
Title General Monogamy Relation for the Entanglement of Formation
in Multiqubit Systems

Author(s) Bai, Y; Xu, YF; Wang, Z

Citation Physical Review Letters, 2014, v. 113, article no. 100503

Issued Date 2014

URL http://hdl.handle.net/10722/203309

Rights Physical Review Letters. Copyright © American Physical
Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38055944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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We prove exactly that the squared entanglement of formation, which quantifies the bipartite
entanglement, obeys a general monogamy inequality in an arbitrary multiqubit mixed state. Based on
this kind of exotic monogamy relation, we are able to construct two sets of useful entanglement indicators:
the first one can detect all genuine multiqubit entangled states even in the case of the two-qubit concurrence
and n-tangles being zero, while the second one can be calculated via quantum discord and applied to
multipartite entanglement dynamics. Moreover, we give a computable and nontrivial lower bound for
multiqubit entanglement of formation.
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For multipartite quantum systems, one of the most
important properties is that entanglement is monogamous
[1], which implies that a quantum system entangled with
another system limits its entanglement with the remaining
others [2]. For entanglement quantified by the squared
concurrence [3], Coffman, Kundu, and Wootters (CKW)
proved the first quantitative relation [4] for three-qubit
states, and Osborne and Verstraete proved the correspond-
ing relation for N-qubit systems, which reads [5]

C2
A1jA2���AN

− C2
A1A2

− C2
A1A3

− � � � − C2
A1AN

≥ 0: ð1Þ

Similar inequalities were also generalized to Gaussian
systems [6,7] and squashed entanglement [8,9]. As is
known, the monogamy property can be used for character-
izing the entanglement structure in many-body systems
[4,10]. A genuine three-qubit entanglement measure named
“three-tangle” was obtained via the monogamy relation
of squared concurrence in three-qubit pure states [4].
However, for three-qubit mixed states, there exists a special
kind of entangled state that has neither two-qubit con-
currence nor three-tangle [11]. There also exists a similar
case for N-qubit mixed states [12]. To reveal this critical
entanglement structure other exotic monogamy relations
beyond the squared concurrence may be needed.
On the other hand, from a practical viewpoint, to

calculate the entanglement measures that appeared in the
monogamy relation is basic. Unfortunately, except for the
two-qubit case [3], this task is extremely hard (or almost
impossible) for mixed states due to the convex roof
extension of pure state entanglement [13]. Quantum corre-
lation beyond entanglement (e.g., the quantum discord
[14,15]) has recently attracted considerable attention, and
various efforts have been made to connect quantum discord
to quantum entanglement [16]. It is natural to ask whether

or not the calculation method for quantum discord can be
utilized to characterize the entanglement structure and
entanglement distribution in multipartite systems.
In this Letter, by analyzing the entanglement distribution

in multiqubit systems, we prove exactly that the squared
entanglement of formation (SEF) [3] is monogamous in an
arbitrary multiqubit mixed state. Furthermore, based on the
exotic monogamy relation, we construct two sets of useful
indicators overcoming the flaws of concurrence, where the
first one can detect all genuine multiqubit entangled states
and be utilized in the case when the concurrence and
n-tangles are zero, while the second one can be calculated
via quantum discord and applied to a practical dynamical
procedure. Finally, we give a computable and nontrivial
lower bound for multiqubit entanglement of formation.
General monogamy inequality for squared entanglement

of formation.—The entanglement of formation in a bipartite
mixed state ϱAB is defined as [13,17],

EfðϱABÞ ¼ min
X
i

piEfðjψ iiABÞ; ð2Þ

where the minimum runs over all the pure state decom-
positions fpi; jψ iiABg, and Efðjψ iiABÞ ¼ SðρiAÞ is the von
Neumann entropy of subsystem A. For a two-qubit mixed
state ρAB, Wootters derived an analytical formula [3]

EfðρABÞ ¼ h
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2

AB

p
2

�
; ð3Þ

where hðxÞ ¼ −xlog2x − ð1 − xÞlog2ð1 − xÞ is the binary
entropy and CAB ¼ maxf0; ffiffiffiffiffi

λ1
p

−
ffiffiffiffiffi
λ2

p
−

ffiffiffiffiffi
λ3

p
−

ffiffiffiffiffi
λ4

p g is
the concurrence with the decreasing nonnegative λis being
the eigenvalues of the matrix ρABðσy ⊗ σyÞρ�ABðσy ⊗ σyÞ.

PRL 113, 100503 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 SEPTEMBER 2014

0031-9007=14=113(10)=100503(5) 100503-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.100503
http://dx.doi.org/10.1103/PhysRevLett.113.100503
http://dx.doi.org/10.1103/PhysRevLett.113.100503
http://dx.doi.org/10.1103/PhysRevLett.113.100503


A key result of this work is to show exactly that the
bipartite entanglement quantified by the squared entangle-
ment of formation E2

f obeys a general monogamy inequal-
ity in an arbitrary N-qubit mixed state, i.e.,

E2
fðρA1jA2;…;An

Þ − E2
fðρA1A2

Þ − � � � − E2
fðρA1An

Þ ≥ 0; ð4Þ

where E2
fðρA1jA2;…;An

Þ quantifies the entanglement in the
partition A1jA2;…; An (hereafter, n ¼ N for qubit cases),
and E2

fðρA1Aj
Þ quantifies the one in the two-qubit system

A1Aj. Under two assumptions, a qualitative analysis on
three-qubit pure states was given in Ref. [18]. Before
showing the general inequality, we first give the two
propositions, whose analytical proofs are presented in
the Supplemental Material [19].
Proposition I: The squared entanglement of formation

E2
fðC2Þ in two-qubit mixed states varies monotonically as a

function of the squared concurrence C2.
Proposition II: The squared entanglement of forma-

tion E2
fðC2Þ is convex as a function of the squared

concurrence C2.
We now analyze the monogamy property of E2

f in an
N-qubit pure state jψiA1A2;…;An

. According to the Schmidt
decomposition [20], the subsystem A2A3;…; An is equal
to a logic qubit A2;…;n. Thus, the entanglement
EfðA1jA2;…; AnÞ can be evaluated using Eq. (3), leading to

E2
fðC2

A1jA2;…;An
Þ

≥ E2
fðC2

A1A2
þ � � � þ C2

A1An
Þ

≥ E2
fðC2

A1A2
Þ þ E2

fðC2
A1A3

Þ þ � � � þ E2
fðC2

A1An
Þ; ð5Þ

where we have used the two propositions, with the details
presented in Ref. [19].
At this stage, most importantly, we prove that the

squared entanglement of formation E2
f is monogamous

in an arbitrary N-qubit mixed state ρA1A2;…;An
. In this case,

the analytical Wootters formula in Eq. (3) cannot be applied
to EfðρA1jA2;…;An

Þ, since the subsystem A2A3;…; An is not a
logic qubit in general. But we can still use the convex roof
extension of pure state entanglement as shown in Eq. (2).
Therefore, we have

EfðρA1jA2;…;An
Þ ¼ min

X
i

piEfðjψ iiA1jA2;…;An
Þ; ð6Þ

where the minimum runs over all the pure state decom-
positions fpi; jψ iig. We assume that the optimal decom-
position for Eq. (6) takes the form

ρA1A2;…;An
¼

Xm
i¼1

pijψ iiA1A2;…;An
hψ ij: ð7Þ

Under this decomposition, we have

EfðρA1jA2;…;An
Þ ¼

X
i

piEfðjψ iiA1jA2;…;An
Þ ¼

X
i

E1i;

E0
fðρA1Aj

Þ ¼
X
i

piEfðρiA1Aj
Þ ¼

X
i

Eji; ð8Þ

where E0
fðρA1Aj

Þ is the average entanglement of formation
under the specific decomposition in Eq. (7) and the
parameter j ∈ ½2; n�. Then we can derive the following
monogamy inequality,

E2
fðρA1jA2;…;An

Þ −
X
j

E02
f ðρA1Aj

Þ

¼
�X

i
E1i

�
2

−
X
j

�X
i
Eji

�
2

¼
X
i

�
E12i −

X
j

Ej2i

�

þ 2
X
i

X
k¼iþ1

�
E1iE1k −

X
j

EjiEjk

�
≥ 0; ð9Þ

where, in the second equation, the first term is non-negative
because the E2

f is monogamous in pure state components,
and the second term is also non-negative from a rigorous
analysis shown in the Supplemental Material [19], justify-
ing the monogamous relation. On the other hand, for
the two-qubit entanglement of formation, the following
relation is satisfied

EfðρA1Aj
Þ ≤ E0

fðρA1Aj
Þ; ð10Þ

since E0
fðρA1Aj

Þ is a specific average entanglement under
the decomposition in Eq. (7), which is greater than
EfðρA1Aj

Þ in general. Combining Eqs. (9) and (10), we
can derive the monogamy inequality of Eq. (4), such that
we have completed the whole proof showing that the
squared entanglement E2

f is monogamous inN-qubit mixed
states.
Two kinds of multipartite entanglement indicator.—

Lohmayer et al. [11] studied a kind of mixed three-qubit
states composed of a Greenberger-Horne-Zeilinger(GHZ)
state and a W state

ρABC ¼ pjGHZ3ihGHZ3j þ ð1 − pÞjW3ihW3j; ð11Þ

where jGHZ3i ¼ ðj000i þ j111iÞ= ffiffiffi
2

p
, jW3i ¼ ðj100iþ

j010i þ j001iÞ= ffiffiffi
3

p
, and the parameter p ranges in [0,

1]. They found that when the parameter p ∈ ðpc; p0Þ, with
pc ≃ 0.292 and p0 ≃ 0.627, the mixed state ρABC is
entangled but without two-qubit concurrence and three-
tangle. The three-tangle quantifies the genuine tripartite
entanglement and is defined as [4] τðρABCÞ ¼
min

P
ipi½C2

AjBCðjψ i
ABCiÞ − C2

ABðρiABÞ − C2
ACðρiACÞ�. It is

still an unsolved problem of how to characterize the
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entanglement structure in this kind of states, although an
explanation via the enlarged purification system was
given [12].
Based on the monogamy inequality of E2

f in pure states,
we can introduce a kind of indicator for multipartite
entanglement in an N-qubit mixed state ρA1A2;…;An

as

τð1ÞSEFðρA1

N Þ ¼ min
X
i

pi½E2
fðjψ iiA1jA2;…;An

Þ −
X
j≠1

E2
fðρiA1Aj

Þ�;

ð12Þ
where the minimum runs over all the pure state decom-
positions fpi; jψ iiA1A2;…;An

g. This indicator can detect the
genuine three-qubit entanglement in the mixed state speci-
fied in Eq. (11). After some analysis, we can get the optimal
pure state decomposition for the three-qubit mixed state

ρABC ¼ α

3

X2
j¼0

jψ jðp0Þihψ jðp0Þj þ ð1− αÞjW3ihW3j; ð13Þ

where the pure state component jψ jðp0Þi ¼ ffiffiffiffiffi
p0

p jGHZ3i −
eð2πi=3Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p0

p jW3i and the parameter α ¼ p=p0 with
p < p0 ≃ 0.627. Then the indicator is

τð1ÞSEFðρAABCÞ ¼ ατð1ÞSEFðjψ0ðp0ÞiÞ þ ð1 − αÞτð1ÞSEFðjWiÞ
¼ αsp þ ð1 − αÞsw; ð14Þ

where sp ≃ 0.217 061 and sw ≃ 0.238 162. In Fig. 1, we

plot the entanglement indicators τð1ÞSEF, E
2
fðABÞ þ E2

fðACÞ,
and E2

fðAjBCÞ in comparison to the indicators τ,
C2
AB þ C2

AC, and C2
AjBC calculated originally in Ref. [11].

As seen from Fig. 1, although the three-tangle τ is zero

when p ∈ ð0; p0Þ, the nonzero τð1ÞSEF indicates the existence
of the genuine three-qubit entanglement. This point may
also be understood as a fact that the three-tangle τ indicates
merely the GHZ-type entanglement while the newly

introduced indicator τð1ÞSEF can detect all genuine three-qubit
entangled states.
For three-qubit mixed states, a state ϱABC is called

genuine tripartite entangled if any decomposition into
pure states ϱABC ¼ P

ipijψ i
ABCihψ i

ABCj contains at least
one genuine tripartite-entangled component jψ i

ABCi ≠
jϕ1i ⊗ jϕ2i, with jϕ1i and jϕ2i corresponding to the states
of a single qubit or a couple of qubits [1]. For the tripartite

entanglement indicator τð1ÞSEFðϱAABCÞ, we have the following
lemma, and the proof can be found in the Supplemental
Material [19].
Lemma 1.—For three-qubit mixed states, the multipartite

entanglement indicator τð1ÞSEFðϱAABCÞ is zero if and only
if the quantum state is biseparable, i.e., ϱABC ¼P

jpjρ
j
AB ⊗ ρjC þP

jqjρ
j
AC ⊗ ρjB þP

jrjρ
j
A ⊗ ρjBC.

When the three-qubit mixed state ϱABC is genuine
tripartite entangled, its optimal pure state decomposition
contains at least one three-qubit entangled component.

According to the lemma, we obtain that τð1ÞSEFðϱAABCÞ is
surely nonzero.
ForN-qubit mixed states, when the indicator τð1ÞSEFðρA1

N Þ in
Eq. (12) is zero, we can prove that there exists at most
two-qubit entanglement in the partition A1jA2;…; An (see
lemmas b and c in Ref. [19]), and we further have the
following lemma.
Lemma 2.—In N-qubit mixed states, the multipartite

entanglement indicator

τð1ÞSEFðρNÞ ¼ min
X
j

pj

P
n
l¼1 τ

ð1Þ
SEFðjψ jiAl

N Þ
N

ð15Þ

is zero if and only if the quantum state is (N=2) separable in

the form ρA1A2;…;An
¼ P

n
i1;…;in¼1

P
j p

fi1;…;ing
j ρjAi1Ai2 ⊗ � � �

⊗ ρjAik−1Aik ⊗ � � � ⊗ ρjAin−1Ain , which has at most two-qubit
entanglement with the superscript fi1;…; ing being all
permutations of the N qubits.
According to lemma 2, whenever an N-qubit state

contains genuine multiqubit entanglement, the indicator
τð1ÞSEFðρNÞ is surely nonzero. Thus, this quantity can serve as
a genuine multiqubit entanglement indicator in N-qubit
mixed states. The analytical proof of this lemma and its
application to an N-qubit mixed state (without two-
qubit concurrence and n-tangles) are presented in the
Supplemental Material [19].
In general, the calculation of the indicators defined in

Eqs. (12) and (15) is very difficult due to the convex
roof extension. Here, based on the monogamy property of
E2
f in mixed states, we can also introduce an alternative

multipartite entanglement indicator as

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

0.9

p p
0

C2(A BC)

E
f
2(A BC )

τ
SEF
(1) (ABC)

τ (ABC)

C 2(AB )+C2(AC)

E
f
2(AB)+E

f
2(AC)

FIG. 1 (color online). Entanglement indicators τð1ÞSEF, E
2
fðABÞþ

E2
fðACÞ, and E2

fðAjBCÞ in comparison with the indicators τ,

C2
AB þ C2

AC, and C2
AjBC in Ref. [11], where the nonzero τð1ÞSEF

detects the genuine three-qubit entanglement in the region.
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τð2ÞSEFðρA1

N Þ ¼ E2
fðρA1jA2;…;An

Þ −
X
j≠1

E2
fðρA1Aj

Þ; ð16Þ

which detects the multipartite entanglement (under the
given partition) not stored in pairs of qubits (although this
quantity is not monotone under local operations and
classical communication [19]). From the Koashi-Winter
formula [8], the multiqubit entanglement of formation can
be calculated by a purified state jψiA1A2;…;AnR, with
ρA1A2;…;An

¼ trRjψihψ j,
EfðA1jA2;…; AnÞ ¼ DðA1jRÞ þ SðA1jRÞ; ð17Þ

where SðA1jRÞ ¼ SðA1RÞ − SðRÞ is the quantum condi-
tional entropy with SðxÞ being the von Neumann entropy,
and the quantum discord DðA1jRÞ is defined as [14,15]

DA1jR ¼ minfER
k g
X
k

pkSðA1jER
k Þ − SðA1jRÞ; ð18Þ

with the minimum running over all the positive operator-
valued measures and the measurement being performed on
subsystem R. Recent studies on quantum correlation provide
some effective methods [21–29] for calculating the quantum
discord, which can be used to quantify the indicator in
Eq. (16). For all partitions, we may introduce a partition-

independent indicator τð2ÞSEFðρNÞ¼
P

n
i¼1 τ

ð2Þ
SEFðρAi

N Þ=N.
We now apply the indicator τð2ÞSEF to a practical dynamical

procedure of a composite system which is composed of
two entangled cavity photons being affected by the dissipa-
tion of two individual N-mode reservoirs. The interac-
tion of a single cavity-reservoir system is described by
the Hamiltonian [30] Ĥ ¼ ℏωâ†âþ ℏ

P
N
k¼1 ωkb̂

†
kb̂kþ

ℏ
P

N
k¼1 gkðâb̂†k þ b̂kâ†Þ. When the initial state is jΦ0i ¼

ðαj00i þ βj11iÞc1c2 j00ir1r2 with the dissipative reservoirs
being in the vacuum state, the output state of the cavity-
reservoir system has the form [30]

jΦti ¼ αj0000ic1r1c2r2 þ βjϕtic1r1 jϕtic2r2 ; ð19Þ
where jϕti ¼ ξðtÞj10i þ χðtÞj01i with the amplitudes
being ξðtÞ ¼ expð−κt=2Þ and χðtÞ ¼ ½1 − expð−κtÞ�1=2.
As quantified by the concurrence, the entanglement
dynamical property was addressed in Refs. [30,31], but
the multipartite entanglement analysis is mainly based on
some specific bipartite partitions in which each party can be
regarded as a logic qubit. When one of the parties is not
equivalent to a logic qubit, the characterization for multi-
partite entanglement structure is still an open problem.
For example, in the dynamical procedure, although the
monogamy relation C2

c1jc2r1 − C2
c1c2 − C2

c1r1 is satisfied, the

entanglement C2
c1jc2r1 is unavailable so far because sub-

system c2r1 is a four-level system and the convex roof
extension is needed. Fortunately, in this case, we can utilize

the presented indicator τð2ÞSEFðρc1c1c2r1Þ ¼ E2
fðc1jc2r1Þ −

E2
fðc1c2Þ − E2

fðc1r1Þ to indicate the genuine tripartite

entanglement, where Efðc1jc2r1Þ can be obtained via the
quantum discord Dc1jr2 [19]. This indicator detects the
genuine tripartite entanglement which does not come from
two-qubit pairs. In Fig. 2, the indicator and its entangle-
ment components are plotted as functions of the time
evolution κt and the initial amplitude α, where the nonzero

τð2ÞSEFðc1c2r1Þ actually detects the tripartite entanglement
area and the bipartite components of E2

f characterize the
entanglement distribution in the dynamical procedure. By
analyzing the multipartite entanglement structure, we can
know how the initial cavity photon entanglement transfers
in the multipartite cavity-reservoir system, which provides
the necessary information to design an effective method
for suppressing the decay of cavity photon entanglement.
Discussion and conclusion.—The entanglement of

formation is a well-defined measure for bipartite entan-
glement and has the operational meaning in entangle-
ment preparation and data storage [2]. Unfortunately, it
does not satisfy the usual monogamy relation. As an
example, its monogamy score for the three-qubit W state
is EfðAjBCÞ − EfðABÞ − EfðACÞ ¼ −0.1818. In this
Letter, we show exactly that the squared entanglement
E2
f is monogamous, which mends the gap of the

entanglement of formation. Furthermore, in comparison
to the monogamy of concurrence, the newly introduced
indicators can really detect all genuine multiqubit
entangled states and extend the territory of entanglement
dynamics in many-body systems. In addition, via the
established monogamy relation in Eq. (4), we can obtain

κ t

E
f
2(c1|c2r1)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

κ t

E
f
2(c1c2)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

κ t

α

E
f
2(c1r1)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

κ t

τ
SEF
(2) (c1c2r1)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

α
α α

FIG. 2 (color online). The indicator τð2ÞSEFðρc1c1c2r1Þ and its
entanglement components as functions of the time evolution κt
and the initial amplitude α, which detects the tripartite entangle-
ment area and illustrates the entanglement distribution in the
dynamical procedure.
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EfðρA1jA2;…;An
Þ ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
fðρA1A2

Þ þ � � � þ E2
fðρA1An

Þ
q

; ð20Þ

which provides a nontrivial and computable lower
bound for the entanglement of formation.
In summary, we have not only proven exactly that the

squared entanglement of formation is monogamous in
N-qubit mixed states, but also provided a set of useful tools
for characterizing the entanglement in multiqubit systems,
overcoming some flaws of the concurrence. Two kinds of
indicators have been introduced: the first one can detect all
genuine multiqubit entangled states and solve the critical
outstanding problem in the case of the two-qubit concur-
rence and n-tangles being zero, while the second one can be
calculated via quantum discord and applied to a practical
dynamical procedure of cavity-reservoir systems when the
monogamy of concurrence loses its efficacy. Moreover,
the computable lower bound can be utilized to estimate
the multiqubit entanglement of formation.

This work was supported by the RGC of Hong Kong
under Grant Nos. HKU7058/11P and HKU7045/13P.
Y.-K. B. and Y.-F. X. were also supported by NSF-China
(Grant No. 10905016), Hebei NSF (Grant
No. A2012205062), and the fund of Hebei Normal
University.

Note added.—Recently, by using the same assumptions as
those made in Ref. [18], a similar idea on the monogamy of
squared entanglement of formation was presented in
Ref. [32], but the claimed monogamy for mixed states
was not proven in that paper [33], in contrast to what we
have done in the present work.
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