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Stability Analysis of Continuous-Time Switched Systems
With a Random Switching Signal

Junlin Xiong, James Lam, Zhan Shu, and Xuerong Mao

Abstract—This technical note is concerned with the stability analysis of
continuous-time switched systems with a random switching signal. The
switching signal manifests its characteristics with that the dwell time in
each subsystem consists of a fixed part and a random part. The stochastic
stability of such switched systems is studied using a Lyapunov approach. A
necessary and sufficient condition is established in terms of linear matrix
inequalities. The effect of the random switching signal on system stability
is illustrated by a numerical example and the results coincide with our
intuition.

Index Terms—Dwell time, random switching, stochastic stability.

I. INTRODUCTION

Generally speaking, a switched system is a dynamical system that
consists of a finite number of subsystems and a switching signal. The
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subsystems are described by differential equations and are employed
to capture the dominant dynamics of the system in different operation
modes. The switching signal decides which subsystem is being acti-
vated (equivalently, which operation mode the system is working in) at
a particular time. The study on switched systems has attracted a lot of
research attention [1]–[4]. Switched systems have various applications
such as in communication networks [5], aerospace industry [6] and net-
worked control systems [7]–[9]. The readers are referred to [10], [11]
for a general introduction and [12] for a recent review.
A special class of switched systems with a random switching signal

is Markovian jump systems where the switching signal is modeled by
a Markov process [11]. The sliding mode control of Markovian jump
systems has been studied in [13]. The filtering problem has been in-
vestigated in [14]. Some results of Markovian jump systems with time
delays have been reported in [15]. When there are switching proba-
bility uncertainties, the stochastic stability problems have been studied
in [16]–[18] recently.
In this technical note, a new class of random switching signals

is proposed to activate the subsystems of switched systems, and a
necessary and sufficient condition is established for the stochastic
stability analysis. For switched systems with the switching signal
proposed in this technical note, the dwell time in each subsystem
consists of two parts: the fixed dwell time and the random dwell
time. The fixed dwell time plays a similar role as the “dwell time” in
deterministic switched systems [19]; the random dwell time is corre-
sponding to the exponentially distributed “sojourn time” in Markovian
jump systems [20]. With the proposed class of random switching
signals, the switched system can be transformed to a Markovian jump
system with state jumps at the switching time instants. The stochastic
stability problem is then studied using a Lyapunov approach; and a
necessary and sufficient condition is obtained. When the parameters
of the random switching signal are known, the system stability can
be checked by solving a set of coupled linear matrix inequalities.
A numerical example is used to illustrate the effect of the random
switching signals on system stability. The stability regions and insta-
bility regions are numerically determined for different values of the
fixed dwell time parameters. The numerical results demonstrate that:
1) when all the subsystems are stable, fast switching may destabilize
the system, and hence it should be avoided; 2) when both stable and
unstable subsystems are present, dwelling in the stable subsystems
longer can increase the degree of the stability, otherwise the system
will tend to become unstable; and 3) when all the subsystems are
unstable, both fast and slow switching can destabilize the system, the
system stability, however, may sometimes be achieved by choosing
the fixed dwell time parameters properly.
Compared to the previous work in [6], [11], [13]–[18], and [20], the

work in this technical note provides a new and more general view of
switching, and the corresponding stability results. The class of random
switching signals in this technical note allows that a fixed dwell time
can exist for each mode before a Markov switch occurs. Hence, the
systems in this technical note can possibly accommodate more realistic
situations; the results in this technical note should be applicable, in
principle, to all previous cases. Moreover, the results in this technical
note also lay a foundation for novel hybrid controller design, which is
illustrated by the numerical example in Section IV.
Notation: and are, respectively, the -dimensional Eu-

clidean space and the set of real symmetric positive definite
matrices. Notation , where and are real symmetric
matrices, means that the matrix is negative definite. The
superscript “ ” denotes the transpose for vectors or matrices.

0018-9286 © 2013 IEEE
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Fig. 1. Sample path of the random switching signal.

refers to the Euclidean norm for vectors. and are, respec-
tively, the maximum and the minimum singular values of square
matrices. Moreover, let be a complete probability space.

and stand for the expectation and the generated -algebra,
respectively.

II. PROBLEM FORMULATION

Consider a class of switched linear systems defined on a complete
probability space

(1)

where , , is the system state,
is the switching signal deciding the current system

operation mode. Suppose the system switches its operation mode to
at time , the characteristic of the switching signal can

be described as follows. For time , where , no
switching is allowed almost surely; that is

if
if

(2)

where is a small time increment satisfying
. The parameter plays the role of “dwell time” in deterministic

switched systems [19], and is called the fixed dwell time of the system
in (1). For , mode switching occurs according to the mode
transition probabilities given by

if
if

(3)

where if , and if . If the next

switching occurs at time , we can define ,
which is an exponential random variable with parameter
according to (3). To simplify the derivation of the main results, the
system (1) is assumed to have no absorbing mode; that is, for
all . The random variable plays the role of “sojourn time”
in Markovian jump systems [11], [20], and is called the random dwell
time of the system. The dwell time of system (1) in mode is defined
as , indicating the total time length of the
system (1) being in mode . As a result, the time interval can
be correspondingly divided into two parts:

. It can be seen from above that , and
.

Example 1: Let us illustrate the property of the switching signal
with an example. Suppose . A sample path of is
illustrated in Fig. 1. Here, the system changes its mode at time from
Mode 1 to Mode 3. In view of (2), there will be no switching almost

Fig. 2. State trajectory of the switched systems.

Fig. 3. State trajectory of the switched systems with state jumps.

surely during the interval ; the system is allowed to switch
modes after the time and obeys the switching rule in (3).
Definition 1: Let be the state trajectory of system (1). Then

system (1) is said to be stochastically stable if

(4)

for any initial system state and any initial operation mode
.

Remark 1: The above stochastic stability definition is analogous to
that of Markovian jump systems [20]. It is also a uniform stability in the
sense that the inequality (4) is required to be true over all the switching
signals defined by (2)–(3).

III. STABILITY ANALYSIS

The stability property of the system in (1) is studied via two steps.
In Step 1, the stochastic stability of the system in (1) is shown to be
equivalent to the stochastic stability of an auxiliary system. In Step 2,
the stability of the auxiliary system is studied by a Lyapunov approach,
and a necessary and sufficient condition is established.

A. Switched Systems With State Jumps

A switched system with state jumps is the auxiliary system to be
constructed in this section. The stability of the constructed auxiliary
system is shown to be equivalent to that of the system in (1).
Let us first study the state trajectory of system (1) to motivate the

construction of the auxiliary system. A sample path of the state trajec-
tory of system (1) is illustrated in Fig. 2. Suppose the system switches
to mode at time . Then the system state will evolve
from at time to at time
almost surely. The idea here is to squeeze the interval to
a point and make the system in (1) having a state jump from

to at time , as illustrated in Fig. 3, where
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. As a result, the system in (1) can be transformed to a
randomly switched system with state jumps

(5)

where is the system state, , , are the time instants

when the system switches its operation modes.

is the system state just before switches. is a Markovian process
taking values in and equipped with the transition probabilities

if
if

(6)

where are the same as those in (3). The mode transition rate matrix
is denoted by . Suppose that the system (5) jumps

to mode at time , the dwell time of system (5) in mode
is defined as . It follows from (6) that is

an exponentially distributed random variable with parameter . In
other words, has the same distribution as the corresponding random
dwell time in (3). Also, we have that , ,
and .

For the systems in (1) and (5), we define the filtrations
and

for , respectively. Now we are ready to establish the equivalence
of the stability properties between system (1) and system (5).
Lemma 1: The stochastic stability of the system in (1) is equivalent

to the stochastic stability of the system in (5).
Proof: The equivalence is proved based on the following obser-

vation: Given any sample path of the system in (5), there is
a corresponding sample path of the system in (1); and vice
versa. Furthermore, the two sample paths satisfy the following proper-
ties: For :
1) , and .
2) .
3) .
4) for .
The fourth property is a direct result of the first three proper-
ties; that is,

.
Suppose that the system in (1) is stochastically stable, the sta-

bility of the system in (5) follows from:

The second “ ” holds because of the fourth property of the two sample
paths.

Suppose that the system in (5) is stochastically stable. Note that
is an exponential random variable with parameter . In view of

Lemma 2 and Lemma 3 (see Appendix), there exists a real number
such that

(7)

for any and any , where
. The first “ ” holds due to the

property of the process , the first “ ” holds because of
Lemma 2, and the last “ ” holds because of Lemma 3. Now, we have

(8)
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where and
. The last “ ” holds because of (7). Therefore

(9)

Here, the “ ” holds because of (8), and the last “ ” holds because of
the four properties stated in the beginning of the proof.
But, by the property of the conditional expectation, we have

and

Taking the conditional expectation on both sides of (9), we have

Finally, the stability of the system in (5) implies that

Therefore, the system in (1) is stochastically stable.
Remark 2: Lemma 1 still holds if the assumption of no absorbing

mode existing in the system is removed. In this case, the proof is still
valid before the systems enter a absorbing mode. Once the systems
enter a absorbing mode, the subsystem corresponding to the absorbing
mode must be a stable subsystem.
In view of Lemma 1, the study of stability of the system in (1) is

transferred to the stability study of system (5). Since the switching
signal of system (5) is a Markov process, the stability analysis becomes
solvable.

B. Stability Result

In this section, a necessary and sufficient condition is derived for the
stochastic stability analysis of system (1) based upon Lemma 1.
Theorem 1: System (1) is stochastically stable if and only if there

exist matrices , , such that

(10)

for all .
Proof: Suppose that there exist matrices such that

(10) holds for all , we shall show that the system in (5) is stochas-
tically stable. Consider the Lyapunov function

where . It follows from (5) and (6) that

(11)

(12)

(13)

(14)

In (11), is considered as the system state just before the mode
switches. At the switching time, the system state jumps from to

. After the switching, the system state change is given by
.
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Let .
It follows from (11)–(14) that

Therefore, the infinitesimal generator of is given by

(15)

for any , where .
From (15), we obtain

and

for any and any . By Dynkin’s formula [21], we
have

for any and . Therefore, the system in (5) is stochasti-
cally stable, and so is the system in (1) in view of Lemma 1.

According to Lemma 1, the stochastic stability of the system in
(1) implies the stochastic stability of the system in (5). We will show
that there exist matrices such that (10) holds for all .
Let be the state trajectory of the system in (5). Given any ,

and , , define a matrix-valued function
of and such that

(16)

where . The quadratic form on the left side of
(16) is non-decreasing as increases since . It is also bounded

from above as since the system in (5) is stochastically stable.
Thus exists. We can define a new
matrix-valued function of such that

for any and . Therefore, we have

(17)

We have constructed a set of matrices for all
. In the following, we show that are solutions to (10).

It follows from (16) that

(18)

The second “ ” holds because is a Markov process; the
last “ ” follows from the direct calculation of
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TABLE I
SYSTEM DATA OF THREE SWITCHED SYSTEMS

Fig. 4. Case 1: stability region of a switched system composed of two stable
subsystems. The shaded area is the stability region. It shows that slow switching
is recommended in this case.

It follows from (17) that and
. Taking limit on the right

side of (18) as , we have

(19)

Dividing both sides of (19) by and taking limit as , we
have

(20)

Because (20) holds for any and , we have
. This completes the whole proof.

Remark 3: When the fixed dwell time for all ,
Theorem 1 reduces to the well-known stochastic stability result for
Markovian jump linear systems [20]. This is expected as the system
in (5) will reduce to a Markovian jump linear systems if for all

. Actually, the proof of Theorem 1 is inspired by the proof of the

Fig. 5. Case 2: stability region of a switched system composed of a stable sub-
system and an unstable subsystem. The shaded area is the stability region. It
shows that increasing the dwell time in the stable subsystem will stabilize the
system.

Fig. 6. Case 3: stability region of a switched system composed of two unstable
systems. The shaded area is the stability region. It shows that either slow or fast
switching can destabilize the system and that a careful chosen dwell times can
stabilize the system.

stability result for Markovian jump systems. Also, the computational
complexity of Theorem 1 is the same as the stochastic stability result
for Markovian jump linear systems.

IV. ILLUSTRATIVE EXAMPLE

In thissection,anumericalexample isused to illustrate theeffectof the
random switching signal on system stability. Some intuitions on system
stability are confirmed by numerical tests. The system data are given in
Table I. In Table I, was chosen deliberately so that we
can focus on the fixed dwell time part. The stability of these systems
was tested for different fixed dwell time values based on Theorem 1.
The stability results are depicted in Fig. 4, Fig. 5 and Fig. 6, respec-

tively, where the shaded areas are the stability regions. In Case 1, the
subsystems are chosen to be stable, the stability test result in Fig. 4
shows that the stability region is a non-convex set and that increasing
the fixed dwell time (either or or both) will stabilize the system.
This result suggests that slow switching is recommended when all the
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subsystems are stable. Case 2 corresponds to the situation where one
subsystem is stable and the other is unstable; here is stable and
unstable; the stability test result in Fig. 5 shows that the stable and

unstable regions divide the first orthant into two semi-infinite parts,
and the boundary between the two regions looks like a straight line.
The result also confirms our expectation: increasing the dwell time in
the stable subsystem will stabilize the system and increasing the dwell
time in the unstable subsystem will destabilize it. In Case 3, the two
subsystems are unstable. The test result in Fig. 6 shows that the sta-
bility region looks like a closed convex set and that both slow and fast
switching will destabilize the system. Therefore, the dwell time needs
to be chosen carefully to make the system stable in this case.
Finally, there are totally six variables in the computations of this

example. The computational complexity is the same as the stability test
for Markovian jump linear systems.

V. CONCLUSIONS

This technical note studied the stability property of randomly
switched systems where the dwell time in each subsystem consists of
a fixed part and a random part. We first showed the stochastic stability
of such systems is equivalent to the stochastic stability of a class
of Markovian jump systems with state jumps at the mode switching
times. Then a necessary and sufficient condition for the system sta-
bility was derived using a stochastic Lyapunov approach. Finally, a
numerical example was used to illustrate the application of the theory,
and the results are consistent with our intuitions. Future research could
be directed to the development of numerical algorithms to find the
stabilizing switching parameters for the switched systems, and to the
stability analysis of randomly switched singular systems, randomly
switched 2D systems, randomly switched time-delay systems.

APPENDIX

We provide two lemmas that are used in the proof of Lemma 1.
Lemma 2: Given a matrix , any vector . Then

there exists a constant , which is independent of , such that
for any . Moreover, given any

, for .
Proof: Let . Then .

Consider the function , we have

Hence for ; that is, .
Therefore,

for any and any .
Lemma 3: Given an exponentially distributed random variable

with parameter , and two real numbers and . Then
.

Proof: The result follows from direct computation. That is
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