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If one tells the truth, one is sure, sooner or later to be found out 

                     Oscar Wilde 

Abstract 

We recently suggested that inosine 3’,5’-cyclic monophosphate (cIMP)  

synthesized by soluble guanylyl cyclase (sGC) is the mediator of hypoxic augmentation 

of coronary vasoconstriction. Here we explain why we actually believe that cIMP may be 

considered as a new second messenger. 

 

Cyclic guanosine 3', 5'-monophosphate (cGMP) has long been viewed as the only 

signaling molecule synthesized by soluble guanylyl cyclase (sGC) (Friebe and Koesling, 

2009; Waldman and Murad, 1987). However, in addition to cGMP, purified sGC can 

synthesize several other cyclic nucleotides including inosine 3’,5’-cyclic monophosphate 

(cIMP) (Beste et al., 2012). The latter study, by Seifert and his colleagues, came as an 

illumination to us as we were trying over the years to explain why in isolated arteries 

hypoxia augments contractions in a counter-intuitive manner that requires the presence of 

the endothelium, the production of nitric oxide (NO) and the subsequent activation of 

sGC, but not the presence of cGMP (De Mey and Vanhoutte, 1983; Rubanyi and 

Vanhoutte, 1986; Graeser and Vanhoutte, 1991, Pearson et al., 1996; Chan et al., 2011). 

Hence, in a recent study, we tested and, we believe, proved right, the hypothesis that 

cIMP may act as a mediator in hypoxic augmentation of coronary vasoconstriction (Chen 

et al., 2014). In his editorial commentary, Roland Seifert (this issue) expressed his 

skepticism about such a second messenger role for cIMP based on two major arguments: 

cIMP levels are far below detection limit, and there the absence of known target protein 
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for cIMP (Seifert, this issue). We believe that this skepticism largely arises from 

overlooking our findings in isolated porcine coronary arteries that cIMP levels are 

markedly elevated by hypoxia and that cIMP at rather low concentrations activates Rho 

kinase (ROCK), which subsequently promotes hypoxic vasoconstriction (Chen et al., 

2014).    

The evidence reiterated by Seifert to support his view that cIMP is far below 

detection level was obtained in cultured HEK293 cells over-expressing the isoform A of 

particulate guanylyl cyclases (pGC-A) (Beste et al., 2013). In a separate study on 

nucleotidyl cyclase activity in HEK293 cells over-expressing sGC and in RFL-6 rat 

fibroblasts endogenously expressing sGC, no measurement on cIMP is mentioned (Bähre 

et al., 2014). Our experiments were performed ex vivo on relatively intact porcine 

coronary arteries. In such “fresh” tissues, cIMP was detected using high performance 

liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The level of cIMP 

was elevated by NO in arteries without endothelium, as well as by inosine 5’-triphosphate 

(ITP, the substrate for cIMP formation) or by hypoxia in arteries with endothelium. These 

effects were prevented by ODQ, a selective inhibitor of sGC. The level of cIMP increased 

also in arteries without endothelium when exposed to hypoxia in the presence of Bay 

58-2667, a NO-independent and heme-independent activator of sGC (Follmann et 

al.,2013). Taken in conjunction these results prompted the unavoidable interpretation that 

the increased levels of cIMP are produced by sGC (Chen et al., 2014). The most novel 

finding of our study is that the sGC-dependent formation of cIMP in the arteries is 

stimulated by hypoxia. We believe that these findings are solid and will withstand the test 

of time, as has the NO- and the sGC-dependency of the hypoxic augmentation (Graeser et 
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al., 1991; Pearson et al., 1996; Chan et al., 2011; Chen et al., 2014).  

However, we still do not know how and why hypoxia causes sGC to switch 

substrate. An increased availability of ITP may in part be involved, as supported by the 

increased ITP level under hypoxia (Chen et al., 2014). ITP is primarily derived from ATP 

deamination (Behmanesh et al., 2009; Sakumi, et al., 2010). An increased intracellular 

level of cIMP occurs in response to exogenous application of ATP (Ferguson et al., 1973). 

ATP is the most abundant nucleotide inside the cell (Gribble et al., 2000). It has been 

estimated that 10-25% of the ATP pool can be converted to ITP by deamination (Sakumi, 

et al., 2010). Under normal conditions, ITP is largely degraded by ITPase, and the 

intracellular level of ITP is rather low (Behmanesh et al., 2009; Sakumi, et al., 2010). 

However, if hypoxia were to promote ATP deamination and/or suppress the activity of 

ITPase, sufficient ITP could accumulate for sGC to synthesize cIMP (Bähre et al., 2014). 

The role of cIMP as a mediator in hypoxic augmentation of vasoconstriction is also 

questioned by Seifert for the lack of downstream target. As he points out, the affinity of 

cIMP is rather low for activation of either cGMP-dependent protein kinase (PKG) or 

cAMP-dependent protein kinase (PKA), classical targets for cyclic nucleotides (Seifert, 

this issue). We agree that hypoxic augmentation by cIMP is not likely to involve either 

PKG or PKA as this has been excluded by our previous experiments using various 

inhibitors of sGC, adenylyl cyclase, PKG, and PKA (Chan et al., 2011). The hypoxic 

augmentation of vasoconstriction in arteries with, or in those without endothelium but 

treated with cIMP, is blunted by the Rho-kinase inhibitor Y27632 (Chan et al., 2011; 

Chen et al., 2014). The phosphorylation of myosin phosphatase target subunit 1 (MYPT1) 

at Thr853, an indicator of the activation of ROCK (Gao et al., 2007; Somlyo and Somlyo, 
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2003) is stimulated in arteries with endothelium by hypoxia and arteries without 

endothelium exposed to cIMP. Moreover, in homogenates of coronary arteries, cIMP 

activates ROCK starting at a concentration of 10-7 M (Chen et al., 2014), which is well 

within the physiological range for the activation of kinases by cyclic nucleotides 

(Dhanakoti et al., 2000; Wolter et al., 2011). Activation of ROCK leads to reduced 

activity of myosin light chain phosphatase (MLCP), consequently increasing the Ca2+ 

sensitivity of the myofilaments, and thus augmenting vasoconstriction (Gao et al., 2007; 

Somlyo & Somlyo, 2003).These findings prompts the suggestion that Rho-kinase is 

indeed a downstream target for cIMP. However, although the effect of cIMP is prevented 

by ROCK inhibitors (Chan et al., 2011; Chen et al., 2014), we also still have to determine 

how ROCK eventually is activated (directly or indirectly) by the cyclic nucleotide. 

Current knowledge implies that the enzyme can be activated directly only by 

GTPase-RhoA, arachidonic acid, sphingosine phosphorylcholine, caspase-3, and 

granzyme B (Duong-Quy et al., 2013).In our article we used “mediator” rather than 

“second messenger” to describe the role of cIMP in hypoxic augmentation of 

vasoconstriction (Chen et al., 2014). It was tempting to indeed propose cIMP as a new 

second messenger, but we agree with Seifert that this should not be done lightly. To be 

designated as such, according to Sutherland (Sutherland et al., 1968), a second messenger 

molecule should meet the following criteria: (1) its intracellular levels should change in 

response to a physiologically relevant stimulus; (2) when reaching intracellular 

compartments it should mimic the effect of an extracellular stimulus; (3) the effects of the 

extracellular stimulus should be blocked by antagonism of the action of the messenger; (4) 

the molecule should be synthesized and metabolized; and (5) specific intracellular 
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binding sites should be present (Aley et al., 2013; Sutherland et al., 1968). In our study 

the formation of cIMP by sGC was stimulated by NO under hypoxic conditions. These 

changes were associated with the activation of ROCK and hypoxic augmentation of 

vasoconstriction. The extracellular administration of cIMP also caused a similar 

phenomenon, presumably following diffusion across the cell membrane (Werner et al., 

2011). Studies using human phosphodiesterases show that cIMP is hydrolyzed (Reinecke 

et al., 2011) and phosphodiesterase inhibition potentiated the hypoxic augmentation 

(Chen et al., 2014). Hence, it appears that cIMP meets, or nearly meets all the criteria 

recommended by Sutherland, except that there is currently no agent available to 

specifically block the synthesis of cIMP (without affecting that of cGMP).  

Soluble guanylyl cyclase is a critical enzyme involved in various functional 

responses to NO (Friebe and Koesling, 2009; Waldman and Murad, 1987). Currently, 

cGMP is considered to be the only molecule responsible for all the actions resulting from 

the activation of sGC. However, the available evidence indicates that hypoxia has no 

significant effect on cGMP formation (Chan et al., 2011; Chen et al., 2014).Taken in 

conjunction (Figure 1), our ex vivo findings over the years strongly suggest that, at least  

in isolated porcine coronary arteries, this enzyme can generate another signaling 

molecule, cIMP, which promotes vasoconstriction under hypoxic conditions, in sharp 

contrast to the vasodilator role of cGMP (Graeser et al., 1991, Pearson et al., 1996; Chan 

et al., 1011; Chen et al., 2014). Tissues do not lie, but one has to understand their 

language. 
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Figure legend 

Proposed mechanism for cIMP acting as a mediator in hypoxic augmentation of 

vasoconstriction. In such a response hypoxia causes a marked increase in the 

synthesis of cIMP by soluble guanylyl cyclase (sGC). Cyclic IMP in turn activates 

rho kinase (ROCK), resulting in reduced activity of myosin light chain phosphatase 

(MLCP), consequently increased Ca2+ sensitization of myofilaments and augmented 

vasoconstriction. Cyclic GMP may counteract the effect of ROCK by stimulating the 

activity of MLCP via cGMP-depedent protein kinase (PKG). A critical role of cIMP 

is appreciated by testing the effect of hypoxia on vasoconstriction by: 1) activating  

sGC by endothelium-derived nitric oxide (NO), an exogenous NO donor (DETA 

NONOate) and Bay 58-2667 (a NO-independent,heme-independent activator of sGC); 

or by suppressing activation of sGC by inhibition of endothelial NO synthase (eNOS, 

with nitro-L-arginine), removal of the endothelium and ODQ (selective sGC 

inhibitor ); and 3), activating ROCK by exogenous cIMP or inhibiting ROCK with 

Y27632. Full arrows: activation. Dotted arrows: inhibition. 

 


