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Abstract

Familial spastic paraplegia (FSP) is a heterogeneous group of disorders characterized primarily by progressive lower limb
spasticity and weakness. More than 50 disease loci have been described with different modes of inheritance. In this study,
we identified a novel missense mutation (c.803G>A, p.R268Q) in the plasma membrane calcium ATPase (PMCA4, or ATP2B4)
gene in a Chinese family with autosomal dominant FSP using whole-exome sequencing and confirmed with Sanger
sequencing. This mutation co-segregated with the phenotype in the six family members studied and is predicted to be
pathogenic when multiple deleteriousness predictions were combined. This novel R268Q mutation was not present in over
7,000 subjects in public databases, and over 1,000 Han Chinese in our database. Prediction of potential functional
consequence of R268Q mutation on PMCA4 by computational modeling revealed that this mutation is located in protein
aggregation-prone segment susceptible to protein misfolding. Analysis for thermodynamic protein stability indicated that
this mutation destabilizes the PMCA4 protein structure with higher folding free energy. As PMCA4 functions to maintain
neuronal calcium homeostasis, our result showed that calcium dysregulation may be associated with the pathogenesis of
FSP.
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and microtubule dynamics, endoplasmic reticulum homoeostasis,
transport, and signal transduction.

In this study, we describe a Chinese family with autosomal
dominant FSP. Whole exome sequencing was performed on six
family members (4 symptomatic, 2 asymptomatic), and we
identified a novel causative mutation, c.803G>A, p.R268Q) in
the PMCA4 gene.

Introduction

Familial spastic paraplegia (FSP) is a clinically and genetically
heterogeneous group of diseases characterized by progressive
lower limb spasticity and weakness, and is classified according to
phenotype, mode of inheritance and the mutated gene [1]. Pure
FSP is characterized by progressive lower limb weakness and
spasticity and may be associated with urinary urgency, mild

impairment of vibration sense and proprioception. The upper
limbs are spared and there is no bulbar dysfunction. Complex FSP
is characterized by additional manifestations such as cognitive
impairment, epilepsy, cerebellar ataxia, extrapyramidal distur-
bances, optic atrophy and peripheral neuropathy. Neuroimaging
may show white matter lesions, thin corpus callosum, and spinal
cord atrophy. FSP can be inherited in an autosomal dominant,
autosomal recessive or X-linked fashion [2]. Different mutations in
the same gene can cause either pure or complex FSP, and intra-
familial phenotypic variability is high, greatly complicating the
genetic diagnosis of FSP. Seventy-one forms of FSP (SPGI to
SPG48) have been described involving many gene loci [3], with 20
or more loci associated with autosomal dominant FSP [2]. The
associated genes have been reported to be involved in organelle
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Materials and Methods

Subjects

Six members of a two-generation Chinese family with FSP were
examined (I1-2, II-1, III-2, III-3, I1I-4, I1I-5) (Fig. 1a). Four were
symptomatic and two were asymptomatic. Blood was collected
from all six of them and whole exome sequencing was performed.

Human ethics

This study were reviewed and approved by the Hong Kong
Hospital Authority/Hong Kong West Cluster Institutional Review
Board Ethics Committee (UW 06-227 T/1252). All subjects gave
written informed consent to participate in this study.
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Figure 1. Identification of a Chinese family with autosomal dominant spastic paraplegia. (a) Pedigree. Filled and unfilled symbols indicate
affected and unaffected individuals, respectively. Squares and circles represent males and females, respectively. Slashed symbols indicate deceased
subjects. (b) DNA sequencing showing PMCA4 (or ATP2B4) R268Q mutation.

doi:10.1371/journal.pone.0104790.9001

Genomic DNA extraction and exome capture

For gene mutation screening, genomic DNA was purified from
peripheral blood leucocytes. Exome capture was conducted by a
NimbleGen 2.1 M HD array to enrich for protein-coding regions
of human genome DNA (Roche NimbleGen, Inc., Madison, WI,
USA). The exon-enriched DNA was sequenced by the Illumina
HiSeq 2000 Sequencing platform (Illumina, San Diego, USA) at
Axeq Technologies (http://www.axeq.com/).

Reads mapping and variants calling

The paired-end 101 base-pair (bp) short reads were mapped
onto the UCSC human reference genome, version hgl9 (corre-
sponding to NCBI Build37), by Burrowa-Wheeler Alignment
(BWA) [4]. Duplicated reads were removed by Picard (http://
picard.sourceforge.net/). The Genome analysis toolkit (GATK
v2.3.9) [5] was used to recalibrate the alignments and to call single
nucleotide variants (SNVs) and short insertion-deletion variants
(indels). All genotype calls with sequencing read coverage =8x, a
Phred-scaled mapping calling quality of =20, a Phred-scaled base
calling quality of =50, a Phred-scaled genotype calling quality of
=20, =5% alternative allele supporting reference homozygous
genotypes, =25% and 70% alternative allele supporting hetero-
zygous and alternative homozygous genotypes, or a Phred-scaled
probability of the second possible genotypes =50 were excluded.

Variant filtration and prioritization analysis by KGGSeq
We prioritized the SNVs and Indels by KGGSeq—Knowledge-
based mining platform for Genomic and Genetic studies using
Sequence data (http://statgenpro.psychiatry.hku.hk/kggseq) [6]
(Table 1). First, KGGSeq was used to exclude the following
variants sequentially: those with homozygous genotypes in all
affected family members and heterozygous in unaffected ones
(incompatible with the rare autosomal dominant inheritance of
non-consanguineous mating), those with a frequency of over 0.01
in the 1000 Genome Project or dbSNP database or the NHLBI
GO Exome Sequencing Project (5600) or our in-house exome
sequencing dataset (from over 1,000 Han Chinese), those that do
not alter proteins, and those that were predicted to be non-
pathogenic based on the deleteriousness scores [7]. We then
turther prioritized the variants whose gene products have protein-
protein interaction (PPI) with the protein of 53 genes causing
various types of familial spastic paraplegia and spinocerebellar
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ataxia: AFG3L2, ATLI, ATNI1, ATXI1, ATXNI, ATXNIO,
ATXN2, ATXN3, ATXN7, ATXNSE, ATXN8OS, BSCL2,
CACNAIA, CYP7B1, FA2H, FGF14, HSPD1, ITPR1, KCNC3,
KIAA0196, KIF5A, L1ICAM, MJD, NIPAl, PLEKHG4, PLPI,
PPP2R2B, PRKCG, REEP1, SLC33A1, SPAST, SPG11, SPG12,
SPG14, SPG16, SPG19, SPG20, SPG21, SPG23, SPG25, SPG26,
SPG27, SPG29, SPG32, SPG34, SPG37, SPG5B, SPG7, SPGY,
SPTBN2, TBP, TTBK2, and ZFYVE26. Similarly, the variants
with genes sharing the same biological pathways with some of the
68 genes were highly prioritized as well. Lastly, in a prioritized
short list of sequence variants, KGGSeq automatically searches
the titles and abstracts of any relevant publications in which the
variants’ genes and the disease name (familial spastic paraplegia)
and two other aliases (hereditary spastic paraplegia and Strumpell-
Lorrain disease) were co-mentioned.

We also carefully screened our patients for non-synonymous
mutations among 61 FSP candidate genes [including 47 genes
causing various types of Familial Spastic Paraplegias (AFG3L2,
ALS2, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, ATLI, BSCL2,
Cl2o0rf65, CCT5, CYP2UI, CYP7B1, DDHDI1, ELOVIL4,
ERLIN2, FA2H, GADI, GJAl, GJC2, HSPDI, KANKI,
KIAA0196, KIF1A, KIF5A, LICAM, NIPA1, PLP1, PNPLAG,
REEPI, RTN2, SLC16A2, SLC33A1, SPAST, SPG11, SPG20,
SPG21, SPG7, TECPR2, VCP, VPS37A, ZFYVE26,
B4GALNTI, Cl19orfl2, GBA2, NT5C2 and ZFYVE27) [3,8]
and 14 newly proposed genes (ARL6IP1, ERLINI, KIF1C, USP8,
WDR48, AMPD2, ENTPDI1, ARSI, DDHD2, PGAPI1, FLRT1,
RAB3GAP2, MARS and ZFR) by Novarino et al. [3]. Finally, we
replicated the short list of sequence variants by conventional
Sanger sequencing in all available family members to exclude false
positives of the high-throughput sequencing.

Computational modeling

AGGRESCAN (http://bioinf.uab.es/aggrescan) was used to
evaluate the contribution of the mutation to protein folding
properties. The protein tertiary (or 3D) structures was built by
SWISS-MODEL (http://swissmodel.expasy.org/) based on the
data from PDB website (http://www.rcsb.org/pdb/home/home.
do). PyMOL (http://www.pymol.org/) was used to render tertiary
structure of proteins and to predict the potential functional
consequence of a missense mutation on a protein. The iPBA
(http://www.dsimb.inserm.fr/dsimb_tools/ipba/) [9] was used to
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Table 1. Number of sequence variants after the step-by-step filtration and prioritization in KGGSeq.

Steps # SNVs (Genes) #Indels (Genes)
Initial 91,469 34,308
Inheritance pattern’ 855 87

Rare in dbSNP+1000 Genome+ESP and an in-house dataset? 64 31

Protein altering variants? 9 1

Predicted to be pathogenic 6(6) -
Knowledge-related*

PPI 1 -

Pathway 3(3) -

PubMed 0 -

database.
doi:10.1371/journal.pone.0104790.t001

compare the structure differences between the wild type and
mutant proteins. PopMuSic-2.0  (http://babylone.ulb.ac.be/
PoPV2) was used to predict thermodynamic protein stability
changes based on the built protein tertiary structure [10].

Results

Clinical examination of the FSP family

Six members of a two-generation Chinese family with FSP were
clinically examined (II-2, III-1, III-2, III-3, III-4, III-5) (Fig. la).
Four were symptomatic and two were asymptomatic. Proband
(ITI-1) presented at 44 years with progressive spastic paraplegia
since mid-30’s (Fig. 1a). He had brisk lower limb tendon reflexes
and bilateral ankle clonus but downgoing plantar responses. There
was bilateral lower limb spasticity but no dystonia or other
parkinsonian features. Reassessment ten years later revealed
increased spasticity with mild deterioration in muscle strength
(4/5) and sparing of muscle bulk. He remained ambulatory with
spastic gait. His upper limbs remained unaffected, without
cognitive, cerebellar or bulbar involvement. His late paternal
grandfather and father had similar features. III-2 developed
progressive spastic paraplegia from teenage. Examination at age
41 years showed mild weakness in hip and knee flexion, with brisk
knee and ankle reflexes and downgoing plantar responses
bilaterally. He has slow progression over the next 9 years but
remained ambulatory despite occasional falls. He has no upper
limb, cerebellar, bulbar, cognitive or extrapyramidal involvement.
III-4 has abnormal gait since teenage, and has difficulty running.
Examination showed weakness in hip flexion with mild hyperto-
nia, brisk lower limb tendon reflexes and ankle clonus bilaterally.
III-5 had a similar presentation as III-4 when she was assessed at
age 34 years. III-3 remained non-symptomatic with normal
neurological examination when assessed at age 39 years and at
reassessment 10 years later. In the affected subjects, neuroimaging
including MRI brain and spine did not reveal any clinically
relevant lesions. Whereas all the symptomatic family members
developed definite physical signs of FSP by their 30’s, II-2, the
mother of the affected patients, was asymptomatic with normal
neurological examination at age of 70 years. III-3 did not
complain of any symptoms and had normal neurological
examination findings at age 49 years.

PLOS ONE | www.plosone.org

Notes: 1: Dominant mode only considered with variants in heterozygous genotypes and with shared alleles between the two patients; 2: The rare variants referred to
variants with MAF=1% in the datasets; 3: This category includes missense, stopgain, stoploss and splicing single nucleotide variants and insertions/deletions causing
frameshift, nonframeshift, stoploss, stopgain and splicing differences; 4: Knowledge-related variants/genes refer to those variants’ genes having PPI(s) or sharing

pathway(s) with at least one known causal gene of FSP and those variants fell into gene(s) which were co-mentioned in the titles or abstracts of papers in the PubMed

Exome sequencing and identification of candidate genes

Exome sequencing was performed on four affected family
members (II1-1, I1I-2, I1I-4 and III-5) and two unaffected members
(II-2 and III-3). We first screened for non-synonymous mutations
in the 61 candidate genes of FSP. About 99.53% of the coding
regions of these 61 candidate genes were covered by the
NimbleGen 2.1M HD capture we used. According to RefGene
the total length of these unique coding regions is 141,752 bp and
around 94-95% of these sequences had the minimum coverage
4X in each of the 6 sequenced subjects. We observed 24 non-

(a) Red: Wild-type ATP2B4; Green: R268Q mutant

Wild-type

Figure 2. Computational modeling of R268Q ATP2B4 mutant
protein. (a) Local tertiary molecular structure of, (b—i) wild-type and (b-
i) mutant PMCA4 (or ATP2B4) protein. The red dashed line denotes
hydrogen bond.

doi:10.1371/journal.pone.0104790.9g002
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doi:10.1371/journal.pone.0104790.t002
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synonymous SNVs in 19 of these genes. However, none of them
co-segregated with the phenotype in the family members. No
frame-shift or non-frame-shift indel mutations were found in any
of these genes. These results suggested that the disorder our
patients suffer from may be caused by a mutation in a gene that
had not been described in FSP before.

Initially, there were 982,710 SNVs and 34,308 indels called
from the aligned short reads by GATK. After stringent quality
control on KGGSeq (see criteria in Materials and Methods
section), 61,542 SNVs and 4,715 indels were retained (Table 1).
Around 99% of SNVs and Indels were inconsistent with the
dominant inheritance mode and eliminated. After exclusion of
variants that do not alter protein, were non-rare (MAF>0.01) and
predicted to be non-pathogenic, only 6 SNVs of different genes
remained (Table 1).

Among the 6 probable pathogenic SNVs (Table 2), the missense
mutation, c. 803G>A, of PMCA4 gene had the highest
pathogenic prediction probability [7]. All four symptomatic
patients have the mutant allele A. The two asymptomatic family
members, and over 1,000 Chinese subjects in our internal
database, and other over 7,000 subjects in the public reference
databases do not have this mutant allele. This missense mutation
resulted in an amino acid substitution at the same site, p.R268Q),
of both protein isoforms, NP_001001396.1 and NP_001675.3
(Fig. 1b). In our patients, we observed that this mutation was
surrounded by 4,753 consecutive sequence variants (covering
~61million base-pair) with identity-by-state allele over 1, suggest-
ing a long region shared by our patients. Furthermore, the protein
product of PMCA4 gene had indirect protein-protein interaction
(PPI) and shared the same biological pathways with some of the 68
known FSP and spinocerebellar ataxias causal genes. In the
PubMed database, no publication simultaneously mentioning the
short listed genes and the disease name or aliases in the title or
abstract was found.

The co-segregation of the missense mutation at PMCA4 with
disease status in all 6 family members was confirmed by Sanger
sequencing.

Computational modeling of the mutant PMCA4 protein

We evaluated the impact of the mutation, c. 803G>A
(p-R268Q)), on PMCA4 protein structure (Fig. 2a,b). AGGRES-
CAN was used to evaluate the potential effects of the mutation on
protein folding properties. PyMOL was used to render protein
tertiary structure and to predict the potential functional conse-
quence of a missense mutation on the protein. According to
AGGRESCAN, p.R268Q) is located in protein aggregation-prone
segment suggesting that it may cause protein misfolding [11]. As
there is no experimental tertiary structure information on PMCA4
proteins, we used the SWISS-MODEL based on the data from
PDB website to predict the 3D structures of wild-type and mutant
PMCA4 proteins [12]. Analysis with PopMuSic indicated that this
mutation would cause higher folding free energy (AG = 0.02 kcal/
mol) that may destabilize the PMCA4 protein structure [10]. The
uncharged residue (Glutamine, Q) in mutant protein has a
different configuration from the positively charged residue
(Arginine, R) in wild-type protein (Fig. 2a). Structure alignment
analysis by iPBA found 3 local differences in the 3D structure
between wild-type and mutant proteins [Fig. 2b (i-ii)], which may
affect protein function [13].

Discussion

PMCA4 belongs to the family of plasma membrane Ca?*-
ATPases consisting of 4 isoforms with dozens of variants generated
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by alternative RNA splicing [14]. Although mutations in PMCA2
and PMCA3 have been reported in congenital hearing loss and X-
linked cerebellar ataxia respectively [15], mutations in PMCA4
have not hitherto been associated with other human disease. The
PMCA4 gene is known to have variable sequence. There are 102
non-synonymous SNVs observed in the 1,000 Genomes Project
[16] and ESP [Exome Variant Server, NHLBI GO Exome
Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.
washington.edu/EVS/)|. However, only 8 variants had alternative
allele frequencies ranging from 1% to 3%. All the other variants
were rare. The p.R268Q) variant that was identified in the
symptomatic members of the family was not found in any of the
public databases, or in our internal database. There was perfect
co-segregation of the p.R268() mutation with disease status in our
family. This mutation is predicted to be pathogenic when
combining multiple deleteriousness predictions [including SIFT
[17], Polyphen2 [18] and MutationTaster [19]. PMCA4 has
protein-protein interaction and shares the same pathways with
some known causal genes of FSP and spinocerebellar ataxias.
PMCA4 is expressed ubiquitously in the adult but is the only
isoform which is localized in lipid rafts in pig cerebellum [20].
Lipid rafts exist in neuronal dendrites where postsynaptic protein
complexes are localized. Thus, PMCA4 may play a role in
signaling pathways at synaptic nerve terminals, where the synaptic
activity is highly dependent on calcium signaling [21]. Dysregu-
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lation of calcium signaling in brain is commonly associated with
various neurodegenerative diseases, e.g. Alzheimer’s disease,
Parkinson’s disease, and amyotrophic lateral sclerosis [22]. The
PMCA4 R268Q mutation may be pathologically important
because the potential deficiency in removing cytosolic free calcium
may cause transient accumulation of free Ca®" (calcium overload)
between neuronal excitation, and may result in subsequent
activation of various cell death pathways, e.g. Ca®*-dependent
synthases and proteases to damage cytoskeleton, membrane, and
DNA leading to excitotoxicity and neuronal death [23]. Taken
together, we postulate that the p.R268Q) mutation in PMCA4
identified in this family caused neuronal deficits associated with
FSP. This is the first report to demonstrate PMCA4 mutation to
be associated with autosomal dominant ISP, indicating that
calcium dysregulation may be involved in the pathogenesis of
spastic paraplegia. The detailed pathogenic mechanism of how
impairment in neuronal calcium flux can directly cause the disease
phenotype in FSP requires further studies.
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