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We theoretically and numerically investigate the interplay between diffusion of a surface-bound

receptor and its reaction with an opposing ligand. Special attention has been paid to the mechanical

regulation of bond association by varying the initial gap distance and relative separation speed

between the protein-bearing surfaces. Such diffusion-reaction coupling effects can cause the apparent

on-rate or reciprocal of the average waiting time for bond formation, to be not constant, but instead a

function sensitive to the system parameters that affect the transport of proteins. The results provide a

quantitative understanding of how significantly the transport mechanism can affect overall binding

behavior of molecular interactions and call for a paradigm shift in modeling receptor-ligand bond

association when the protein-bearing surfaces are in relative separation. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4834915]

Reversible binding and unbinding between specific

receptors and ligands mediate a variety of adhesion-based

processes in cellular behaviors such as spreading, migration,

differentiation, and polarization.1 Binding and unbinding of

receptor-ligand bonds are commonly characterized by meas-

uring their association and dissociation kinetic rates, which

are tightly regulated by physical factors and biochemical sig-

nals that are still being elucidated. The force dependence of

bond dissociation has been extensively studied at single-

molecule level by force-clamp2–4 or force-ramp5–7 spectros-

copy, which fosters Kramers’ theory of thermally assisted

escape crossing transitional energy barrier.8 In contrast, ex-

perimental quantification of bond association kinetics is few

and its detailed regulation mechanisms remain to be fully

understood from theoretical point of view.9,10

The intrinsic association rate between complementary

receptor-ligand molecules is typically studied in three-

dimensional situations where at least one protein is in solu-

tion.11 However, cell adhesion often takes place between

opposing surfaces of cell membrane or extracellular matrix,

where specific receptor and ligand molecules are anchored.

Therefore, modeling the association dynamics between

surface-tethered molecular pairs is more physiologically rel-

evant. The association of receptor-ligand bonds has been

shown to play a crucial role in understanding the collective

behaviors of multi-bond clusters, where enhanced strength

and stability are attributed by bond reforming among the

bond ensemble.12–14 The failure of multiple catch-bonds at

various loading conditions has also been studied, where the

bond association is modeled by a rate expression in closed

form that decays with increased receptor-ligand distance.15 For

more multi-bond adhesion models, receptor-ligand association

has been considered as similar rate process in studying cells’

spreading on16 and detaching from underlying substrates,17

coherently with other important aspects such as nonspecific

interaction, dissociation of specific bonds, in-membrane diffu-

sion of receptors, as well as membrane deformation. Recently,

the cooperative adhesion of multi-bond clusters has also been

investigated under a dynamic loading condition, both theoreti-

cally and experimentally, where the opposing protein-bearing

surfaces are separated at a constant speed.18–20

Most of the existing studies12–20 have assumed that the

rate of bond formation is constant or dependent on the

receptor-ligand distance, with few concerns about the rela-

tive motion in affecting the binding process. However, rela-

tive motion between protein-bearing surfaces is inevitable in

many scenarios of cell adhesion. In the cases of dynamic

membrane peeling,21 filopodia protrusion,22 or cell rolling

on surfaces,23 the reacting protein molecules are bound on

cell or matrix surfaces, and the intra- or extra-cellular envi-

ronments, e.g., actin contractility or external flow, drive the

motion of protein-carrying surfaces, resulted in bond forma-

tion against dynamic separation. We should pointed out that

Chang and Hammer24 have brilliantly conceived a quantita-

tive approach for the association rate of surface-tethered

molecules when the surfaces are sliding parallel to each

other, but a model of bond formation is still lacking to

account for the effects of relative separation between the

opposing protein-bearing surfaces.

Here, we present a theoretical model to understand the

association kinetics of surface-bound protein pairs, with spe-

cial attention paid to the mechanical regulation of bond asso-

ciation by varying the initial gap distance and relative

separation speed between the specific proteins. The work

should be of immediate use in understanding the type of cell

adhesion problems in Refs. 18–20, where the transport of re-

active biomolecules and surface separation are competing

factors in bond formation. In our modeling, the essentiala)Electronic addresses: jqian@zju.edu.cn and mmhyao@polyu.edu.hk.
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feature of receptor-ligand association process is made com-

plicated by the fact that the adhesion between receptor and

ligand molecules requires two essential steps: it first requires

a transport-governed phase for the opposing reactants to be

close in contact, overcoming the initial gap distance and incre-

mental surface separation, then biochemical reaction can take

effect at the intrinsic rate constant. Thus, the apparent kinetic

information from the process is really mixed time scales com-

bining both the transport and reaction terms. In single pairs of

receptor and ligand molecules residing at cell-cell or cell-

matrix interface, transport of proteins can be a limiting factor

of the entire association process and the rate of bond forma-

tion is expected to be affected by the initial gap distance, rela-

tive separation speed, medium viscosity, stiffness of proteins,

etc., that can possibly influence the transport process.

Consider a biophysical model describing the transport-

reaction process of a receptor-ligand pair (Figure 1(a), for

example), where two reactive biomolecules are tethered to

opposing surfaces with initial distance d0 and separated at a

constant speed v � 0. The current surface separation at time t
is simply d ¼ d0 þ vt. We postulate that the instantaneous

motion of the receptor against the tethering is essentially one

dimensional. Suppose that the pair of receptor and ligand can

bind at an intrinsic constant rate k0
on when they fall into a bind-

ing distance lbind in close proximity; when they are apart

beyond the binding distance, the receptor has to first approach

the binding pocket of the ligand through Brownian motion.

We further assume for simplicity that the ligand is fixed on

one surface while the receptor is tethered to the other by a lin-

ear spring with stiffness kb and rest length lb (Figure 1(b)). A

large ensemble of nominally identical trials is described by

means of the probability density function q x; tð Þ, i.e., the prob-

ability of finding the receptor in position x at time t. We

denote the flux of receptor motion in x direction at time t by

j x; tð Þ and the local bond association rate by s x; tð Þ.

Following the conservation law, the local rate of change

in q x; tð Þ must be equal to the negative of the local flux

divergence, minus the local loss due to bond association, or

@q x; tð Þ
@t

¼ � @j x; tð Þ
@x

� s x; tð Þ; (1)

throughout �lb � x � d0 þ vt� lb in the coordinate setting,

x ¼ 0 picked as the equilibrium position of the tethering

spring (Figure 1(b)). With the understanding that the flux of

receptor motion should be proportional to the local gradient

in the chemical potential, j x; tð Þ can be related to the proba-

bility density function q x; tð Þ and the landscape of potential

energy U xð Þ through25

j x; tð Þ ¼ �D
@q x; tð Þ
@x

þ q x; tð Þ
kBT

dU xð Þ
dx

� �
; (2)

where

U xð Þ ¼ kbx2

2
; �lb � x � d0 þ vt� lbð Þ (3)

is the truncated harmonic potential due to the tethering, kb

being the spring constant, kB in Eq. (2) is the Boltzmann con-

stant, T is absolute temperature, and D is the diffusivity of

receptor molecules, which is a function of receptor size and

medium viscosity by Stokes-Einstein relation. The reaction

term in Eq. (1) is

s x; tð Þ ¼ k0
on q x; tð Þ H x� d0 þ vt� lb � lbindð Þð Þð
�H x� d0 þ vt� lbð Þð ÞÞ ; (4)

according to the first-order kinetic equation. Regarding the

depleting reaction term s x; tð Þ via receptor-ligand bond forma-

tion, there is no basis to expect association occurrence when

the opposing molecules are far from each other, and the region

where reaction can possibly happen is therefore characterized

through the length scale lbind, as defined by the reaction win-

dow H x� d0 þ vt� lb � lbindð Þð Þ � H x� d0 þ vt� lbð Þð Þ in

Eq. (4), H being the Heaviside step function. Combination of

Eqs. (1)–(4) leads to the Smoluchowski type partial differen-

tial equation governing the spatiotemporal evolution of the

probability density function q x; tð Þ:

@q x; tð Þ
@t

� D
@

@x

@q x; tð Þ
@x

þ kbx

kBT
q x; tð Þ

� �

þ k0
onq x; tð Þ H x� d0 þ vt� lb � lbindð Þð Þð

�H x� d0 þ vt� lbð Þð ÞÞ ¼ 0; (5)

which is subjected to the moving boundary condition

j �lb; tð Þ ¼ j d0 þ vt� lb; tð Þ ¼ 0 indicating that the surfaces

are impenetrable, and initial condition q x; 0ð Þ ¼ d xð Þ, where

d xð Þ is Dirac delta function. When the reaction term is

absent, the model immediately reduces to the classical

Smoluchowski equation describing Brownian motion in a

harmonic potential.

Choosing lb and 1=k0
on as the basic length and time

scales in the problem, we proceed by grouping all the system

parameters as follows:

FIG. 1. (a) Bond association between opposing receptor and ligand mole-

cules. The P-selectin (Protein Data Bank code: 1G1Q) and PSGL-1 (Protein

Data Bank code: 1G1S) molecules are used as an example. (b) The process

of bond association is modeled as two essential steps: diffusion of receptor

molecules along the energy landscape of a truncated harmonic potential and

bond formation between the opposing molecules in close proximity.

223702-2 Qian et al. Appl. Phys. Lett. 103, 223702 (2013)
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k¼ D

k0
onl2

b

; j¼ kbl2
b

kBT
; Lbind ¼

lbind

lb

; D0 ¼
d0

lb

; V ¼ v

k0
on lb

:

(6)

According to the representative values lb ¼ 25 nm,26,27

kb ¼ 0:5pN=nm,26,27 and lbind ¼ 1 nm (Ref. 28) for integrin

molecules, we estimate that j ¼ 76 and Lbind ¼ 0:04. The dif-

fusivity D of receptor molecules is expected to be

�4� 10�11m2=s from Stokes-Einstein relation with typical

values of receptor radius (�5 nm, Ref. 29) and medium vis-

cosity (�1 mPa � s, Ref. 30). Taking k0
on to be �6� 104/s,31 k

is estimated to be a quantity about unity. We then vary the

rest 2 parameters in Eq. (6) to examine the dependence of

apparent association dynamics on the initial gap distance and

relative separation speed in the competition between physical

transport and biochemical reaction, as explicitly described by

Eq. (5) and associated boundary/initial conditions.

The solution to the boundary value problem has been car-

ried out by numerical finite element method. The numerical

procedure leads to discrete values of the probability distribu-

tion q x; tð Þ at 1000 equally spaced values of x at incremental

time step dt, accounting for the dynamic evolution in q x; tð Þ
and the moving boundary. Within an ensemble of nominally

identical trials, the association dynamics is understood by cal-

culating the fraction of all events, which remains unbound af-

ter total elapsed time t in the observation, denoted as R tð Þ.
Equivalently, R tð Þ represents the probability that a single

receptor-ligand pair remains unbound after time t, termed as

“survival probability” in the following discussions.

Let us first examine the behavior of bond formation

when the opposing surfaces are stationary to each other (i.e.,

V ¼ 0). Clearly, R tð Þ is the area under each distribution of

q x; tð Þ at given time points, as demonstrated in Figure 2(a).

This quantity generally has the initial value R 0ð Þ ¼ 1, exhib-

its the asymptotic behavior R tð Þ ! 0 as time becomes suffi-

ciently large (Figure 2(b)), and its dynamic behavior is

controlled by the coupling between intrinsic bond associa-

tion kinetics and the underlying diffusion process of receptor

molecules. The theoretical approach is validated by its excel-

lent agreement with the corresponding Monte Carlo

simulations.32

The average waiting time (dimensionless) for bond asso-

ciation, or reciprocal of the apparent on-rate, is therefore

Tw ¼ k0
on

ð1
0

� _R tð Þ � t dt; (7)

from the R versus t relation given in Figure 2(b). The de-

pendence of Tw on D0 is plotted in Figure 3(a), favorably

compared to the mean first passage time of bond making

from the Monte Carlo simulations.32

In the case that V ¼ 0 and k ¼ D= k0
onl2b

� �
is sufficiently

large, the transport of a receptor molecule in its configuration

state is much faster than its reaction with ligand, so that

q x; tð Þ should obey the Boltzmann distribution at any time

p xð Þ ¼ 1

Z
exp � kbx2

2kBT

� �
; (8)

FIG. 3. (a) The average waiting time Tw as a function of the gap distance D0 between the opposing surfaces when V ¼ 0 (Curve: model predictions; Symbols:

Monte Carlo simulations). (b) The apparent on-rate kon=k0
on, defined as the reciprocal of the average waiting time Tw, as a function of the surface gap distance

D0. The results show a smooth transition between fast and slow molecule diffusion relative to the biochemical reaction, governed by the dimensionless parame-

ter k ¼ D= k0
onl2

b

� �
. The on-rate results based on Boltzmann distribution (k!1) in Refs. 31 and 33 and “frozen” receptors (k! 0) serve as the two limiting

cases.

FIG. 2. (a) Time evolution of the prob-

able location of unbound receptor mol-

ecules (D0 ¼ 1:5). (b) Plots of the

survival probability R, defined as the

probability that a single receptor-

ligand pair remains unbound versus

(normalized) time k0
ont for a range of

initial gap distance D0. Model predic-

tions (curves) and Monte Carlo simula-

tions (circles) agree well to each other.

Crosses represent the certain time

points appearing in (a).

223702-3 Qian et al. Appl. Phys. Lett. 103, 223702 (2013)
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where Z is the partition sum that can be explicitly determined

by the normalization condition
Ð d0�lb
�lb

p xð Þ dx ¼ 1.31,33 The

apparent association rate kon is therefore k0
on multiplied by

the probability of the receptor falling into the binding region

d0 � lb � lbind; d0 � lbð Þ, which recovers the on-rate descrip-

tion adopted in Refs. 31 and 33 as

kon ¼
k0

on

Z

ðd0�lb

d0�lb�lbind

exp � kbx2

2kBT

� �
dx: (9)

In the opposite limit k! 0, the transport of receptor is

nearly “frozen” compared to the time scale of bond reaction.

As such, the apparent on-rate (kon=k0
on) will be unity if

D0 � 1:04, where the receptor and ligand molecules are al-

ready in contact or negligibly small if D0 > 1:04 because the

transport process takes too much time. Figure 3(b) plots the

apparent on-rate as a function of the surface separation D0

for several values of k, indicating a smooth transition

between fast and slow molecule diffusion relative to bio-

chemical reaction. Given V ¼ 0, the gap distance D0 governs

the relative contribution from transport and reaction terms to

the overall binding process, and roughly speaking, the

boundary between reaction- and transport-limited regions is

at d�0 ¼ lb þ lbind. Following the approach by Ref. 34, the

dominating “resistance” to bond association is from reaction

for d0 < d�0, or from transport for d0 > d�0. Variations in sur-

face gap distance, molecule length, binding distance, as well

as tethering stiffness can result in a broad range of kinetic

association response that may relate to tight regulation mech-

anisms in cell adhesion.

To further examine the transport-reaction coupling in

the presence of receptor-ligand separation (i.e., V > 0), the

values of R tð Þ at any particular time points are also extracted

by numerical integration of the probability distribution over

those spatial intervals within �lb � x � d0 þ vt� lb for vari-

ous values of V (i.e., v= k0
onlb

� �
), as shown in Figure 4(a).

Interestingly, as V increases to above a critical value, say V�,
R tð Þ first decreases from its initial value of unity until a non-

zero steady-state value is reached, denoted by Rst in Figure

4(a). In other words, Rst represents the certain fraction of

total events for which bond association never happens or

equivalently the probability that one single bond will remain

unbound for infinitely long time. Clearly, the critical separa-

tion speed V� that leads to non-zero Rst should drop down as

the initial gap distance D0 increases (Figure 4(b)). These

results call for a paradigm shift in modeling the receptor-

ligand bond association when the protein-bearing surfaces

are in relative separation:18–20 depending on the separation

speed V, the rate of receptor-ligand association should take

negligible value for the probability of Rst, or follow certain

distributions for probability 1� Rstð Þ as the portion of curves

before R tð Þ ¼ Rst is reached, referring to Figure 4(a).

The augment of association waiting time to infinity by

threshold values of separation speed, as demonstrated in

Figures 4(a) and 4(b), suggests an appealing interpretation:

the overall rate of bond formation is governed by two indi-

vidual “resistance” in series: receptor diffusion into the reac-

tion region in proximity to the opposing ligand and intrinsic

reaction between the biomolecules. Compared to the case

where protein-bearing surfaces are stationary to each other,

the separation speed V appears as a factor adding more bar-

riers to the former process. As V is smaller than V�, the

opposing protein pair is in relative separation but receptor

transport is relatively fast, enabling the receptor to catch up

with the moving ligand for successful bond making; As V
goes beyond V�, the receptor and ligand are separated too

fast so that it is hardly possible for the receptor to get into

the reaction region irrespective of time.

As a relevant and important application of our work in bi-

ological functions, the immunological binding between T cell

receptors (TCRs) on T cell surfaces and peptide–major histo-

compatibility complex (MHC) molecules on antigen-presenting

cells (APCs) has been revealed to strongly depend on the gap

distance between the two surfaces:35 T cell and APC mem-

branes at 40 nm apart have low binding affinity, while forma-

tion of TCR–peptide–MHC bonds is greatly promoted when

the membrane spacing is reduced to �15 nm by actin-based

protrusion. According to the present analysis, it is reasonable to

speculate that 15 nm is a length scale close to the combined

length of molecules and binding distance (d�0), so that position-

ing protein anchoring surfaces at this distance apart enables the

opposing molecules to find each other for bond making.

Furthermore, the change of membrane spacing is achieved by

retraction or protrusion of actin-based structures, where

dynamic surface separation or approach is inevitable. The pres-

ent framework and results should be helpful in understanding

the actual association kinetics in such physiological conditions.

In summary, we have performed both theoretical and

numerical analyses to investigate the coupling process of

physical transport and biochemical reaction that mediate

receptor-ligand association. Controlled initial gap distance

and relative separation speed, together with other involved

physical parameters including receptor diffusivity, molecular

length, binding distance, tethering stiffness, etc., are found to

FIG. 4. (a) Time-varying behaviors of

the survival probability R when V > 0

(D0 ¼ 1:1). R first decreases from its

initial value of unity and reaches a non-

zero plateau value, denoted as Rst, as V
is increased to beyond a critical value

(i.e., V�). (b) Rst, representing the prob-

ability that a single receptor-ligand pair

remains unbound for infinitely long

time, as a function of the separation

speed V. V� can therefore be deter-

mined as the critical speed that leads to

non-zero fraction of “hopeless” bond

formation.
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govern the transport- and reaction-limited transition in bond

formation. The results should be useful in understanding

phenomena such as dynamic membrane peeling, actin-driven

membrane separation, and cell rolling on surfaces, where

bond association occurs in a scenario of relative surface sep-

aration. We have also connected the apparent waiting time

of bond formation to the intrinsic association rate constant,

so the proposed model can be used in an inverse approach to

determine intrinsic kinetic parameters from apparent kinetic

measurements on bond association. It should be pointed out

that the present study is based on one-dimensional configura-

tion, which may be extended to higher dimensions in more

sophisticated models. To achieve that, the tethered diffusion

process of protein molecules must be considered in a three-

dimensional energy landscape, which is unbounded in the

two directions parallel to the protein-bearing surfaces but

limited by impenetrable walls in the perpendicular direction.

Furthermore, the binding radius should set a hemi-spherical

zone that captures the molecules in the three-dimensional

landscape. These factors will involve complicated mathemat-

ical or geometrical considerations upon the present one-

dimensional approach.
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