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The valley-dependent optical selection rules in recently discovered monolayer group-VI transition-metal
dichalcogenides (TMDs) make possible optical control of valley polarization, a crucial step towards valleytronic
applications. However, in the presence of Landau-level (LL) quantization such selection rules are taken over by
selection rules between the LLs, which are not necessarily valley contrasting. Using MoS, as an example we
show that the spatial inversion-symmetry breaking results in unusual valley-dependent inter-LL selection rules,
which is controlled by the sign of the magnetic field and directly locks polarization to valley. We find a systematic
valley splitting for all LLs in the quantum Hall regime, whose magnitude is linearly proportional to the magnetic
field and is comparable with the LL spacing. Consequently, unique plateau structures are found in the optical
Hall conductivity, which can be measured by the magneto-optical Faraday rotations.

DOI: 10.1103/PhysRevB.90.045427

Optical properties of two-dimensional (2D) charge carrier
systems such as 2D electron gases (2DEG), graphene, and
topological insulators are important for studying their un-
derlying charge carrier properties and future applications in
optoelectronics [1-12]. Generally, the charge carrier dynamics
can be strikingly different with and without a magnetic field, as
evidenced by the celebrated example of quantum Hall effect.
In the quantum Hall regime, an external large magnetic field
produces a series of Landau levels (LLs) with discrete energies
and the optical transitions occur only between appropriate
LLs following certain selection rules. In the past few decades,
such selection rules and relevant optical phenomena have been
intensively studied in various magneto-optical measurements
[1-6,8,9,11-15].

Monolayers of MoS, and other group-VI transition-metal
dichalcogenides (TMDs) represent a new family of 2D
materials beyond graphene. Because of their coupled spin and
valley physics and large band gap, monolayer TMDs have
become exciting platforms for exploring novel valleytronic
and optoelectronic applications [16-22]. Recently, the optical
properties of TMDs in zero magnetic field have been widely
studied in many experiments [21-24]. However, the counter-
part in a finite magnetic field has not been well explored.

In this work, we study the optical properties of monolayer
MoS;, quantum Hall systems with a large magnetic field.
With a zero magnetic field, it is known that monolayer
MoS, and graphene share similar valley contrasting physics,
i.e., the circular polarizations (o4, o_) are locked with two
inequivalent valleys K and K’ due to the opposite orbital
helicity of two valleys [25-28]. However, with a large magnetic
field in graphene, the polarization is no longer associated
with the valley degree of freedom because the transitions
are between LLs, whose selection rules allow transitions in
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both polarizations (o and o_) at both valleys (K and K’), as
observed in many magneto-optical measurements [6,8,13—15].
Furthermore, such inter-LL selection rules in graphene are the
same as 2DEG with large band gaps (e.g., GaAs quantum
wells), where valleys do not even exist [1-5]. These known
results naturally indicate that the optical responses of mono-
layer MoS; in the quantum Hall region should also be valley
independent.

Surprisingly, we find this is not the case for monolayer
MoS,, where the polarization selection rules for the inter-LL
transitions are still valley dependent. More interestingly, the
selection rules are controlled by the sign of the magnetic
field, i.e., the valley index in the selection rules can be
flipped by reversing the sign of the magnetic field, which is
fundamentally different from the zero magnetic field case,
where the polarization-valley locking is fixed. We also show
that optical transitions in this system are made more unusual
by a systematic valley splitting for all LLs, whose magnitude
is linear against the magnetic field and is comparable with
the LL spacing. The valley-polarization selection rules and
valley splitting lead to a series of spin-valley polarized
transitions between LLs as well as unique plateau structures
in the optical Hall conductivity, which can be addressed in
the circular dichroism, magnetoluminescence, and Faraday
rotations, showing distinguishable features from graphene and
2DEG. Our predictions also apply to other group-VI TMDs.

LLs and valley splitting. The monolayers of MoS; consist
of a Mo layer sandwiched between two S layers in a trigonal
prismatic arrangement. Although similar to graphene in many
aspects, some of its properties are more favorable than
graphene. It features a direct band gap A in the visible
wavelength regime, which occurs at the two inequivalent
valleys K and K’ at the corners of the hexagonal Brillouin
zone. The inversion symmetry is naturally broken in the
monolayers, which induces both strong spin-orbit coupling
and spin-valley coupling [19,20].

©2014 American Physical Society
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FIG. 1. (Color online) (a) Schematic of the spin-valley coupled
band structure of TMDs. Red (blue) represents spin up (down),
respectively. (b) and (c) Conduction and valence band LLs for MoS,
under B, =20T. K (K’) valley is on the left (right). The crossing-LL
states in the conduction band are from the dangling bonds on the
zigzag edges [34], which do not affect the LLs. The dashed line is a
guide to eye for valley splitting and also marks filling level v(K) = 4,
V(K') = 2. (d) A% (AY) is the absolute energy difference between
the LL 0 (—1) in K valley and 1 (0) in K’ valley in conduction
(valence) band. hwj (hwy ) is the LL spacing in conduction (valence)
band. (e) same as (d) calculated from orbital magnetic moment and
effective mass approximation. a is the lattice constant.

The zero-field band structure for monolayer MoS, is
schematically shown in Fig. 1(a), which is usually described
by the effective Dirac model [19,20]. In each valley there are
two sets of gapped Dirac spectra with red (blue) representing
spin up (down), respectively. Because of the large effective
mass at the band edges the LLs only scale as nheB,/m*
at the low energy part, which more resembles conventional
2D semiconductors rather than Dirac fermions [29-33]. Here
B, is the perpendicular magnetic field and n is the LL
index. To obtain the LLs, we adopt a three-band atomic tight-
binding model from Ref. [34] and apply B, via the Peierls
substitution #;; = tl,ze”'e/hva‘dr, where A = (—By,0,0) is the
vector potential.

In Figs. 1(b) and 1(c) we present the low energy LLs, where
a zigzag ribbon structure is used with a width L, = 170 nm,
which is sufficiently larger than the magnetic length scale /.
The set of LLs from the lower split-off valence bands are
not shown since they are similar to Fig. 1(c). The Zeeman
splitting is first neglected here and will be discussed later.
We label the LLs and assign the n = 0 LLs according to the
analytic solutions from the effective two-band Dirac model
[29]. When B, > O they appear only in the conduction band
of K valley and the valence band of K’ valley. Therefore the
valley degeneracy for them is already lifted. Here our focus is
on the more general n # 0 LLs.

We notice a systematic valley splitting exists for all n # 0
LLs with the magnitude comparable to the LL spacing, which
is not revealed by the effective model [29]. A linear relation
with B, is found. Here we let By > 5 T to ensure L, > [p.
The linearity should extend to the low field situation in this
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single-particle calculation. The linear valley splitting and
its discrepancy with the effective model can be intuitively
understood from the orbital magnetic moment [35,36], which
is of opposite sign at the two valleys (4m). Taking the
conduction band as an example, in the presence of B, the
valley energy difference is A% =2mB,. In the effective
model, this matches hwj, the LL spacing between 0 and
1, resulting in valley degeneracy in n # 0 LLs [37]. Such
matching is violated in the tight-binding model where A°! >
hawy gives rise to the valley splitting, as shown in Figs. 1(d)
and 1(e). In the case of graphene, the valley degeneracy
is known to be lifted in high magnetic fields via electron-
electron or electron-phonon interactions [38-41]. Similar
linear relations between the valley splitting and B, have also
been experimentally observed in silicon and AlAs 2D electron
systems [42,43]. Their physical origin, however, remains
controversial.

The valley splitting here has a few direct consequences:
(i) The n = 0,1 LLs in conduction band are always valley
polarized and n =0,—1 in valence band are spin-valley
polarized. (ii) The total filling factor follows a sequence v =
2,3,4...1inthe electron-doped regime and v = —1,—2,—-3 ...
in the hole-doped regime. The lifting of valley degeneracy in
n =0 LLs can be attributed to the broken spatial-inversion
symmetry in the monolayer. Such symmetry is known to
guarantee the valley degeneracy rigorously on graphene,
regardless of the time-reversal symmetry [44]. However, it
does not explain the splitting in n # 0 LLs [45]. Instead,
using graphene lattice as a toy model, we find the splitting
in n # 0 LLs can be induced by the next-nearest-neighbor
(NNN) electron hopping, which breaks the electron-hole
symmetry. Therefore the valley splitting in n # 0 LLs stems
from spontaneous breaking of spatial-inversion, electron-hole,
and time-reversal symmetry. In fact, the low energy physics in
MoS; is dominated by electron hopping between Mo atoms,
which is indeed the NNN hopping on the honeycomb lattice
[19,20].

Valley-dependent inter-LL selection rules: We now turn
to the optical properties of these valley-degeneracy-lifted
LLs. Because hwy < A, the intraband and interband op-
tical transitions in this system belong to two completely
different regimes: intraband in the microwave to terahertz
and interband in the visible frequency range. We will
set our focus on the latter because for MoS, the val-
ley contrasting interband optical transitions have been the
most intriguing property in experiments for valleytronics
[19-24].

When considering the transitions between levels n’ and
n, the well-known selection rule for 2DEG and graphene
requires |n| = |n'| £ 1 [7,8,46,47]. For MoS; such selection
rule can also be obtained from the effective model [48].
At first glance, since the LL spacing is comparable in the
conduction and valence bands, four transitions would occur at
very close but nondegenerate photon energies: —n <> n + 1
and —(n+ 1) < n (n > 1) for both valleys. In Fig. 2 we
calculate the optical absorption spectrum
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FIG. 2. (Color online) Optical absorption spectrum in the quan-
tum Hall regime. The solid (dashed) lines represent K (K') valleys,
respectively. Red (blue) represents spin up (down), respectively.
Spin-valley polarized transitions between (r,n’) are labeled. (a) and
(d) v(K)=4, v(K')=0. (b) and (e) v(K) =4, v(K') = 2. (¢) and
) v(K) =6, v(K') =2.T = 0.1hw,. (g) and (h) Schematic of the
inter-LL transitions corresponding to (b) and (e), and (c) and (f).
Red (solid) crosses indicate Pauli blocking. Green (dashed) crosses
indicate vanishing probability.

at three different filling levels corresponding to the LLs
presented in Fig. 1 through exact diagonalization, where J,
is the current matrix and I' is the broadening parameter.
We immediately notice several distinctive features. (i) The
expected fourfold peaks only appear twofold. Unlike in
graphene, here the transitions —n <> n 4+ 1 in K valley and
—(n + 1) < n in K’ valley are completely suppressed, which
suggests highly valley-dependent selection rules. Transitions
from the spin-split lower valence bands at higher photon
energies also follow the same rule except with opposite spins,
as seen in Figs. 2(d)-2(f). Such selection rules originate
from the severely broken spatial-inversion symmetry in the
monolayer. (ii) As the filling level goes up, the number
of spin-valley polarized peaks has an alternating 2-1-2-1
pattern, which can be attributed to the valley-imbalanced Pauli
blocking caused by the n = 0 LLs and the valley splitting as
illustrated in Figs. 2(g) and 2(h).
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w(eV)

FIG. 3. (Color online) Optical Hall conductivity in units of oy =
e?/h with filling factors v(K) =6, v(K’) = 2, corresponding to
Fig. 2(c). (a) Optical conductivity o,, and o, for spin up, K’ valley.
(b) Spin down, K valley. (c) Total oy,; the dashed line schematically
shows the canceling out situation when A% = A%, (d) Total o ,_.
Only the real part is plotted.

To further understand the role played by the valley
degree of freedom in the optical Hall effect, we calcu-
late the optical Hall conductivity using the Kubo formula
[14,46,47],
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where i, j = x,y. Following Ref. [47], here we retain 40 LLs
and impose periodic boundary conditions along the x and y
directions. B is kept at 20.8 T, as close as possible to that
used in Figs. 1 and 2, since in such calculations B, can only
take discrete levels. The two valleys cannot be distinguished
in the momentum space. However, since the valley index is
associated with spin, we can distinguish valleys by spins. The
result is shown in Fig. 3, where 04 (w) = 0, (w) £ ioy () is
the optical conductivity for the right and left circular polarized
light. Spin-valley polarized resonance structures for o, are
found, similar to Fig. 2. In this setup, for the electron- (hole-)
doped regime the spin-valley polarization is achieved for
the spin up (down) and K’ (K) valley, respectively. Upon
switching the sign of B, the valley and spin polarization also
flips. Atresonance photon frequencies o, from the two valleys
actually have the opposite signs. This is another distinctive
feature from graphene, in which both valleys contribute
equally to the total oy, [13,14]. But due to the difference in
A(C)l and Agl [Fig. 1(d)], the resonance frequencies in the two
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FIG. 4. (Color online) Plateau structure for the optical Hall con-
ductivity oy, (black solid line) at w = 1.786 eV and the static quantum
Hall conductivity (green solid line) in the electron-doped regime. The
red (blue) dashed line represents the spin up (down) or K’ (K) valley
component of o,,, respectively. Numbers on the solid black line
indicate the corresponding quantum Hall conductivity.

valleys are slightly mismatched, leading to spin-valley mixed
resonance peaks in oy, [starting from the third resonance in
Fig. 3(c)] instead of canceling out.

A more important message from Fig. 3 when compared
with Fig. 2 is that the allowed interband transitions in K and
K’ valleys are solely attributed to the left and right circular
polarized light separately:

K:i —n+1)<n, o
n <~ n, o (3)

K': —n<n+1, o,

where n > 0. Consequently the circular polarization is di-
rectly locked with the valley degree of freedom in optical
transitions in the quantum Hall regime. Upon flipping the
direction of B, the valley index will switch, i.e., K(o4) and
K'(o_).

Optical Hall plateaus. The optical conductivity as a
function of the chemical potential © is shown in Fig. 4,
where w is slightly away from resonance. The static quantum
Hall conductivity is also presented, showing fully valley-
degeneracy-lifted and well quantized plateaus. We notice that
in the optical conductivity each spin or valley component also
develops its own and contrasting plateaus, although like the
net o,,(w) they are not quantized either. The n = 0 LLs and
the valley splitting are manifested in the alternating sequence
of the step structures in these two components, which also
lead to a unique sequence of filling factors in the net o, (w)
plateaus, as labeled in Fig. 4. To be specific, 2,3 spans n = 0
ton=11in K valley and 4,5 n=11in K tothe n =1 in
K’ valley, and so on. Interestingly, the valley contrasting
plateaus persist even when p is in the band gap, as is seen
for the O plateau that extends all the way to the valence band
top.

Circular dichroism, magnetoluminescence, and Faraday
rotation. Valley resolved interband optical transitions shown
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in Fig. 2 are readily detectable by the circular dichroism
spectroscopy due to the polarization-valley locking. Given the
already excellent photoluminescence of monolayer TMDs in
zero-field, magnetoluminescence would be an ideal test of
the valley-dependent selection rules, in which luminescence
between individual LLs in a selected valley can be driven by
resonant circular polarized excitations in the Faraday geometry
[1,4,5]. The optical Hall conductivity o,,(w) can be measured
from the Faraday rotation angle 0(w) [13,14,47]. A spin-valley
polarized excitation would be indicated by a single maximum
absolute slope |d8/dw| at resonant frequencies as shown in
Fig. 3(c).

Interplay of valley and spin splitting. The Zeeman splitting
is estimated to be much smaller than the valley splitting
when we assume an ordinary g factor for electrons (g = 2).
The Zeeman spin splitting will slightly enlarge the valley
spitting in both the valence and conduction bands with the
same magnitude. However, the spin in optical transitions
is conserved and the spin-Zeeman field does not change
valley-dependent inter-LL transition frequency and selection
rules. Additionally, the valence band tops at the K (K')
valleys are composed of m = —2 (m = 2) d orbitals from the
Mo atoms [19,34], which induce an additional Zeeman-type
splitting term in the presence of B, . The valley splitting in the
valence band is further enlarged by this term. The conduction
band bottoms are not affected by this term because they are
composed of the m = 0 d orbitals of the Mo atoms [19,34].
Accordingly, this additional term induces valley-contrasting
frequency shift for the inter-LL transitions at each valley,
which will appear as a linear shift against B, for each valley
in the spectrums of circular dichroism and magnetolumines-
cence. The valley-dependent inter-LL selection rules remain
intact.

To conclude, we have shown that valley splitting exists
for all the LLs in monolayer MoS; and other TMDs even
without considering the interaction effects. Optical transitions
in the quantum Hall regime follow valley-dependent selection
rules controlled by the sign of the magnetic field, which
lock the circular polarization and valley degree of freedom
together. Finally we propose circular dichroism spectroscopy,
magnetoluminescence, and Faraday rotation measurements as
potential tests for the selection rules as well as the valley
splitting. An interesting extension of current study would
be the disorder and localization effect in the optical Hall
effect, since in this system the mixing of valleys inevitably
involves spin flipping, which is distinct from graphene
[30,47].
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