε1 logKn

)
+ Kn Pr

(∥∥u/F̂n(u)
∥∥1
X(1)

> λε1 logKn

) + δ2
nKn Pr(�11 ≥ wn/6)

≤ 1

4
ε + δ2

nKn Pr
{
λε2λ

2
ε1

(log δnKn)
2Kn(logKn)

2(
1 + o(1)

) ≥ wn/6
} = 1

4
ε,

where the probability Pr{(log δnKn)
2Kn(logKn)

2λε2λ
2
ε1(1 + o(1)) ≥ wn} would

be zero when n is sufficiently large, as long as Cε > 6Dαλε2λ
2
ε1

.
Similarly, we can show that Kn Pr(supk,l �12 ≥ wn/6) ≤ ε/4 as n → ∞. Thus,

Pr
(
sup
k,l

�1 ≥ wn/3
)

≤ Pr
(
sup
k,l

�11 ≥ wn/6
)

+ Pr
(
sup
k,l

�12 ≥ wn/6
)

< ε/2.

By symmetry, we immediately have

Kn Pr
(
sup
k,l

�3 ≥ wn/3
)

≤ 1

2
ε as n → ∞.

Thus, it remains to give a bound of Kn Pr(supk,l �2 ≥ wn/3). Following similar
argument in the proof of Theorem 3.1 of Jager and Wellner (2007), we can express
H(F̂kl(u), u) as

H
(
F̂n(u), u

) = 1

2

(F̂ l
k(u) − u)2

F̂ ∗
kl(u)(1 − F̂ ∗

kl(u))

for 0 < u < 1 where |F̂ ∗
kl(u) − u| ≤ |F̂ l

k(u) − u|. Then we rewrite �2 as

�2 = 1

2

∫ 1−an

an

nkl(F̂
l
k(u) − u)2

u(1 − u)

u(1 − u)

F̂ ∗
kl(u)(1 − F̂ ∗

kl(u))

dF̂n(u)

F̂n(u)(1 − F̂n(u))

≤ 1

2

∥∥∥∥nkl(F̂
l
k(u) − u)2

u(1 − u)

∥∥∥∥1−an

an

∥∥∥∥ u

F̂ ∗
kl(u)

∥∥∥∥1−an

an

∥∥∥∥ 1 − u

1 − F̂ ∗
kl(u)

∥∥∥∥1−an

an

×
∫ 1−an

an

dF̂n(u)

F̂n(u)(1 − F̂n(u))
.
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Consider the event Cm ≡ ⋃
k,l{|‖F̂ l

k(u)/u− 1‖1−an
an | > α} for some 0 < α < 1 and,

by applying Lemma 1(v), we have

Kn Pr(Cm) ≤ δ2
nKn Pr

(∣∣∥∥F̂ l
k(u)/u − 1

∥∥1−an

an

∣∣ > α
)

≤ 2 exp
{
2 log(δnKn) − δnanh(1 + α)

} → 0.

On the event 
Cm and |F̂ ∗
kl(u)/u − 1| < |F̂kl(u)/u − 1| < α, we have∥∥∥∥ u

F̂ ∗
kl(u)

∥∥∥∥1−an

an

<
1

1 − α
.

Symmetrically, we also have∥∥∥∥ 1 − u

1 − F̂ ∗
kl(u)

∥∥∥∥1−an

an

<
1

1 − α

on the event 
Dm, where Dm ≡ ⋃
k,l{|‖(1 − F̂ l

k(u))/(1 − u) − 1‖1−an
an | > α} occurs

with the probability tending to zero. On the other hand, by using Lemma 1(v)
again, it is easy to see that, for sufficiently large n,∫ 1−an

an

{
F̂n(u)

(
1− F̂n(u)

)}−1
dF̂n(u) ≤ −2 logan +Cα ≤ 2 log(δnKn)

(
1+op(1)

)
,

where the constant Cα depends on α.
Now, we consider the term ‖nkl(F̂

l
k(u) − u)2/{u(1 − u)}‖1−an

an , and let �n =
(wn/ log(δnKn))

1/2. By taking q(t) = √
t (1 − t) in Inequality 11.2.1 of Shorack

and Wellner [(1986), page 446],

Pr
(∥∥∥∥nkl(F̂

l
k(u) − u)±√
u(1 − u)

∥∥∥∥1/2

an

≥ �n

)
≤ 6

∫ 1/2

an

1

t
exp

{
−1

8
γ ±�2

n(1 − t)

}
dt

≤ 6 exp
{
− 1

16
γ ±�2

n

}
log δn

(
1 + o(1)

)
,

where γ − = 1, γ + = ψ(�n/
√

δnan), and ψ(x) = 2h(1 + x)/x2. By using the fact
that ψ(x) ∼ 2(logx)/x as x → ∞ [Proposition 11.1.1 in Shorack and Wellner
(1986)], γ + ∼ log(CεKn(logKn)

2)/(C
1/2
ε K

1/2
n logKn) for sufficiently large Cε .

Consequently, we have

Kn Pr
(

sup
k,l

∥∥∥∥nkl(F̂
l
k(u) − u)2

u(1 − u)

∥∥∥∥1/2

an

≥ (1 − α)2wn

3 log(δnKn)

)

≤ Knδ
2
n Pr

(∥∥∥∥nkl(F̂
l
k(u) − u)±√
u(1 − u)

∥∥∥∥1/2

an

≥ �n

)

≤ 12 exp
(

2 log(δnKn) − 1

16
γ +�2

n

)
log δn

(
1 + o(1)

)
→ 0 as δn → ∞
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as long as Cε is sufficiently large. By symmetry, we can also show that

Kn Pr
(

sup
k,l

∥∥∥∥nkl(F̂
l
k(u) − u)2

u(1 − u)

∥∥∥∥1−an

1/2
≥ (1 − α)2wn

3 log(δnKn)

)
→ 0.

Finally, we obtain as n → ∞,

Kn Pr
(
sup
k,l

�2 ≥ wn/3
)

≤ Kn Pr(Cm) + Kn Pr(Dm)

+ Kn Pr
(

sup
k,l

∥∥∥∥nkl(F̂
l
k(u) − u)2

u(1 − u)

∥∥∥∥1−an

an

1

(1 − α)2 log(δnKn) ≥ wn/3
)

→ 0,

which completes the proof of this lemma. �

By Lemma 2, the next lemma follows immediately.

LEMMA 3. Suppose that assumptions (A1)–(A2) hold and Kn(logn)/n → 0.
Then

lim
n→∞Kn Pr

{
sup

τm−1≤k<l<τm

ξm(k, l) ≥ un

}
< ε,

where un ≡ CεKn(logKn)
2(log(nKn))

2 with a sufficiently large Cε .

Let Õp(qn;Kn) be a sequence of positive random variables Zn if for any ε > 0,

lim
n→∞Kn Pr(Zn > Cεqn) < ε,

where Cε is a constant depending only on ε.

LEMMA 4. Suppose that assumptions (A1)–(A2) hold. For any L ≥ 1 and
τs < τ ′

1 < · · · < τ ′
L < τs+1, as n → ∞,

0 ≤ Rn

(
τs, τ

′
1, . . . , τ

′
L, τs+1

) − Rn(τs, τs+1)

= Õp

(
L2Kn

(
log(KnL)

)2(
log(nKnL)

)2;Kn

)
.

PROOF. By noting that H(x,y) is a convex function, the left inequality is
obvious. Without loss of generality, we assume L = 1, and for L > 1 the result

follows by induction. By the fact that (τ ′
1 − τs)F̂

τ ′
1

τs (u) + (τs+1 − τ ′
1)F̂

τs+1
τ ′

1
(u) =

(τs+1 − τs)F̂
τs+1
τs (u),

Rn

(
τs, τ

′
1, τs+1

) − Rn(τs, τs+1) = ξs

(
τs, τ

′
1
) + ξs

(
τ ′

1, τs+1
) − ξs(τs, τs+1)

≤ ξs

(
τs, τ

′
1
) + ξs

(
τ ′

1, τs+1
)
.
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Similarly, for any L, we have

Rn

(
τs, τ

′
1, . . . , τ

′
L, τs+1

) − Rn(τs, τs+1)

≤ ξs

(
τs, τ

′
1
) + ξs

(
τ ′

1, τ
′
2
) + · · · + ξs

(
τ ′
L, τs+1

)
.

Thus, for any ε > 0,

lim
n→∞Kn Pr

{
Rn

(
τs, τ

′
1, . . . , τ

′
L, τs+1

) − Rn(τs, τs+1)

> CεL
2Kn

(
log(KnL)

)2(
log(nKnL)

)2}
≤ lim

n→∞Kn Pr
{
ξs

(
τs, τ

′
1
) + · · · + ξs

(
τ ′
L, τs+1

)
> CεL

2Kn

(
log(KnL)

)2(
log(nKnL)

)2}
≤ L−1

L∑
k=0

lim
n→∞KnLPr

{
ξs

(
τ ′
k − τ ′

k+1
)

> CεL
2Kn

(
log(KnL)

)2(
log(nKnL)

)2}
< L−1(L + 1)ε,

where the last result follows immediately from Lemma 3. �

Next, we demonstrate that the global minimum of the BIC includes no less than
Kn change-point estimators asymptotically.

PROPOSITION 2. If assumptions (A1)–(A4) hold, Pr{K̂n ≥ Kn} → 1.

PROOF. Define ρn = λn/8, and consider 0 < L < Kn. Let

Br(L,ρn)

= {(
τ ′

1, . . . , τ
′
L

)
: 1 < τ ′

1 < · · · < τ ′
L ≤ n and

∣∣τ ′
s − τr

∣∣ > ρn for 1 ≤ s ≤ L
}
,

r = 1, . . . ,Kn. For L < Kn, (τ̂1, . . . , τ̂L) must belong to one Br(L,ρn). For every
(τ ′

1, . . . , τ
′
L) ∈ Br(L,ρn), we have

Rn

(
τ ′

1, . . . , τ
′
L

)
(A.2)

≤ Rn

(
τ ′

1, . . . , τ
′
L, τ1, . . . , τr−1, τr − ρn, τr + ρn, τr+1, . . . , τKn

)
and the right-hand side of (A.2) can be expressed as T1 + · · · + TKn+2, where Ts

(s = 1, . . . , r − 1, r + 2, . . . ,Kn + 1) is the sum of integrals involving the Xi’s
(τs−1 ≤ i < τs); Tr is that involving the Xi’s (τr−1 ≤ i < τr − ρn); Tr+1 is that
involving the Xi’s (τr +ρn ≤ i < τr+1); TKn+2 is that involving the Xi’s (τr −ρn ≤
i < τr + ρn). For s = 1, . . . , r − 1, r + 2, . . . ,Kn + 1, by Lemma 4, we have

Rn(τs−1, τs) ≤ Ts ≤ Rn(τs−1, τs) + Õp

(
L2Kn

(
log(KnL)

)2(
log(nKnL)

)2)
= Rn(τs−1, τs) + Õp(bn;Kn),
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where bn = K3
n(logKn)

2(logn)2. Similarly, we have

Tr = Rn(τr−1, τr − ρn) + Õp(bn;Kn),

Tr+1 = Rn(τr + ρn, τr+1) + Õp(bn;Kn)

and in addition,

TKn+2 = Rn(τr − ρn, τr + ρn) + Rn(τr + ρn, τr+1)

= Rn(τr − ρn, τr) + Rn(τr, τr + ρn) + �,

where � ≡ Rn(τr − ρn, τr + ρn) − Rn(τr − ρn, τr) − Rn(τr, τr + ρn). Note that

� = 2ρn

∫ X(n)

X(1)

[
F̂

τr+ρn
τr−ρn

(u) log
(
Fr,1/2(u)

)
+ {

1 − F̂
τr+ρn
τr−ρn

(u)
}

log
(
1 − Fr,1/2(u)

)]
dw(u)

− ρn

∫ X(n)

X(1)

[
F̂

τr
τr−ρn

(u) log
(
Fr(u)

)
+ {

1 − F̂
τr
τr−ρn

(u)
}

log
(
1 − Fr(u)

)]
dw(u)

− ρn

∫ X(n)

X(1)

[
F̂ τr+ρn

τr
(u) log

(
Fr+1(u)

)
+ {

1 − F̂ τr+ρn
τr

(u)
}

log
(
1 − Fr+1(u)

)]
dw(u) + Õp(bn;Kn)

= −ρn

∫ X(n)

X(1)

[
F̂

τr
τr−ρn

(u) log
(

Fr(u)

Fr,1/2(u)

)

+ {
1 − F̂

τr
τr−ρn

(u)
}

log
(

1 − Fr(u)

1 − Fr,1/2(u)

)]
dw(u)

− ρn

∫ X(n)

X(1)

[
F̂ τr+ρn

τr
(u) log

(
Fτr+1(u)

Fr,1/2(u)

)

+ {
1 − F̂ τr+ρn

τr
(u)

}
log

(
1 − Fr+1(u)

1 − Fr,1/2(u)

)]
dw(u)

+ Õp(bn;Kn)

≡ −�̃ + Õp(bn;Kn).

Let �̃ = �̃1 + �̃2, and then

�̃1 ≥ ρn

∫ X(n)

X(1)

[
F̂

τr
τr−ρn

(u) log
(

Fr(u)

Fr,1/2(u)

)

+ {
1 − F̂

τr
τr−ρn

(u)
}

log
(

1 − Fr(u)

1 − Fr,1/2(u)

)]
dw(u)
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= ρn

∫ 1

0

[
F̂

τr
τr−ρn

(u) log
(

Fr(u)

Fr,1/2(u)

)

+ {
1 − F̂

τr
τr−ρn

(u)
}

log
(

1 − Fr(u)

1 − Fr,1/2(u)

)]
dw(u)

≡ �̃′
1.

By assumption (A3), we have

�̃′
1 = ρn

∫ 1

0

[
Fr(u) log

(
Fr(u)

Fr,1/2(u)

)
+ {

1 − Fr(u)
}

log
(

1 − Fr(u)

1 − Fr,1/2(u)

)]

× 1

F(u)(1 − F(u))
dF (u)

(
1 + o(1)

)
, a.s.

Using the similar procedure, we can obtain the corresponding bound for �̃2. As a
result, as n → ∞,

�̃ ≥ ρn

{∫ 1

0

[
Fr(u) log

(
Fr(u)

Fr,1/2(u)

)
+ {

1 − Fr(u)
}

log
(

1 − Fr(u)

1 − Fr,1/2(u)

)]

× 1

F(u)(1 − F(u))
dF (u)

+
∫ 1

0

[
Fr+1(u) log

(
Fr+1(u)

Fr,1/2(u)

)
+ {

1 − Fr+1(u)
}

log
(

1 − Fr+1(u)

1 − Fr,1/2(u)

)]

× 1

F(u)(1 − F(u))
dF (u)

}
≡ ρnS(Fr,Fr+1),

in which the distance S(Fr,Fr+1) is strictly larger than zero.
Therefore,

max
(τ ′

1,...,τ
′
L)∈Br(L,ρn)

Rn

(
τ ′

1, . . . , τ
′
L

)
≤ max

(τ ′
1,...,τ

′
L)∈Br(L,ρn)

Rn

(
τ ′

1, . . . , τ
′
L, τ1, . . . , τr−1, τr − ρn, τr + ρn,

τr+1, . . . , τKn

)
=

Kn+1∑
s �=r,r+1

Rn(τs−1, τs) + Rn(τr−1, τr − ρn) + Rn(τr − ρn, τr)

+ Rn(τr, τr + ρn) + Rn(τr + ρn, τr+1) + � + Õp(bn;Kn)

≤ Rn(τ1, . . . , τKn) − ρnS(Fr,Fr+1) + Õp(bn;Kn).
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Let BIC∗ = −Rn(τ1, . . . , τKn) + Knζn, and for L < Kn, with probability tending
to 1, we have

BICL − BIC∗ ≥ ρnS(Fr,Fr+1) − Õp(bn;Kn) − (Kn − L)ζn

as n → ∞. For any ε > 0, we have, as n → ∞,

Pr(K̂n < Kn) = Pr

(
Kn−1⋃
L=1

(BICL < BIC∗)
)

≤
Kn−1∑
L=1

Pr(BICL < BIC∗)

≤
Kn−1∑
L=1

Pr
(
Õp(bn;Kn) > ρnS(Fr,Fr+1) − (Kn − L)ζn

)
≤ Kn Pr

(
Õp(bn;Kn) > bn

)
< ε.

This completes the proof of this proposition. �

Let QL(ζn) denote the set of global minimum of BIC with ζn and its cardinality
is L.

PROPOSITION 3. Suppose that assumptions (A1)–(A4) hold. For Kn ≤ L ≤

Kn and

Pr

(
Kn⋃
r=1

{
QL(ζn) ∈ Dr(L,ρn)

}) → 0

as n → ∞, where

Dr(L,ρn)

= {(
τ ′

1, . . . , τ
′
L

)
: 1 < τ ′

1 < · · · < τ ′
L ≤ n and

∣∣τ ′
s − τr

∣∣ > ρn for 1 ≤ s ≤ L
}
.

PROOF. For every (τ ′
1, . . . , τ

′
L) ∈ Dr(L,ρn),

Rn

(
τ ′

1, . . . , τ
′
L

)
(A.3)

≤ Rn

(
τ ′

1, . . . , τ
′
L, τ1, . . . , τr−1, τr − δn, τr + δn, τr+1, . . . , τKn

)
and the right-hand side of (A.3) can be expressed as T1 + · · · + TKn+2, where
Ts (s = 1, . . . , r − 1, r + 2, . . . ,Kn + 1) is the sum of squares involving the Xi’s
(τs−1 ≤ i < τs ); Tr is that involving the Xi’s (τr−1 ≤ i < τr − ρn); Tr+1 is that
involving the Xi ’s (τr +ρn ≤ i < τr+1); TKn+2 is that involving the Xi’s (τr −ρn ≤
i < τr + ρn). Define cn = 
K3

n(log 
Kn)
2(log(n
Kn))

2. It can be further seen that
uniformly in (τ ′

1, . . . , τ
′
L) ∈ Dr(L,ρn),

Ts = Rn(τs−1, τs) + Õp(cn; 
Kn), s = 1, . . . , r − 1, r + 2, . . . ,Kn + 1,

Tr = Rn(τr−1, τr − ρn) + Õp(cn; 
Kn),

Tr+1 = Rn(τr + ρn, τr+1) + Õp(cn; 
Kn) and

TKn+2 ≤ Rn(τr − ρn, τr) + Rn(τr , τr + ρn) − ρnS(Fr,Fr+1) + Õp(cn; 
Kn).
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These results imply that

BICL − BIC∗ ≥ ρnS(Fr,Fr+1) − Õp(cn; 
Kn).

Thus, as n → ∞,

Pr

(
Kn⋃
r=1

{
QL(ζn) ∈ Dr(L,ρn)

}) ≤ Pr

(
Kn⋃
r=1

(BICL < BIC∗)
)

≤ Pr

(
Kn⋃
r=1

{
ρnS(Fr,Fr+1) < Õp(cn; 
Kn)

})

≤ 
Kn Pr
(
Õp(cn; 
Kn) > cn

)
< ε

for any ε > 0. Thus, the result follows. �

PROOF OF THEOREM 1. Define dn = K3
n(logKn)

2(log(δnKn))
2. For every

(τ ′
1, . . . , τ

′
Kn

) ∈ Dr(Kn, δn),

max
(τ ′

1,...,τ
′
Kn

)∈Dr(Kn,δn)
Rn

(
τ ′

1, . . . , τ
′
Kn

)
≤ Rn

(
τ ′

1, . . . , τ
′
Kn

, τ1, . . . , τr−1, τr − δn, τr + δn, τr+1, . . . , τKn

)
≤ Rn(τ1, . . . , τKn) − δnS(Fr,Fr+1) + Õp(dn;Kn)

by Lemma 2. Thus, we know that

max
(τ ′

1,...,τ
′
Kn

)∈Dr(Kn,δn)
Rn

(
τ ′

1, . . . , τ
′
Kn

)
< Rn(τ1, . . . , τKn)

with probability tending to one for each r . Consequently,

Pr
{
Gn(Kn) ∈ CKn(δn)

} = 1 − Pr
{⋃

r

{
Gn(Kn) ∈ Dr(Kn, δn)

}}

≥ 1 −
Kn∑
r=1

Pr
{
Gn(Kn) ∈ Dr(Kn, δn)

} → 1

by the similar argument as that in Proposition 3. �

PROOF OF THEOREM 2. By Proposition 2, it suffices to show that Pr(K̂n >

Kn) → 0. This can be proved by contradiction. Let E(L,ρn) be the complement
of the union of D1(L,ρn), . . . ,DKn(L,ρn). As shown in Proposition 3, for Kn <

L < 
Kn and every (τ ′
1, . . . , τ

′
L) ∈ E(L,ρn),

Rn

(
τ ′

1, . . . , τ
′
L

) ≤ Rn

(
τ ′

1, . . . , τ
′
L, τ1, . . . , τr , τ1 − ρn, τKn − ρn, τ1 + ρn, τKn + ρn

)
= Rn(τ1, . . . , τKn) + Õp(cn; 
Kn).
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Consequently, as n → ∞,

BICL − BIC∗ ≥ (L − Kn)ζn − Õp(cn; 
Kn),

we obtain the result by the same argument as that in Proposition 2. �
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric maximum likelihood approach to multi-
ple change-point problems” (DOI: 10.1214/14-AOS1210SUPP; pdf). We pro-
vide technical details for the proof of Corollary 1, and additional simulation re-
sults.
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