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CK8 phosphorylation induced by compressive loads
underlies the downregulation of CK8 in human disc
degeneration by activating protein kinase C
Zhen Sun1,4, Yun-Shan Guo1,4, Shi-Ju Yan2, Zhong-Yuan Wan1, Bo Gao1, Long Wang1, Zhi-Heng Liu1, Yang Gao1,
Dino Samartzis3, Li-Feng Lan1, Hai-Qiang Wang1 and Zhuo-Jing Luo1

Cytokeratin 8 (CK8) is a member of the cytokeratins family with multiple functions on the basis of its unique structural
hallmark. The aberrant expression of CK8 and its phosphorylation are pertinent with various diseases. We have previously
shown that CK8 exists in normal human nucleus pulposus (NP) cells and decreases as the intervertebral disc degenerates.
However, the underlying molecular regulatory machinery of CK8 in intervertebral disc degeneration (IDD) has not been
clarified. Here, we collected NP samples from patients with idiopathic scoliosis as control and IDD as degenerate groups.
We found that CK8 expression decreased in IDD with an increased phosphorylation in degenerate NP cells. Moreover, NP
cells were cultured under different compressive load schemes for diverse time duration. We found that compressive loads
resulted in phosphorylation and disassembly of CK8 in a time-dependent and degree-dependent manner in vitro. The
activation of protein kinase C was a significant molecular factor contributing to this phenomenon. Taken together, this
study is the first to address the molecular mechanisms of CK8 downregulation in NP cells. Importantly, our findings
provide clues regarding a molecular link between compressive loads and CK8 alterations, which shed a novel light on the
etiology of IDD.
Laboratory Investigation (2013) 93, 1323–1330; doi:10.1038/labinvest.2013.122; published online 28 October 2013
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Among the multiple contributing factors of human inter-
vertebral disc degeneration (IDD), mechanical stress is of
critical importance given the timely mechanical environment
of the disc.1 Histologically, the intervertebral disc is composed
of an inner gelatinous nucleus pulposus (NP) surrounded
by the outer annulus fibrosus (AF).2 Normal human NP
consists of a large amount of extracellular matrix interspersed
by a small number of cells that make up approximately 1% of
the total volume.3 This specialized structure is consistent with
its function, among which is to provide tremendous stability
in the environment of forces and compressive loads. Under
this unique mechanical circumstance, the NP cells are
capable of responding to compressive loads with altered
synthesis rates, content or gene expression for collagens and
proteoglycans.4–6

Accumulating evidence has shown that cytokeratin 8 (CK8)
exists in normal human NP cells and decreases with age.7,8 We
also previously found a downregulated CK8 expression with
IDD based upon multiple lines of evidence.9 CK8 is a member
of the cytokeratins family, which belongs to the intermediate
filament proteins of epithelial cells.10 Cytokeratins have
multiple functions due to their unique structural feature, ie,
the maintenance of response to mechanical stress, the
regulation of Fas-mediated apoptosis and the modulation
of cell size and protein synthesis.11,12 Meanwhile, it is note-
worthy that the phosphorylation of cytokeratins is an
important form to regulate cytokeratin intermediate fila-
ment assembly and their dynamic properties.13,14 Cyto-
keratins undergo dynamic phosphorylation under a variety
of stress situations.15 The aberrant expression of CK8 and its
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disassembly are found to be associated with various
diseases.16,17Given that CK8 is crucially involved in mecha-
nical stimulation, as well as disorders characterized by
abnormal apoptotic pathways, we assumed that CK8 might
have a role in the process of IDD. To date, current studies have
only demonstrated the distribution tendency of CK8 in discs
in terms of NP origin and development; the underlying
molecular regulation of CK8 in IDD has not been clarified.

Accordingly, the current study aimed at addressing the
phosphorylation of CK8 in human NP cells. First, we found a
decreased CK8 expression while phosphorylatied CK8 was
upregulated in degenerate NP cells. Second, we demonstrated
that the phosphorylation and disassembly of CK8 were
mediated by compressive load with the activation of protein
kinase C (PKC), the chief of which was PKC-e in vitro.

MATERIALS AND METHODS
Tissue Collection
The study was approved by our Institutional Ethics Review
Board (No. 20090611-3). Human NP samples and MRI data
were collected as described previously. Briefly, written
informed consents were obtained from each patient. NP
tissues were obtained from patients with idiopathic scoliosis
as control group (n¼ 8; average age 19.5 (range 16–24) years)
and IDD as degenerate group (n¼ 8 average age 30.5 (range
23–41) years). Idiopathic scoliosis disc specimens were clas-
sified as grade II, and IDD discs were classified as grade IV
according to Pfirrmann’s grading system.18

Human NP Cells Isolation and Compressive Load
Cultures
Specimens from patients were obtained within 2 h after
discectomy. NP tissues were separated from the AF using a
stereotaxic microscope carefully and washed with phosphate-
buffered saline (PBS) to eliminate contamination and blood.
Specimens were digested for 40 min in 0.2% pronase and
washed with PBS. Then specimens were incubated in 0.25%
type II collagenase at 37 1C under gentle agitation. After 4 h, a
40-mm cell strainer was used to remove remaining tissue
debris. Freshly isolated NP cells were obtained after
centrifugation at 200 g for 8 min. The culture medium was
changed twice a week. Primarily, cultured NP cells (passage
1) were used for the following steps.

NP cells from patients with idiopathic scoliosis were cul-
tured in the compressive load environment. Briefly, NP cell
samples were subjected to compressive stress environment
in a compression culture chamber (Taikang Biological
Technology, Xi’an, China), which was linked with a high
pressure gas cylinder. Controllable compressive stress was
applied to the samples for 4, 24 and 48 h at 3 Mpa or at 0.3,
1.0 and 3.0 MPa for 48 h.19–21 The culture chamber works
with compressed gas from the cylinder to the culture dishes,
leading to compression of fluid media to the NP cells under
controlled pressure. Cells cultured at a similar condition
without compression loads were used as control.

Protein Isolation and Immunoblotting
NP cells from the IDD group and control group were used in
this step. In addition, to identify the stress influence, we
performed this step on samples from idiopathic scoliosis
following compressive load cultures. NP cells were prepared
in SDS buffer, detached from the culture dish with a cell
scraper and boiled for 5–10 min. Debris of the cells was re-
moved by centrifugation for 20 min at 4 1C. The protein
concentration was detected by the BCA assay (Sigma, Saint
Louis, USA). For separation of Triton X-100-soluble and -
insoluble fractions, Triton X-100 buffer (20 mM Hepes,
100 mM NaCl, 5 mM MgCl2, 5 mM EGTA, 1% Triton X-100,
1 mM PMSF, 10 mg/ml leupeptin, 10 m g/ml antipain) was
used. TX-100 soluble (supernatant) and insoluble (pellet)
fractions were obtained by homogenizing on ice and cen-
trifuged for 15 min at 15 000 g (4 1C). Both fractions were
dissolved either in Laemmli sample buffer or in urea buffer.
The samples were separated on 10% polyacrylamide gels.
Equal amounts of proteins were loaded on 10% SDS-PAGE.
Following transfer to nitrocellulose membranes, samples
were incubated with the primary antibodies as follows: rabbit
monoclonal anti-CK8, mouse monoclonal anti-pK8Ser-23,
anti-pK8Ser-73, anti-pK8Ser-431 (Abcam, Cambridge, USA),
and mouse monoclonal antibody specific to b-actin (Sigma,
Saint Louis, USA) was used as control. Antibody labeling was
identified using goat anti-rabbit or anti-mouse horseradish
peroxidase (HRP)-conjugated secondary antibodies (Cell
Signaling Technology, Boston, USA) and visualized using
enhanced chemiluminescence.

For immunoprecipitation, cells were solubilized in RIPA
buffer. After pelleting at 16 000 g for 15 min, cytokeratin was
immunoprecipitated from the supernatant using A/G-Se-
pharose coupled with anti-CK8 antibody. Proteins were so-
lubilized in Laemmli sample buffer and then immunoblotted
as described above with the relevant antibodies.

Immunofluorescence Staining of Frozen Specimens and
Cultured NP Cells
NP specimens from the IDD group and control group were
used in this step. Specimens were snap-frozen and cut in
25 mm sections transversally with a cryostat microtome. The
frozen sections were fixed in methanol at � 20 1C for 30 min.
Following blockage with 1% bovine serum albumin PBS, the
samples were incubated with rabbit monoclonal antibody to
CK8 (5 mg/ml) (ab32357, Abcam, Cambridge, USA), mouse
monoclonal anti-pCK8Ser-23, anti-pCK8Ser-73 and anti-
pCK8Ser-431 for 12 h at 4 1C. The samples were washed and
incubated with Alexa 488-conjugated goat anti-rabbit
secondary antibodies or fluor-conjugated anti-mouse sec-
ondary antibodies (Molecular Probes, Eugene, OR, USA) for
30 min in the dark at room temperature. For doubling
staining of CK8 and pCK8Ser-73, the antibodies mentioned
above was used simultaneously with the same procedure and
incubated in anti-rabbit and anti-mouse secondary anti-
bodies. As for the NP cells from patients with idiopathic
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scoliosis following compressive loads, cell were grown on
culture chamber slides and staining for CK8 and pCK8 were
performed in a similar process, as well as for the controls. For
DNA counterstain, the samples were incubated in medium
containing DAPI (40-6-diamid-ino-2-phenylindole) after
washing with PBS. Slides were visualized using a Leica mi-
croscope (Leica, Wetzlar, Germany).

PKC Activity and Translocation Assays
NP cells following compressive load cultures were used in this
step. PKC activity was measured using the SignaTECT
Protein Kinase C assay system (Promega, Madison, WI) ac-
cording to the manufacturer’s instruction. Briefly, cell lysates
were treated with [g� 32P] ATP and PKC-biotinylated peptide
substrate in substrate buffer at 30 1C for 5 min and spotted

onto SAM biotin capture membrane (Promega, Madison,
WI). Subsequently, membranes were washed and incor-
porated label measured by a scintillation counter. NP cells
cultured without compressive load were used as control.
In addition, NP cells pretreated with phorbol 12-myristate
13-acetate (PMA) (200 nM) for 24 h were used as positive
control.

Quantitative Real-Time PCR (qRT-PCR) Analysis
Total RNA in NP cells following compressive load cultures
was isolated using TRIzol Reagent (Ambion Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions. Reverse transcription to cDNA was performed
using a High-Capacity cDNA Archive Kit (ABI, Foster City,
CA, USA). RNA concentrations were measured using a Na-
noDrop instrument (NanoDrop, Wilmington, DE, USA). The
levels of mRNA were normalized to GAPDH mRNA controls.
All RT reactions, including GAPDH controls, were run in
triplicate in a GeneAmp PCR 9700 Thermocycler (ABI).
Quantitative real-time PCRs were done on a StepOne Plus
device (Applied Biosystems) with SYBR Premix Ex Taq kit
(TaKaRa). One microgram of cDNA was amplified at 95 1C
for 15 s followed by 40 cycles of 95 1C, 5 s and 60 1C for 30 s.
The dissociation curves were performed for all completed
SYBR Green reactions to rule out non-specific amplifications
and primer dimers. The relative amounts of mRNAs were
calculated using the comparative Ct (2�DDCt) method,
and samples without compressive load culture were used as

Figure 1 Western blot analysis. Eight NP tissues from patients with idiopathic scoliosis and eight NP tissues from IDD were used as control and IDD

groups, respectively. The samples were treated with SDS buffer. Equal amounts of proteins were loaded on 10% SDS-PAGE. Following transfer to

nitrocellulose membranes, samples were incubated with the primary antibodies of anti-CK8, anti-pK8Ser-73 and anti-b-actin. Antibody labeling was

identified using horseradish peroxidase (HRP)-conjugated secondary antibodies. Representative results showed CK8 expression in degenerate disc NP is

weaker than that of control, while the expression of CK8 phosphorylation Ser-73 (pCK8) showed a contrary tendency. Quantitative examination showed

a similar outcome. Data were performed in triplicate. Error bars represent s.e.m. *Po0.05.

Table 1 Human oligonucleotide primers used for real-time
quantitative polymerase chain

Gene Forward primer Reverse primer

PKC-a 50-GCCGCAGTGTCGTTTATGAAAGTA-30 50-GCTCCATGTGTGCCATTCAATTAG-30

PKC-e 50-TGGCGTGACAACTACCACCTTC-30 50-CCGGCCATCATCTCGTACATC-30

PKC-g 50-TGGAGTCCTGCTGTATGAGATGTTG-30 50-CAGTTTGTTCCATGATGGCTTGA-30

PKC-i 50-TTCCGAGCCATGCCAAATC-30 50-ATCACTGCCCGTCCACACTG-30

PKC-z 50-CTGGGTGTCCTTATGTTTGAGATGA-30 50-GACGTGTGAGGCCTTGACAGA-30

b-actin 50-GCCAGTGGATTCCGTACTGT-30 50-GAGCTTGCTTTCCTGATTGC-30
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controls. Predesigned primers for PKC-a, PKC-e, PKC-g,
PKC-i, PKC-z and b-actin as control were designed using the
OligoPerfectTM Designer Software (Invitrogen) and pur-
chased from Sangon (Sangon, Shanghai, China) (Table 1).

Statistical Analysis
Student’s t-test and ANOVA were used to compare para-
meters. A P value o0.05 was considered statistically sig-
nificant. The SPSS statistical package (SPSS, Chicago, IL,
USA) was used for the statistical analysis.

RESULTS
CK8 and its Phosphorylation in NP cells
Western blotting demonstrated a decreased CK8 expression
in IDD than that in the control, while the expression of CK8
phosphorylation Ser-73 (pCK8) showed a contrary tendency
(Figure 1). Consistent with the western blotting results,
immunofluorescence staining of CK8 and pCK8 showed a
similar tendency in NP sections (Figure 2). No differences
were observed in CK8 phosphorylation (Ser-23 and Ser-431)
between the IDD and control group.

Impact of Compressive Load on Phosphorylation of CK8
Mechanical stimulations, such as shear stress, have been
shown to induce phosphorylation and disassembly of keratin

Figure 2 Expression of CK8 and pCK8 (Ser-73) in NP tissues. Specimens from patients with idiopathic scoliosis and IDD were snap-frozen and cut in

25 mm transversally with a cryostat microtome. The frozen sections were fixed in methanol at � 20 1C for 30 min. Following blockage with 1% bovine

serum albumin PBS, the samples were incubated with primary antibodies to CK8 and pCK8Ser-73 for 12 h at 4 1C. The samples were washed and

incubated with fluor-conjugated secondary antibodies. For DNA counterstain, the samples were incubated in medium containing DAPI (40-6-diamid-ino-

2-phenylindole). Expression of CK8 and pCK8 (Ser-73) was detected by fluorescent probes in dark field. CK8 or pCK8 localizes either in the cytoplasm

within a single NP cell in control or cell clusters with multiple nuclei in degenerate NP. Bar¼ 30 mm.

Figure 3 Impact of compressive loads on CK8 solubility. NP cells from

eight patients with idiopathic scoliosis were cultured in the compressive

load environment for 4, 24 and 48 h at 3 Mpa or at 0.3, 1.0 and 3.0 MPa

for 48 h. Cytoskeletal preparations were separated into Triton X-100

(TX-100)-soluble and -insoluble fractions. Equal amounts of protein were

separated by 12.5% SDS-PAGE, transferred to nitrocellulose and

immunoblotted with anti-CK8 antibody. (a) Representative immunoblot

shows an increased solubility of CK8 upon exposure to compressive

load (3.0 MPa) for 4, 24 and 48 h compared with control (CT).

(b) Representative immunoblot shows an increased solubility of CK8

upon exposure to compressive load (48 h) at 0.3, 1.0 and 3.0 MPa

compared with control (CT).
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intermediate filaments in other cells. In the case of NP cells,
we assumed that compressive load might similarly be one of
the important contributors to the disassembly of CK8. Ac-
cordingly, NP cells were cultured in compressive load and
then were analyzed for CK8 expression. We used b-actin for
normalization, as it was found unaffected following
compressive load cultures.22 As shown in Figure 3a, NP cells
exposed to compressive load (3 MPa) for 4, 24 and 48 h ex-
hibited a time-dependent decrease in the amount of insoluble
(pelletable) CK8, which is consistent with significant in-
creases in the soluble (disassembled) protein. Meanwhile,
CK8 assembly depends on the degree of compressive load
as shown in Figure 3b. The expression of insoluble CK8
decreased in a load-dependent manner (0.3, 1.0 and 3.0 MPa)
in NP cells, whereas the expression of soluble CK8 increased.

Activation of PKC by Compressive Loads
NP cells are under a unique pathology circumstance in the
compact AF with high mechanical forces such as compressive
loads, which is indicated to activate multiple enzymes. It is
known that PKC is closely linked with mechanical stimula-
tion. PKC has an important role in the phosphorylation and
disassembly of CKs in many other cells as well. To further
investigate the molecular mechanisms of the compressive
load effects on phosphorylation and disassembly of CK8, the

PKC activity was measured in NP cells after compressive load
cultures. As shown in Figures 4a and b, NP cells exposed to
compressive load showed a time-dependent and degree-de-
pendent activation of PKC compared with control group.
Various PKC isoforms exist in NP cells, the chief of which
were PKC-a, PKC-e, PKC-g, PKC-i and PKC-z.23 To
determine the upregulated detailed isoforms after compres-
sive load cultures, qRT-PCR indicated the upregulated
expression mRNA of PKC-e (Figure 4c). Consistent with
the result, western blotting showed an increased expression
of PKC-e compared with the control. Pre-treatment with
bisindolymaleimide (Bis), a PKC inhibitor, prevented the
compressive load-mediated increase in PKC-e. In addition,
treatment with a PKC activator, PMA, increased PKC-e
expression (Figure 4d).

PKC-Mediated CK8 Phosphorylation and Disassembly
To determine the relationship between PKC and CK8 phos-
phorylation and disassembly, NP cells treated with PKC
activator PMA showed an increased CK8 phosphorylation.
Meanwhile, treatment with the PKC inhibitor Bis attenuated
the compressive load-mediated increase in CK8 phosphor-
ylation as shown by western blot analysis (Figure 5a). In
addition, NP cells treated with Bis prevented the disassembly
of CK8 exposed to compressive load (Figure 5b). No obvious

Figure 4 PKC in NP cells. (a, b) NP cells from eight patients with idiopathic scoliosis were exposed to either compressive load environment for 4, 24 or

48 h at 3 MPa or at 0.3, 1.0 and 3.0 MPa for 48 h and compared with static control cells. Total cell lysates were prepared, and protein kinase C activity

was assayed using the SignaTECT Protein Kinase C assay system. PKC activity increases in a time- and degree-dependent manner exposed to

compressive load. Error bars represent s.e.m. *Po0.05. (c) qRT-PCR measurement of PKC isoforms (PKC-a, PKC-e, PKC-g, PKC-i and PKC-z) quantifies the

mRNA expression in NP cells from eight patients with idiopathic scoliosis after exposure to compressive load at 3.0 MPa for 48 h. The values were

quantified and normalized to untreated cells, which was set at 1.0. Error bars represent s.e.m. *Po0.05. (d) NP cells from eight patients with idiopathic

scoliosis were cultured in compressive load at 3.0 MPa for 48 h. The samples were treated with SDS buffer. Equal amounts of proteins were loaded on

10% SDS-PAGE. Following transferred to nitrocellulose membranes, samples were incubated with the primary antibodies of anti- PKC-e and b-actin.

Antibody labeling was identified using horseradish peroxidase (HRP)-conjugated secondary antibodies. Representative western blot results showed an

increased PKC-e expression in NP cells after compressive load at 3.0 MPa for 48 h. Treatment with PMA and Bis were used as positive and negative

controls.
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morphological changes were found in the cells following
compressive load cultures. Immunofluorescence of CK8 and
pCK8 showed a similar outcome as the western blotting re-
sults (Figure 6).

DISCUSSION
Intermediate filaments such as CK8 are vital component of
cell cytoskeleton and have multiple roles in the nucleus and
the cytoplasm of eukaryotic cells. In particular, the main-
tenance of cell shapes under physical stimulation and the
regulation of intercellular signals are ascribed to intermediate
filaments. Studies show that CK8 expresses in notochord cells
during the original development of NP as a marker to classify
the origin of NP tissue.24,25 In addition, CK8 exists in adult
human NP cells and decreases with age or IDD.7,8 However,
the underlying mechanisms of the downregulation of CK8
are still unidentified. Here, we found that CK8 expression
decreases in IDD with phosphorylation in degenerate NP
cells. Compressive load is identified as a significant factor

contributing to the phosphorylation of CK8 with the
activation of PKC.

The increased expression of phosphorylated CK8 indicates
that phosphorylation is one of main causes of CK8 down-
regulation. Post-translational modifications, especially
phosphorylation, are commonly observed in the disassembly
and organization of intermediate filaments. It is well estab-
lished that phosphorylation occurs within the head and tail
domains, which are responsible for most of the structural
heterogeneity and presumed tissue-specific functions of in-
termediate filaments. In the case of CK8, a number of in vivo
phosphorylation sites have been mapped, which have essen-
tial roles in regulating filament assembly and disassembly
in vivo.26–29

Until now, several lines of evidence have demonstrated that
prolonged exposure to hyper-physiological loads is harmful
to the disc and consequently contributes to IDD.21,30 The
structure of NP is unique within the intervertebral disc,
which is under tremendous forces and compressive load
environment.31,32 The exact mechanisms of this effect are
complicated, including decreased proteoglycan production,
increased apoptosis, the accumulation of inflammatory
agents and cell volume changes.33–35 In this study, we
found that compressive load is a vital factor to mediate the
phosphorylation of CK8 in human NP cells. Phosphorylation
can result in disassembly of CK8, leading to the alternations
of cytoskeletion and cell signal transduction. As NP cells are
in a specific environment with various physical forces, the
degradation of CK8 might reduce the cells’ force resistance
ability and cause a harmful signal transduction, which results
in IDD.

To classify the link between compressive loads and CK8
phosphorylation, we found that PKC (the chief of which is
PKC-e) is activated in compressive load-cultured NP cells.
The activated PKC contributes to the phosphorylation of
CK8 and its disassembly. This finding sheds a novel light on
the molecular mechanisms of the impact of compressive
loads on IDD. In fact, studies have shown that intermediate
filaments could be phosphorylated by PKC in many other
cells, and this impact could lead to abnormal physiological
processes.36,37 In the case of NP cells, our results suggest that
activated PKC results in the downregulation of CK8, which
might be an important contributor to IDD. On the other
hand, PKCs, mainly PKC-g, can lead to an increase in matrix
synthesis and cell proliferation, suggesting a beneficial
function of PKC.23 However, our findings indicate that
PKC might contribute to IDD with the disassembly of
cytoskeletion in NP cells. This contradiction might be
warranted given that PKC may have a double role in IDD
with different isoforms, especially in different physical
environment. In addition, our results were consistent with
Ellman et al,38 who found suppression of the PKC-d pathway
was beneficial in the prevention of IDD. Further studies are
needed to confirm whether PKC-d has an impact on CK8
expression.

Figure 5 PKC regulates CK8 phosphorylation and assembly in

compressive loaded NP cells. NP cells from eight patients with idiopathic

scoliosis were cultured in compressive load at 3.0 MPa for 48 h. (a) The

samples were treated with SDS buffer. Equal amounts of proteins were

loaded on 10% SDS-PAGE. Following transfer to nitrocellulose

membranes, samples were incubated with the primary antibodies of anti-

CK8, anti-pK8Ser-73 and anti-b-actin. Antibody labeling was identified

using horseradish peroxidase (HRP)-conjugated secondary antibodies.

Representative results showed that PKC phosphorylated CK8 in NP cells,

which were exposed to 3.0 MPa for 48 h. Treatment with PKC activator

PMA showed a similar result, and treatment with Bis, a PKC inhibitor,

restrained phosphorylation. (b) NP cell cytoskeletal preparations were

separated into Triton X-100-soluble and Triton X-100-insoluble fractions.

Equal amounts of protein were separated by A/G-Sepharose, transferred

to nitrocellulose and immunoblotted with anti-CK8 antibodies. CK8 was

disassembled in compressive load cultures. Treatment with Bis restrained

the impact of compressive load. S, Triton X-100-soluble; IS, Triton X-100-

insoluble.
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Although our study sheds new light on the molecular
mechanisms of CK8 downregulation in NP cells, there are
several drawbacks in the present study. For one, the age of
patients with scoliosis as the control group was relatively
younger than that of the IDD group. The variation was
somewhat inevitable due to the hallmarks of adolescent
scoliosis. However, we used unified MRI grading system to
clarify the degeneration grades. For another, PKC-e-specific
inhibitor might be more useful to confirm the data. However,
NP cell viability might be affected by procedures such as

transient permeabilization by saponin to introduce the in-
hibitor into cells. Moreover, Smolders et al39 found that
notochordal cells maintain their phenotype when cultured in
monolayer for 10 days. As CK8 is expressed in notochordral
cells,40,41 whether compressive load or PKCs affect CK8
expression especially in the first decade of human life in these
cells is unknown.

In conclusion, this is the first study to show the molecular
mechanisms of CK8 downregulation in NP cells based
upon multiple lines of evidence. As the NP is in a special

Figure 6 Reorganization of CK8 and pCK8 in NP cells. NP cells from eight patients with idiopathic scoliosis were cultured in compressive load at

3.0 MPa for 48 h. The cells were then fixed in methanol at � 20 1C for 30 min. Following blockage with 1% bovine serum albumin PBS, the samples

were incubated with primary antibodies to CK8 and pCK8Ser-73 for 12 h at 4 1C. The samples were washed and incubated with fluor-conjugated

secondary antibodies. CK8 was phosphorylated after compressive load cultures compared with the control. Treatment with PMA showed a similar

result, and treatment with Bis, a PKC inhibitor, restrained phosphorylation. Bar¼ 20 mm.
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environment with various physical forces, our findings pro-
vide clues regarding a molecular link (PKC) between com-
pressive load and alterations in CK8, which laid a foundation
in the study of IDD pathology.
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