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Abstract

In this paper, a hub refers to a non-terminal vertex of degree at least three. We study the
minimum number of hubs needed in a network to guarantee certain flow demand constraints
imposed between multiple pairs of sources and sinks. We prove that under the constraints,
regardless of the size or the topology of the network, such minimum number is always upper
bounded and we derive tight upper bounds for some special parameters. In particular, for two
pairs of sources and sinks, we present a novel path-searching algorithm, the analysis of which is
instrumental for the derivations of the tight upper bounds.

1 Introduction

Consider a network G = (V,E), where V denotes the set of vertices in G, and E denotes the set
of edges in G. A vertex in G is said to be a source if it is only incident with outgoing edges, and a
sink if it is only incident with incoming edges. Often, a source or sink is referred to as a terminal
vertex. A non-terminal vertex is said to be a hub if its degree is greater than or equal to 3. In
this paper, we are primarily concerned with the minimum number of hubs needed when certain
constraints on the flow demand between multiple pairs of sources and sinks are imposed. The flow
demand constraints considered in this paper will be in terms of the vertex-cuts between pairs of
sources and sinks. This can be justified by a vertex version of the max-flow min-cut theorem [1],
which states that for a network with infinite edge-capacity and unit vertex-capacity, the maximum
flow between one source and one sink is equal to the minimum vertex-cut between them. Here, we
remark that with appropriately modified setup, our results can be stated in terms of edge-cuts as
well.

More precisely, for given C1, C2, . . . , Cn ∈ N, let N (C1, C2, . . . , Cn) denote the set of all finite
networks G (see Figure 1 for an example) such that

• there are n sources S1, S2, . . . , Sn and n sinks R1, R2, . . . , Rn in G;

• all edges in G, except those incident with a source or sink, are undirected (alternatively,
bi-directional);

• for each feasible i, the minimum vertex-cut from Si to Ri is Ci.

Now, we define

H (C1, C2, . . . , Cn) , sup
G∈N (C1,C2,...,Cn)

min
Ĝ⊂G

Ĝ∈N (C1,C2,...,Cn)

H(Ĝ),
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Figure 1: An illustrative graph in N (2, 2) with 8 hubs.

where H(Ĝ) denotes the number of hubs in Ĝ. The above definition can be roughly interpreted

as follows: for a given G, we try to find a subgraph Ĝ that contains the minimum number of
hubs required to satisfy the vertex-cut constraints, and H (C1, C2, . . . , Cn) gives us the minimum
number corresponding to the worst-case scenarios among all possible G.

At first glance, H (C1, C2, . . . , Cn) can be infinite. One of the main (and somewhat sur-
prising) results in this paper, Theorem 6.1, however, states that for any given C1, C2, . . . , Cn,
H (C1, C2, . . . , Cn) is in fact finite. With finiteness confirmed, we are primarily interested in com-
puting the value of H (C1, C2, . . . , Cn). We say a graph G is minimal in N (C1, C2, . . . , Cn), if
G ∈ N (C1, C2, . . . , Cn), but for any e ∈ E, G\{e} 6∈ N (C1, C2, . . . , Cn). It then follows from the
fact that every graph in N (C1, C2, . . . , Cn) has at least one minimal subgraph that

H (C1, C2, . . . , Cn) = sup
G∈N (C1,C2,...,Cn)

G is minimal

H(G).

The vertex-connectivity version of the classical Menger’s theorem [4] states that for a network
with one pair of source S and sink R with the minimum vertex-cut between them being C, there
exist C vertex-disjoint paths connecting S and R, which immediately implies that H (C) = 0 for
any given C. Theorem 6.1 states that for any given G ∈ N (C1, C2, . . . , Cn), one can always find

a subgraph Ĝ of G such that H(Ĝ) is upper bounded by a constant, which is independent of the
choice of G. In some sense, Theorem 6.1 can be viewed as a generalization of the vertex-connectivity
version of Menger’s theorem.

Mathematically, the proposed problem of computing H (C1, C2, . . . , Cn) is a natural combina-
torial optimization problem. On a more practical side, hubs in networks naturally correspond to
more costly vertices. For instance, in a transportation network, as opposed to “relaying” vertices
with degree 2, hubs may have to be better equipped for traffic scheduling; for this reason, when
designing the route map, an airline may need to avoid running too many airline hubs to reduce the
cost. So, as might be expected, H (C1, C2, . . . , Cn) is of significance to cost-minimizing resource
allocation in transportation networks.

To the best of our knowledge, the proposed problem of computing or estimating H has not
yet been examined previously and there is little related work in the vast literature of graph theory.
On the other hand, to a great extent, this work is motivated by the study of network encoding
complexity (see [3] and references therein), where the number of encoding vertices in directed
networks is of primary concern. Moreover, our approaches to tackle the problem are influenced by
those in network encoding complexity theory, particularly, to a greater extent, those in [2, 5].
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The remainder of the paper is organized as follows. In Section 2, we give necessary and sufficient
conditions (Theorem 2.1) for a graph being minimal in N (C1, C2). In Section 3, we introduce the
notion of a representation of a graph in N (C1, C2) and we present the structural decomposition
theorem (Theorem 3.4) for representations of minimal graphs in N (C1, C2). We will introduce in
Section 4 a novel path-searching algorithm, the analysis of which will aptly produce an upper bound
on H (C1, C2) for any given C1, C2. In Section 5, we derive the value of H (C1, C2) (Theorem 5.1),
which is a main result in this paper. Another main result is Theorem 6.1, which establishes the
finiteness of H (C1, C2, . . . , Cn), n ≥ 3, through a recursive bounding argument. The remaining
part of Section 6 will be devoted to the derivations of the values of H for some special parameters
(Theorem 6.2, 6.3).

2 Minimal Graphs in N (C1, C2)

We first introduce some notation and terminologies that will be used throughout the paper.
A sequence of edges in G, ei = (ui, vi), i = 1, 2, . . . , d, with vi = ui+1, i = 1, 2, . . . , d− 1, can be

linked to form a path p, denoted by p = e1 ◦ e2 ◦ · · · ◦ ed; furthermore, p is called a cycle if vd = u1.
A path p of this form is said to be directed each ei is oriented such that all of them concatenate.

For a path β and two vertices u, v of β, let β[u, v] denote the subpath of β between u and v.
For a directed path β = e1 ◦ e2 ◦ · · · ◦ ed, let h(β), t(β) denote the head, tail of β, respectively;
and we say ei is smaller than ej on β, denoted by ei < ej , if h(ej) is the head of the directed path
β[ei, ej ] (or alternatively, ej is larger than ei, denoted by ej > ei).

For a graph G ∈ N (C1, C2, . . . , Cn), by the vertex-connectivity version of Menger’s theorem, for
each i, one can find a set αi of Ci vertex-disjoint φ-paths from Si to Ri. If the choice of αi is unique,
αi is said to be non-reroutable, otherwise it is said to be reroutable. G is said to be non-reroutable if
all αi’s are non-reroutable, reroutable otherwise. For any index set {j1, j2, . . . , jk} ⊂ {1, 2, . . . , n},
let Gαj1

αj2
···αjk

denote the subgraph of G induced on the edges of αj1 , αj2 , . . . , αjk -paths. G is said

to be a (C1, C2, . . . , Cn)-graph if G =
⋃n
i=1Gαi

, that is, each edge in G belongs to some αi-path.
In order to compute H (C1, C2, . . . , Cn), it is enough to only consider all (C1, C2, . . . , Cn)-graphs,
since

⋃n
i=1Gαi

is a subgraph of G and also in N (C1, C2, . . . , Cn).
Sections 2 to 5 will be devoted to derive the value of H (C1, C2). For notational convenience

only, we often rewrite α1, α2 as φ, ψ, respectively.
For a (C1, C2)-graph G, an edge in G is said to be public if it is shared by a φ-path and a

ψ-path, private otherwise. Evidently, for each i, from Si to Ri, each φ or ψ-path in G induces a
natural orientation to all its edges. We note that a public edge in G may have opposite φ-direction
and ψ-direction (such “inconsistency” will be dealt with in Section 3).

We say G can be naturally orientable if each public edge in G has the same natural φ and
ψ-direction. A cycle e1 ◦ e2 ◦ · · · ◦ ed in G, where ei = (ui, vi), vi = ui+1 for i = 1, 2, . . . , d − 1 and
vd = u1, is said to be a φ-consistent cycle, if it satisfies the following property: for any 1 ≤ i ≤ d,
if ei belongs to a φ-path, then its natural φ-direction is from ui to vi. And we similarly define a
ψ-consistent cycle.

The following theorem gives necessary and sufficient conditions for a (C1, C2)-graph being min-
imal.

Theorem 2.1. The following three statements are equivalent for a (C1, C2)-graph G:

(i) G is minimal;

(ii) G is non-reroutable;

(iii) G has no φ or ψ-consistent cycle.
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Proof. 1. (ii) ⇒ (i): Any edge e in G must belong to some φ or ψ-path. After deleting e from G,
we no longer find Ci vertex-disjoint paths from Si to Ri for some i ∈ {1, 2}. So G\{e} 6∈ N (C1, C2),
and therefore G is minimal.

2. (ii) ⇒ (iii): Suppose, by way of contradiction, that G has a φ-consistent cycle O, which
can be written in the following form

p1 ◦ e1 ◦ p2 ◦ e2 ◦ · · · ◦ pd ◦ ed,

where each pi is a subpath of some φ-path, and each ei is a private ψ-edge. Furthermore, we
assume O has the smallest d (the number of private ψ-edges) among all φ-consistent cycles. Then,
each pi belongs to a different φ-path (since otherwise we can always find a φ-consistent cycle with
fewer private ψ-edges), which further implies that d ≤ C1. Suppose pi = φi[ui, vi] for 1 ≤ i ≤ d,
ei = (vi, ui+1) for 1 ≤ i ≤ d − 1 and ed = (vd, u1). Then one can find another group of C1

vertex-disjoint paths φ̂ = {φ̂1, φ̂2, . . . , φ̂C1
} from S1 to R1 in G, where

φ̂i =





φ1[S1, u1] ◦ (u1, vd) ◦ φd[ud, R1] for i = 1;

φi[S1, ui] ◦ (ui, vi−1) ◦ φi−1[vi−1, R1] for 2 ≤ i ≤ d;

φi for d+ 1 ≤ i ≤ C1,

which contradicts the assumption that G is non-reroutable. With a parallel argument, we conclude
that ψ-consistent cycles do not exist either.

3. (i) or (iii) ⇒ (ii): Suppose, by contradiction, that G is reroutable, and furthermore, by
symmetry, that there exists another group of C1 vertex-disjoint paths φ̂ = {φ̂1, φ̂2, . . . , φ̂C1

} from

S1 to R1 in G with φ̂i sharing the same outgoing edge from S1 as φi for every i. Pick a φ̂-path,
say, φ̂i1 , such that φ̂i1 6= φi1 , and let vi1 denote the smallest vertex on φi1 (under the natural

φ-direction) where they leave each other. Assume that, after vi1 , φ̂i1 first meets some φ-path, say,

φi2 at the vertex ui1 . Denote by vi2 the smallest vertex where φ̂i2 and φi2 leave each other. Assume

that, after vi2 , φ̂i2 first meets some φ-path, say, φi3 at the vertex ui2 . Continue the procedure in
a similar manner to obtain an index sequence i1, i2, . . . , it, . . ., and similarly define vit ’s and uit ’s.
Pick the smallest k such that ik = ij for some j < k. Notice that vit+1

is smaller than uit on φit+1
,

which easily follows from three facts:

1) φ̂it+1
first takes apart from φit+1

at vit+1
;

2) φ̂it meets φit+1
at uit ;

3) φ̂it and φ̂it+1
are vertex-disjoint.

Hence, we conclude that

φ̂ij [vij , uij ] ◦ φij+1
[uij , vij+1

] ◦ φ̂ij+1
[vij+1

, uij+1
] ◦ φij+2

[uij+1
, vij+2

]

◦ · · · ◦ φ̂ik−2
[vik−2

, uik−2
] ◦ φik−1

[uik−2
, vik−1

] ◦ φ̂ik−1
[vik−1

, uik−1
] ◦ φij [uik−1

, vij ]

is a φ-consistent cycle in G.
Since all ψ-paths are vertex-disjoint and the above cycle does not contain any terminal vertex,

at least one edge e in this cycle does not belong to any ψ-path (that is, e is a private φ-edge). Notice
that each edge of φ̂it [vit , uit ], j ≤ t ≤ k − 1, is a private ψ-edge, and each edge of φit+1

[uit , vit+1
],

j ≤ t ≤ k − 1, does not belong to any φ̂-path. So, e must belong to φit+1
[uit , vit+1

] for some t with

j ≤ t ≤ k− 1, and hence e does not belong to any φ̂-path. In the graph G\{e}, we can find a set φ̂
of C1 vertex-disjoint paths from S1 to R1, and a set ψ of C2 vertex-disjoint paths from S2 to R2.
Thus G\{e} ∈ N (C1, C2) and G is not minimal, a contradiction.
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Remark 2.2. The third part of the proof of the theorem has actually proved that for a (C1, C2)-
graph G, if φ (resp. ψ) is reroutable, then there exists a private φ (resp. ψ)-edge e such that
G \ {e} ∈ N (C1, C2). This fact will be used later in the paper.

3 Representations and Structural Decomposition

In this section, we will transform a minimal (C1, C2)-graph G into G◦, its representation, through
the following steps:

Step 1 [Remove Relays]: In this step, we remove all non-terminal vertices in G with degree
2. In more detail, for any non-terminal vertex v with d(v) = 2 and e1 = (v, u1), e2 = (v, u2) being
the two edges incident with v, where u1 6= u2, delete edges e1, e2 and vertex v, and then add a new
edge (u1, u2). Let G1 denote the resulting graph.

Step 2 [Stretch Crossings]: We say a φ-path and a ψ-path cross at vertex v if they share
v, but not any edges incident with v. In this step, we convert each crossing into a pair of degree 3
vertices. In more detail, for any vertex v in G1 with d(v) = 4 and e1 = (v, u1), e2 = (v, u2) being
the two φ-edges incident with v, e3 = (v, u3), e4 = (v, u4) being the two ψ-edges incident with v,
where all ui are all distinct, delete edges e1, e2, e3, e4 and vertex v, and then add two vertices v1,
v2 and edges (v1, v2), (u1, v1), (u3, v1), (u2, v2) and (u4, v2). Let G2 denote the resulting graph.

Step 3 [Match Directions]: For any public edge e in G2 with inconsistent φ and ψ-direction,
we will perform the following operations to obtain consistency: Assume edge e = (u, v) belongs to
both path φi = φi[S1, w1] ◦ (w1, u) ◦ (u, v) ◦ (v,w2) ◦ φi[w2, R1] and path ψj = ψj[S2, w3] ◦ (w3, v) ◦
(v, u) ◦ (u,w4) ◦ ψj [w4, R2]. We delete edges (w3, v), (u,w4), add edges (w3, u), (v,w4), and then
obtain a new ψ-path

ψj [S2, w3] ◦ (w3, u) ◦ (u, v) ◦ (v,w4) ◦ ψj [w4, R2].

Let G◦ denote the resulting graph, which, evidently, is naturally orientable; let
−→
G◦ denote the

directed version of G◦, equipped with the consistent natural orientation induced on all its φ and
ψ-paths. Apparently, G◦ ∈ N (C1, C2) with its φ and ψ-paths determined by the original ones, and
all the non-terminal vertices in G◦ are hubs.

The obtained G◦ after the above three steps is said to be a representation of G. The following
lemma states that G◦ must be a minimal (C1, C2)-graph as well.

Lemma 3.1. The representation G◦ of a minimal (C1, C2)-graph G is also minimal.

Proof. First, since G is minimal, by Theorem 2.1, G is non-reroutable. Evidently, G1 is also non-
reroutable, and thus minimal. By way of contradiction, suppose that G◦ is not minimal. Again,
by Theorem 2.1, G◦ is reroutable. Notice that in Step 2 and 3, both crossings or inconsistently
oriented public edges are converted into consistently oriented public edges. Then, by Remark 2.2,
one can find a private edge e such that G◦\{e} ∈ N (C1, C2), implying G1\{e} also belongs to
N (C1, C2), which contradicts the minimality of G1.

Let N ◦(C1, C2) denote the subset of N (C1, C2) consisting of all networks G such that G is
minimal, naturally orientable and all the non-terminal vertices in G are of degree 3. Apparently,
N ◦(C1, C2) is the set of the representations of all minimal (C1, C2)-graphs. The following theorem
says that in order to compute H (C1, C2), it is enough to only consider all graphs in N ◦(C1, C2).

Theorem 3.2.
H (C1, C2) = sup

G∈N ◦(C1,C2)
H(G).
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Proof. The “≤” direction follows from the observation that

H(G) = H(G1) ≤ H(G2) = H(G◦),

and the “≥” direction immediately follows from Lemma 3.1.

A path in G◦ ∈ N ◦(C1, C2) is said to be an alternating path if all its edges are privates edges
and the terminal pair of this path is one of the following: (S1, S2), (S1, R1), (R2, S2) or (R2, R1).

Lemma 3.3. An alternating path has the following properties:

1. Each of its φ-edges is only adjacent to ψ-edges, and each of its ψ-edges is only adjacent to
φ-edges.

2. Each of its φ (resp. ψ)-edge belongs to a different φ (resp. ψ)-path.

Proof. 1. This follows from the fact that after Step 1, vertices with degree 2 have been removed
and thus no two private φ (or ψ)-edges are adjacent.

2. We show that in any alternating path, each φ-edge belongs to a different φ-path. Suppose,
by contradiction, that for an alternating path path e1 ◦ e2 ◦ · · · ◦ ed, where ei = (ui, vi), two edges

ek, el, k < l, both belong to φt. If el is smaller than ek on path φt in
−→
G◦, then

φt[ul, vk] ◦ ek+1 ◦ ek+2 ◦ · · · ◦ el−1

is a φ-consistent cycle in G◦, which, by Theorem 2.1, gives us a contradiction. If ek is smaller than

el on path φt in
−→
G◦, then the subpath φt[vk, ul] in fact can be expressed as f1 ◦ f2 ◦ · · · ◦ f2p−1,

where f1, f3, . . . , f2p−1 are public and f2, f4, . . . , f2p−2 are private. Then

(ek+1 ◦ f1) ◦ f2 ◦ · · · ◦ f2p−2 ◦ (f2p−1 ◦ el−1) ◦ el−2 ◦ · · · ◦ ek+2

is a ψ-consistent cycle in G◦, which, by Theorem 2.1, gives us a contradiction. With a parallel
argument, we conclude that each private ψ-edge belongs to a different ψ-path.

We next present the structural decomposition theorem of a representation G◦ ∈ N ◦(C1, C2),
which, roughly speaking, states that after deleting public edges in G◦, each connected component
in the resulting graph is an alternating path. More precisely, letting G◦

p denote the subgraph of G◦

induced on all private edges in G◦, we have

Theorem 3.4. G◦
p
consists of (C1 + C2) alternating paths.

Proof. Consider
−→
G◦

p, the naturally oriented version of G◦
p. Obviously, the degree of any non-

terminal vertex in
−→
G◦

p is 2. Now, starting from S1, traverse along an outgoing φ-edge, say, e1, and
then traverse against the ψ-edge adjacent to e1, say, e2, and then along a φ-edge adjacent to e2,
say, e3, and then against a ψ-edge adjacent to e3 . . . . Continue the procedure in this fashion, we
will always reach R1 or S2, since otherwise the set of edges that we have traversed will contain a
cycle, which is both φ-consistent and ψ-consistent. Evidently, a similar argument can be applied to
the case when we start from an incoming edge incident with R2. It then follows that one can find
a set of (C1 + C2) vertex-disjoint paths in G◦

p from {S1, R2} to {S2, R1}; moreover, it can easily
checked that each edge in G◦

p belong to one of the above-mentioned vertex-disjoint paths.

Remark 3.5. Let v be a non-terminal vertex of an alternating path in G◦
p and let e, e′ be the two

edges incident with v. It then follows from the proof of Theorem 3.4 that if v is the head (resp.

tail) of e in
−→
G◦

p, then it is also the head (resp. tail) of e′.
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An alternating path in G◦
p is said to be an S1S2, S1R1, R2S2, R2R1-alternating path if its

terminal pair is (S1, S2), (S1, R1), (R2, S2) or (R2, R1), respectively. A path is said to be an S1-
alternating path is it is either an S1S2-alternating path or S1R1-alternating path, similarly, a path
is also referred to as an R2-alternating path is it is either an R2S2-alternating path or R2R1-
alternating path. Apparently, there are C1 S1-alternating paths and C2 R2-alternating paths. For
two vertices u, v of an S1 (resp. R2)-alternating path L, we say u is on the right of v in L if v
is “nearer” to S1 (resp. R2) than u in L (more precisely, the number of edges between u and S1
(resp. R2) in L is more than that between v and S1 (resp. R2)) (the word “right” arises since we
will “position” the vertices of a path in a plane in Section 4 for an easy illustration). For two edges
e, e′ in L, we say e is on the right of e′ if one of two vertices incident with e is on the right of the
two ones incident with e′ in L.

Example 3.6. Figure 1 shows a naturally oriented minimal (2, 2)-graph with 12 hubs. From S1 to
R1, there are two vertex-disjoint φ-paths e1 ◦ e3 ◦ e7 ◦ e9 ◦ e13 and e4 ◦ e8 ◦ e10 ◦ e14 ◦ e16; and from S2
to R2, there are two vertex-disjoint ψ-paths e2 ◦e3 ◦e6 ◦e8 ◦e12 and e5 ◦e9 ◦e11 ◦e14 ◦e15. The edges
e3, e8, e9, e14 are public since each of them is shared by some φ-path and some ψ-path. The others
are all private. Then we can find that G◦

p
consists of four alternating paths: two S1-alternating

paths
e1 ◦ e2, e4 ◦ e6 ◦ e7 ◦ e5,

and two R2-alternating paths
e15 ◦ e16, e12 ◦ e10 ◦ e11 ◦ e13.

Moreover, e4 ◦ e6 ◦ e7 ◦ e5 is an S1S2-alternating path, where edge e7 is on the right of edge e6,
vertex B is on the right of vertex C.

4 A Path-Searching Algorithm

In this section, we introduce an algorithm, the analysis of which will be instrumental for deriving
the value of H (C1, C2). Before rigorously describing the algorithm, we roughly illustrate its idea.

Consider a representation G◦ of a minimal (C1, C2)-graph G. Imagine on a two-dimensional
plane, each alternating path e1 ◦e2 ◦· · · ◦ed in G

◦
p is “positioned” into a “double deck” (see Figure 2

for an example), where ei+1 is on the right of ei, and all the tails (in
−→
G◦
p) are on the upper deck

and heads on the lower deck (see Remark 3.5). A vertex on the upper deck is referred to as an
upper vertex if it is not a source, and a vertex on the lower deck is referred to as a lower vertex
if it is not a sink. Notice that there is one more lower vertices than upper vertices in an S1S2-
alternating path, while one less in an R2R1-alternating path, and there are equally many of them
in an S1R1-alternating path or an R2S2-alternating path.

R1R2

x3x1 x2

y1 y2

φφφ
ψψψ

Figure 2: In this R2R1-alternating path, x1, x2, x3 are upper vertices and y1, y2 are lower vertices.
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In each S1S2-alternating (resp. R2R1-alternating) path, one of the lower (resp. upper) vertices
will be labeled as a choke vertex (which could be a “bottleneck” for the path extending procedure
in the algorithm), which is initially the rightmost lower (resp. rightmost upper) vertex of the path
and will be updated during the execution of the algorithm.

As summarized below, the algorithm will iteratively find a set of the so-called interconnecting
paths in G◦, which will “link” the double decks.

• In the beginning of each iteration, we initialize the interconnecting path as a public edge,
whose tail is an unoccupied lower vertex. See STEP 2.

• We first traverse along edges in
−→
G◦ to extend the interconnecting paths to link the double

decks. When we reach a choke vertex, we check if it is possible to switch paths (see Figure 3)
and find new ways to extend the interconnecting paths. See STEP 3(A), 3(B).

• Then we traverse against edges in
−→
G◦ to extend the interconnecting paths in a parallel manner.

See STEP 5(A), 5(B).

• At the end of k-th iteration, a set of k interconnecting paths is found, whose vertices are all
labeled as occupied. See STEP 6.

As proven later, the algorithm will produce all interconnecting paths and upon termination of the
algorithm, all hubs in G◦ are occupied.

Let ∆ be the number of S1S2-alternating paths, then ∆ ≤ min{C1, C2}, and moreover, the
numbers of R2R1-alternating paths, S1R1-alternating paths and R2S2-alternating paths are ∆, C1−
∆, C2 −∆, respectively. The following algorithm will find ∆ interconnecting paths in G◦.

Algorithm 4.1. Input: G◦; Output: a set I of ∆ interconnecting paths.

STEP 1: Initialize the algorithm.

Orient each edge in the direction of φ and ψ-paths;

Label all hubs as “unoccupied”;

FOR each S1S2-alternating path DO

Its choke vertex := its rightmost lower vertex;

FOR each R2R1-alternating path DO

Its choke vertex := its rightmost upper vertex;

I := ∅;

n := 1.

STEP 2: Initialize the forward extension.

v := an arbitrarily picked unoccupied lower vertex and label v as “occupied”;

f := the public edge whose tail is v;

u := h(f) and label u as “occupied”;

P := f .

8



STEP 3(A): Prepend a private edge.

L := the alternating path to which u belongs;

IF L is an R2R1-alternating path AND u is the choke vertex of L THEN BEGIN

IF there are no unoccupied upper vertices in L THEN

Go to STEP 4;

ELSE BEGIN

x0 := the rightmost unoccupied upper vertex of L;

(x0, y0) ◦ (y0, x1) ◦ · · · ◦ (xd, yd) ◦ (yd, u) := the subpath of L between x0 and u;

IF d = 0 THEN BEGIN

The choke vertex of L := x0;

Label y0 as “occupied”;

e := (u, y0);

P := P ◦ e;

END

ELSE (viz. d > 0) BEGIN

FOR i := 1 TO d DO

Pi := the interconnecting path in I containing (xi, yi);

I := I \ {P1, P2, . . . , Pd};

The choke vertex of L := x0;

Label y0 as “occupied”;

e := (x1, y0);

P̂ := P ;

P := P1[t(P1), x1] ◦ e;

FOR i := 1 TO d− 1 DO

Pi := Pi+1[t(Pi+1), xi+1] ◦ (xi+1, yi) ◦ Pi[yi, h(Pi)];

Pd := P̂ [t(P̂ ), u] ◦ (u, yd) ◦ Pd[yd, h(Pd)];

I := I ∪ {P1, P2, . . . , Pd};

END

END

END

ELSE BEGIN

IF u ∈ an S1-alternating path THEN

e := the private ψ-edge whose tail is u;

ELSE (viz. u ∈ an R2-alternating path)

e := the private φ-edge whose tail is u;

Label h(e) as “occupied”;

P := P ◦ e.

END

9



STEP 3(B): Prepend a public edge.

f := public edge whose tail is h(e);

u := h(f) and label u as “occupied”;

P := P ◦ f ;

Go to STEP 3(A).

STEP 4: Initialize the backward extension.

I := I ∪ {P};

P := the interconnecting path in I whose tail is v;

I := I \ {P};

w := v.

STEP 5(A): Append a private edge.

L := the alternating path to which w belongs;

IF L is an S1S2-alternating path AND w is the choke vertex of L THEN BEGIN

IF there is no unoccupied lower vertex in L THEN

Go to STEP 6;

ELSE BEGIN

y0 := the rightmost unoccupied lower vertex of L;

(y0, x0) ◦ (x0, y1) ◦ · · · ◦ (yd, xd) ◦ (xd, w):=the subpath of L between y0 and w;

IF d = 0 THEN BEGIN

The choke vertex of L := y0;

Label x0 as “occupied”;

e := (x0, w);

P := e ◦ P ;

END

ELSE (viz. d > 0) BEGIN

FOR i := 1 TO d DO

Pi := the interconnecting path in I containing (xi, yi);

I := I \ {P1, P2, . . . , Pd};

The choke vertex of L := y0;

Label x0 as “occupied”;

e := (x0, y1);

P̂ := P ;

P := e ◦ P1[y1, h(P1)];

FOR i := 1 TO d− 1 DO

Pi := Pi[t(Pi), xi] ◦ (xi, yi+1) ◦ Pi+1[yi+1, h(Pi+1)];

Pd := Pd[t(Pd), xd] ◦ (xd, w) ◦ P̂ [w, h(P̂ )];
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I := I ∪ {P1, P2, . . . , Pd};

END

END

END

ELSE BEGIN

IF w ∈ an R2-alternating path THEN

e := the private φ-edge whose head is w;

ELSE (viz. w ∈ an S1-alternating path)

e := the private ψ-edge whose head is w;

Label t(e) as “occupied”;

P := e ◦ P .

END

STEP 5(B): Append a public edge.

f := public edge whose head is t(e);

w := t(f) and label w as “occupied”;

P := f ◦ P ;

Go to STEP 5(A).

STEP 6: Terminate the iteration.

IF n = ∆ THEN

Terminate the algorithm;

I := I ∪ {P};

n := n+ 1;

Go to STEP 2.

Remark 4.2. 1. For Step 2 in each iteration, an unoccupied lower vertex always exists since there
is at least one S1S2-alternating path with its chock vertex left unoccupied.

2. Each iteration of Algorithm 4.1 consists of forward and backward extensions, and each
interconnecting path starts from an S1S2-alternating path and ends at an R2R1-alternating path.
The algorithm cannot be simplified into a “one-direction extension” version: for each iteration, the
extending procedure will terminate at an S1S2-alternating path with only one unoccupied lower
vertex, but, in the beginning of each iteration, such an alternating path may not exist (to see this,
notice that more than two unoccupied vertices of an alternating path can become “occupied”, if
we switch paths during one iteration).

We will need the following two lemmas in the next section.

Lemma 4.3. For a representation G◦ of a minimal (C1, C2)-graph, upon the termination of Algo-
rithm 4.1, each private edge of any interconnecting path belongs to a different alternating path.
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P2P
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after switching paths

Figure 3: Switch interconnecting paths when a choke vertex is met.

Proof. By contradiction, suppose that for an interconnecting path P = e0 ◦ e1 ◦ e2 ◦ · · · ◦ e2n, two
private edges e2k and e2l, k < l, belong to the same alternating path L. Let O be the cycle

P [h(e2k), t(e2l)] ◦ L[t(e2l), h(e2k)].

If e2l is on the right of e2k in L, then O is a ψ-consistent cycle in G◦. If e2k is on the right of e2l in
L, then O is a φ-consistent cycle in G◦. By Theorem 2.1, both cases imply that G◦ is not minimal,
which, by Lemma 3.1, further implies that G is not minimal, a contradiction.

Lemma 4.4. For a representation G◦ of a minimal (C1, C2)-graph G, upon the termination of
Algorithm 4.1, I consists of at most min{C1, C2} interconnecting paths, and each hub in G◦ is in
exactly one of the interconnecting paths in I.

Proof. Each interconnecting path in I starts from a lower vertex of a distinct S1S2-alternating path
and ends to an upper vertex of a distinct R2R1-alternating path. So the number of interconnecting
paths is ∆ with ∆ ≤ min{C1, C2}. Now upon the termination of Algorithm 4.1, pick an unoccupied
lower vertex, and then execute the algorithm from STEP 3(B); or pick an unoccupied upper vertex,
and then execute the algorithm from STEP 3(A). Since all chock vertices have been unoccupied,
the algorithm will fail to terminate, violating the fact that G◦ is finite.
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5 H (C1, C2)

Theorem 5.1.
H (C1, C2) = 2C1C2.

Proof. The “≤” direction: For a representation G◦ of a minimal (C1, C2)-graph G, apply Al-
gorithm 4.1 to obtain a set I of ∆ interconnecting paths. In the t-th iteration of the algorithm,
the forward extension stops at the choke vertex of some R2R1-alternating path. Let Lt denote this
alternating path. Note that after t iterations, 1) all hubs of Lt become occupied; 2) by Lemma 4.3,
each of the t obtained interconnecting paths contains at most two hubs of Lt; 3) one obtained
interconnecting path contains exactly one hub of Lt. Hence, we deduce that the number of hubs of
Lt is at most 2t−1, and therefore the total number of hubs of all R2R1-alternating paths is at most∑∆

t=1(2t− 1) = ∆2. Similarly, the total number of hubs of all S1S2-alternating paths is at most ∆2

as well. Again, by Lemma 4.3, the total number of hubs of all S1R1 and R2S2-alternating paths is
at most 2∆(C1 + C2 − 2∆). By Lemma 4.4, each hub in G◦ belongs to some interconnecting path
in I. Therefore,

|H(G◦)| ≤ 2∆2 + 2∆(C1 + C2 − 2∆) = 2∆(C1 +C2 −∆) ≤ 2C1C2,

where the last inequality follows from ∆ ≤ min{C1, C2}.
The “≥” direction: We only need to construct a minimal (C1, C2)-graph G with 2C1C2 hubs

(see Figure 4 for an example). The graph G can be described as follows: G ∈ N ◦(C1, C2) is
naturally oriented, and there is a set of C1 vertex-disjoint paths φ = {φ1, φ2, . . . , φC1

} from S1 to
R1 and a set of C2 vertex-disjoint paths ψ = {ψ1, ψ2, . . . , ψC2

} from S2 to R2. Furthermore, in
−→
G , the directed version of G, paths φi and ψj meet at vertex λi,j and depart at vertex µi,j, for
1 ≤ i ≤ C1, 1 ≤ j ≤ C2, and

• on path φi, λi,1 < µi,1 < λi,2 < µi,2 < · · · < λi,C2
< µi,C2

;

• on path ψj, λ1,j < µ1,j < λ2,j < µ2,j < · · · < λC1,j < µC1,j.

S1

R1

S2

R2

φ1

φ2

φ3

ψ1

ψ2

ψ3

λ1,1

λ1,2

λ1,3

λ2,1

λ2,2

λ2,3

λ3,1

λ3,2

λ3,3

µ1,1

µ1,2

µ1,3

µ2,1

µ2,2

µ2,3

µ3,1

µ3,2

µ3,3

Figure 4: A minimal (3, 3)-graph with 18 hubs.
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6 H (C1, C2, . . . , Cn)

In this section, we are concerned with H with more than two parameters, which turns out to be
much more difficult to compute than H with two parameters.

The following theorem establishes the finiteness of H with more than two parameters.

Theorem 6.1. For any given C1, C2, . . . , Cn ∈ N,

H (C1, C2, . . . , Cn) <∞.

Proof. We will use an inductive argument on n. Notice that the case when n = 2 has been
established in Theorem 5.1. By way of induction, we assume that the theorem is true for n ≤ k− 1
and proceed to prove it for n = k.

Consider any minimal (C1, C2, . . . , Ck)-graph G. Let αi denote the set of Ci vertex-disjoint
paths from Si to Ri for 1 ≤ i ≤ k. After necessary rerouting of α1, α2, . . . , αk−1 within Gα1α2···αk−1

,
we can assume that Gα1α2···αk−1

is minimal and thus

N1 , H
(
Gα1α2···αk−1

)
≤ H (C1, C2, . . . , Ck−1) <∞.

Let Ĝ denote the subgraph of Gα1α2···αk−1
induced on all the edges, each of which is simul-

taneously an α1, α2, . . . , αk−1-edge, and let ω denote the number of connected components in Ĝ.

Obviously, each connected component of Ĝ is in fact a path, and therefore we have ω ≤ N1/2.
In this proof, we say a hub in G is new if it is a hub in G, however, not one in Gα1α2···αk−1

. And

we say a new hub is global, if this hub belongs to Ĝ, local, if this hub is in G \ Ĝ.
Then, by the induction hypothesis, for any distinct j1, j2, . . . , jk−2 ∈ {1, 2, . . . , k−1}, we deduce

that the number of new hubs in Gαj1
αj2

···αjk−2
αk
\Ĝ is upper bounded by H (Cj1 , Cj2 , . . . , Cjk−2

, Ck).

So the number of local new hubs is at most

N2 ,

k−1∑

i=1

H (C1, . . . , Ci−1, Ci+1, . . . , Ck−1, Ck) <∞.

For each αk-path, we “cut” it at each of its local new hubs and then “divide” the path into
“segments”, each of which, evidently, is a subpath of the original αk-path. Let ᾰk denote the set
of all obtained subpaths. Then we have N3 , |ᾰk| ≤ Ck +N2.

From the subgraph Ĝ ∪ ᾰk, we construct an (ω, ω, . . . , ω︸ ︷︷ ︸
k−1

, N3)-graph G′ through the following

procedure:

1. Add sources S′
1, S

′
2, . . . , S

′
k, sinks R

′
1, R

′
2, . . . , R

′
k.

2. For any i ∈ {1, 2, . . . , k−1} and for any connected component of Ĝ, whose natural αi-direction
is from one end vertex, say v1, to the other end vertex, say v2, add two directed edges (S′

i, v1)
and (v2, R

′
i) (notice that a connected component may have opposite αi1-direction and αi2-

direction for different i1, i2). Then, for any 1 ≤ i ≤ k − 1, we obtain a group α′
i of ω

vertex-disjoint paths from S′
i to R

′
i.

3. For any ᾰk-path, whose natural αk-direction is from one end vertex, say v1, to the other end
vertex, say v2, add two directed edges (S′

k, v1) and (v2, R
′
k). Then, we obtain a group α′

k of
N3 vertex-disjoint paths from S′

k to R′
k.
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Obviously, the number of global new hubs in G is just H(G′). It follows from the minimality of
G and the observation that for any 1 ≤ i ≤ k, any α′

i-consistent cycle in G′ naturally corresponds
an αi-consistent cycle in G that G′ is a minimal (ω, ω, . . . , ω︸ ︷︷ ︸

k−1

, N3)-graph. We then proceed to deduce

that α′
k is non-reroutable in G′, since otherwise there exists an edge e which is exclusively owned

by α′
k-paths (this follows from a parallel argument leading to Remark 2.2) such that G′ \ {e} ∈

N (ω, ω, . . . , ω︸ ︷︷ ︸
k−1

, N3), violating the fact that G′ is minimal.

Now, after necessary rerouting of α′
i within G

′, we assume that G′
i, the subgraph of G′ consisting

of all α′
i-paths and α′

k-paths, is non-reroutable and thus, by Theorem 2.1, minimal. Notice that
any hub v in G′ must be a hub of some G′

i, since otherwise G′ contains an edge incident with v
that does not belong to any G′

i and therefore is not minimal. Hence, by Theorem 5.1, we obtain
that

H(G′) ≤
k−1∑

i=1

H(G′
i) ≤ (k − 1)H (ω,N3) = 2(k − 1)ωN3 ≤ (k − 1)N1(Ck +N2).

Therefore,
H(G) ≤ N1 +N2 + (k − 1)N1(Ck +N2) <∞.

The proof is then complete.

Theorem 6.2. For any n ≥ 0, C1, C2 ≥ 1, we have

H (C1, C2, 1, 1, . . . , 1︸ ︷︷ ︸
n

) = 2(C1C2 + n).

Proof. The case when n = 0 is nothing but Theorem 5.1. So we only have to prove the theorem
when n ≥ 1.

The “≤” direction: We will establish this direction using an inductive argument on n.
Suppose the inequality holds when n < t. Consider a minimal (C1, C2, 1, 1, . . . , 1︸ ︷︷ ︸

t

)-graph G with C1

vertex-disjoint paths φ1, φ2, . . . , φC1
from S1 to R1, C2 vertex-disjoint paths ψ1, ψ2, . . . , ψC2

from
S2 to R2, and a path βi from Si to Ri for 3 ≤ i ≤ t+ 2. Let G1 be the subgraph of G induced on

φ1, φ2, . . . , φC1
, ψ1, ψ2, . . . , ψC2

, β3, β4, . . . , βt+1.

Now we split S1 into C1 copies S
(1)
1 , S

(2)
1 , . . . , S

(C1)
1 ; R1 into C1 copies R

(1)
1 , R

(2)
1 , . . . , R

(C1)
1 ; S2 into

C2 copies S
(1)
2 , S

(2)
2 , . . . , S

(C2)
2 ; R2 into C2 copies R

(1)
2 , R

(2)
2 , . . . , R

(C2)
2 , such that φi has starting

point S
(i)
1 and ending point R

(i)
1 for 1 ≤ i ≤ C1; ψi has starting point S

(i)
2 and ending point

R
(i)
2 for 1 ≤ i ≤ C2. Let G2 denote the resulting graph and ω be the number of weakly connected

components (which means connected components when disregarding the orientation) in G2. Now for

any 1 ≤ i < j ≤ C1, we identify S
(i)
1 and S

(j)
1 if they belong to the same component and we perform

similar operations on R
(i)
1 ’s, S

(i)
2 ’s and R

(i)
2 ’s. Let Ĝ denote the resulting graph, which consists of ω

connected components. Note that the i-th component Ĝi is in fact a minimal (C1,i, C2,i, 1, 1, . . . , 1︸ ︷︷ ︸
ti

)-

graph, where
∑ω

i=1C1,i = C1,
∑ω

i=1 C2,i = C2 and
∑ω

i=1 ti = t− 1. Notice that for any i, at least
one of C1,i, C2,i and ti is nonzero, but some C1,i’s, C2,i’s, ti’s can be zero, for which case, a
(C1,i, C2,i, 1, 1, . . . , 1︸ ︷︷ ︸

ti

)-graph can be interpreted as if all zero-valued parameters are simply dropped.

For each component Ĝi, by the induction hypothesis, we have
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H(Ĝi) ≤





2(C1,iC2,i + ti) if C1,i, C2,i ≥ 1,

2(C2,i + ti − 1) if C1,i = 0, C2,i ≥ 1,

2(C1,i + ti − 1) if C1,i ≥ 1, C2,i = 0,

2(ti − 1) if C1,i, C2,i = 0.

Notice that the right hand side of the above inequality can be unified as

2
[
C1,i + C2,i + (C1,i − 1)+ · (C2,i − 1)+ + ti − 1

]
,

for any C1,i, C2,i ≥ 0; here, (·)+ = max{·, 0}.

A hub in G is said to be new if it is not a hub in Ĝ. Notice that the path βt “meets” each
component at most once, yielding at most two new hubs (more precisely, it meets one edge in Ĝi,

then departs from one edge in Ĝi, and thereafter, it will never meet any edge in Ĝi again), otherwise
G is not minimal. Hence,

H(G) ≤ 2ω +
ω∑

i=1

H(Ĝi)

≤ 2ω +

ω∑

i=1

2
[
C1,i + C2,i + (C1,i − 1)+ · (C2,i − 1)+ + ti − 1

]

≤ 2ω + 2(C1 + C2 + t− 1− ω) + 2

[
ω∑

i=1

(C1,i − 1)+

]
·

[
ω∑

i=1

(C2,i − 1)+

]

≤ 2(C1 + C2 + t− 1) + 2(C1 − 1)(C2 − 1)

= 2(C1C2 + t).

The “≥” direction: It suffices to construct a minimal (C1, C2, 1, 1, . . . , 1︸ ︷︷ ︸
n

)-graph with

2(C1C2 + n) hubs; see Figure 5 for an example. It turns out the graph G, described below in

S1

R1

S2

R2

S3 R3 S4 R4

λ1,1

λ1,2λ2,1

λ2,2

µ1,1

µ1,2
µ2,1

µ2,2

γ3 δ3 γ4 δ4

Figure 5: A minimal (2, 2, 1, 1)-graph with 12 hubs.

detail, is such a graph: G is naturally orientable; there is C1 vertex-disjoint paths φ1, φ2, . . . , φC1

from S1 to R1, C2 vertex-disjoint paths ψ1, ψ2, . . . , ψC2
from S2 to R2, and a path βi from Si to
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Ri for 3 ≤ i ≤ n+ 2; paths φi and ψj meet at vertex λi,j and depart at vertex µi,j for 1 ≤ i ≤ C1

and 1 ≤ j ≤ C2; paths βi and φ1 meet at vertex γi and depart at vertex δi for 3 ≤ i ≤ n + 2.

Furthermore, in
−→
G , we have

• for 3 ≤ i ≤ n+ 2, on path βi,
γi < δi;

• on path φ1,

γ3 < δ3 < γ4 < δ4 < · · · < γn+2 < δn+2 < λ1,1 < µ1,1 < λ1,2 < µ1,2 < · · · < λ1,C2
< µ1,C2

;

• for 2 ≤ i ≤ C1, on path φi,

λi,1 < µi,1 < λi,2 < µi,2 < · · · < λi,C2
< µi,C2

;

• for 1 ≤ j ≤ C2, on path ψj ,

λ1,j < µ1,j < λ2,j < µ2,j < · · · < λC1,j < µC1,j.

It can be easily checked that this graph is minimal. The proof is then complete.

Theorem 6.3.
H (2, 2, 2) = 12.

Proof. First, it can be verified that the graph in Figure 6 is a minimal (2, 2, 2)-graph with 12 hubs,
which implies that

H (2, 2, 2) ≥ 12.

S1

S2

S3R1

R2

R3

Figure 6: a minimal (2, 2, 2)-graph with 12 hubs

So we only need to prove the other direction. By contradiction, suppose that a minimal (2, 2, 2)-
graph G has at least 13 hubs, and there exists a set of two vertex-disjoint path φ = {φ1, φ2} from S1
to R1, a set of two vertex-disjoint paths ψ = {ψ1, ψ2} from S2 to R2, and a set of two vertex-disjoint
paths ξ = {ξ1, ξ2} from S3 to R3.
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S1

S2S3

R1

R2R3

e1

e2

e3

e4 e5

e6

e7

e8

Figure 7: A minimal but reroutable (2, 2, 2)-graph: the graph is minimal, but we can choose either
{e1 ◦ e3 ◦ e7, e2 ◦ e6 ◦ e8} or {e1 ◦ e5 ◦ e8, e2 ◦ e4 ◦ e7} to be a set two vertex-disjoint paths from S3
to R3.

Here, we note that when there are three pairs of sources and sinks, the equivalence statements
as in Theorem 2.1 do not hold any more: it turns out that a minimal graph can be reroutable (see
Figure 7).

We first consider the case G is minimal and non-reroutable. Let Gφψ be the subgraph of
G induced on the edges of φ-paths and ψ-paths; similarly, we define Gφξ and Gψξ . By Theorem 2.1,
these three subgraphs are all minimal, since they are all non-reroutable. Suppose Gφψ has the most
hubs among them. Every hub in G belongs to at least one of these three subgraphs, so we have

13 ≤ H(G) ≤ H(Gφψ) +H(Gφξ) +H(Gψξ) ≤ 3H(Gφψ),

and hence H(Gφψ) ≥ 5.
Now, we transform Gφψ into a corresponding graph G•

φψ by shrinking each public edge into a
vertex (this can be regarded as the “inverse” operation of Step 2 in Section 3). In more detail, for
a public edge (v1, v2), say e1 = (v1, u1), e2 = (v1, u3) are two private edges incident with v1, and
e3 = (v2, u2), e4 = (v2, u4) are two private edges incident with v2. Then we delete edges e1, e2, e3,
e4 and vertices v1, v2, and then add a new vertex v and edges (v, u1), (v, u2), (v, u3), (v, u4). If Gφψ
has at least five hubs, then as shown in Figure 8, up to isomorphism, G•

φψ has three possibilities
(note that the first and second are different).

Next, we examine in the ways one can add ξ-paths into Gφψ to form G such that G is minimal.
In the following, a hub in G is said to be new if it is not a hub in Gφψ, and an edge is said to be
new if it does not belong to Gφψ and not incident with S3 or R3.

Case 1: This case is shown in Figure 8(a), where each edge is labeled. Since G•
φψ has four

hubs, Gφψ has at most eight hubs. And since H(G) ≥ 13, ξ1, ξ2 have to be added to generate at
least 5 new hubs. Without loss of generality, say, ξ1 contains at least three new hubs. Observe
that each of these new hubs is incident with exactly one ξ1-edge that does not belong to any φ or
ψ-path, and S3 and R3 are also incident with one such ξ1-edge. So at least ⌈(3 + 2)/2⌉ = 3 edges
of ξ1 are exclusively owned by ξ1, and thereby at least one of them, say (v1, v2), is a new edge (not
incident with S3 or R3). We next discuss the possible locations of (v1, v2); here, notice that it is
possible that either v1 or v2 is not a new hub.

Suppose v1 ∈ φa2 (this means v1 is one of vertices in φa2, including its two end vertices). Then,
one verifies that if v2 ∈ φb1, φ

c
1, φ

a
2, φ

b
2, φ

c
2, ψ

a
1 , ψ

b
1, ψ

c
1, ψ

a
2 or ψb2, then φ is reroutable; if v2 ∈ φa1 or ψc2,
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Figure 8: Three possibilities of G•
φψ

then ψ is reroutable. For example, if v2 ∈ ψc2, then we can find another two vertex-disjoint ψ-paths

ψ′
1 = ψ1,

ψ′
2 = ψ2[S2, A] ◦ φ2[A, v1] ◦ (v1, v2) ◦ ψ2[v2, R2]

from S2 to R2, and thus Gφψ is reroutable. And if v2 ∈ φc1, then we can find another two vertex-
disjoint paths

φ′1 = φ1[S1, B] ◦ ψ2[B,A] ◦ φ2[A,R1],

φ′2 = φ2[S1, v1] ◦ (v1, v2) ◦ φ1[v2, R1]

from S1 to R1, and thus Gφψ is reroutable.
Suppose v1 ∈ φb2. Then, one verifies that if v2 ∈ φa1, φ

c
1, φ

a
2, φ

b
2, φ

c
2, ψ

a
1 , ψ

b
1, ψ

a
2 or ψb2, then φ is

reroutable; and if v2 ∈ φb1, ψ
c
1 or ψc2, ψ is reroutable.

By symmetry, if v1 ∈ φ
a
1, φ

b
1, φ

c
1, φ

c
2, ψ

a
1 , ψ

b
1, ψ

c
1, ψ

a
2 , ψ

b
2 or ψc2, Gφψ is reroutable.

Hence, we only need to check the last possible case: all new edges (including (v1, v2)) are incident
with public edges in Gφψ. By symmetry, say, v1 ∈ A. Then, if v2 ∈ A or B, ψ is reroutable; if
v2 ∈ C, φ is reroutable; if v2 ∈ D, there must be a new edge (v′1, v

′
2) of ξ2 with (v′1 ∈ B and v′2 ∈ C)

or (v′1 ∈ D and v′2 ∈ A) (see Figure 9(a)(b)), since otherwise G \ {(v1, v2)} is still in N (2, 2, 2),
which contradicts the fact that G is minimal. However, in both cases, we can still find another two
vertex-disjoint paths

φ′1 = φ1[S1, v
′
1] ◦ (v

′
1, v

′
2) ◦ φ2[v

′
2, R1],

φ′2 = φ2[S1, v1] ◦ (v1, v2) ◦ φ1[v2, R1]

from S1 to R1, and thus Gφψ is reroutable.
Case 2: This case is shown in Figure 8(b). Similarly as Case 1, we can find a new edge (v1, v2)

of ξ1.
Suppose v1 ∈ φa1. Then, one verifies that if v2 ∈ φa1, φ

b
1, φ

b
2, φ

c
2, φ

d
2, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, ψ

c
2 or ψd2 , then

φ is reroutable; if v2 ∈ φa2, then ψ is reroutable.
Suppose v1 ∈ φa2. Then, one verifies that if v2 ∈ φb1, φ

a
2, φ

b
2, φ

c
2, φ

d
2, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, ψ

c
2 or ψd2 , then

φ is reroutable; if v2 ∈ φa1, then ψ is reroutable.
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Figure 9: The possible locations of the new edge (v′1, v
′
2).

Suppose v1 ∈ φb2. Then, one verifies that if v2 ∈ φa1, φ
b
1, φ

a
2, φ

b
2, φ

c
2, φ

d
2, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, ψ

c
2 or ψd2 ,

then Gφψ is reroutable.
By symmetry, if v1 ∈ φ

b
1, φ

c
2, φ

d
2, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, ψ

c
2 or ψd2 , then Gφψ is reroutable.

Hence, we only need to check the last possible case: all new edges (including (v′1, v
′
2)) are incident

with public edges in Gφψ. By symmetry, say v1 ∈ A or B. If v1 ∈ A and v2 ∈ A,C or D, then
φ is reroutable; if v1 ∈ A and v2 ∈ B, then ψ is reroutable; If v1 ∈ B and v2 ∈ A,B or D, ψ is
reroutable; If v1 ∈ B and v2 ∈ C, there must be a new edge (v′1, v

′
2) of ξ2 with v′1 ∈ B and v′2 ∈ C

(see Figure 9(c)), since otherwise G \ {(v1, v2)} is still in N (2, 2, 2), which contradicts the fact that
G is minimal. However, we can still find another two vertex-disjoint paths

φ′1 = φ1[S1, v1] ◦ (v1, v2) ◦ φ2[v2, R1],

φ′2 = φ2[S1, v
′
2] ◦ (v

′
2, v

′
1) ◦ φ1[v

′
1, R1]

from S1 to R1, and thus Gφψ is reroutable.
Case 3: This case is shown in Figure 8(c), where each edge is also labeled. Since G•

φψ has
three hubs, Gφψ has at most six hubs. And since H(G) ≥ 13, ξ1, ξ2 have to be added to generate
at least 7 new hubs. So at least ⌈(7 + 2 × 2)/2⌉ = 6 edges of ξ1 and ξ2 do not belong to any φ or
ψ-path, and thereby at least two of them, say, (v1, v2) and (v′1, v

′
2) are two new edges. We next

discuss their possible locations.
Suppose v1 ∈ φa1. Then, one verifies that if v2 ∈ φa1, φ

b
1, φ

c
1, φ

b
2, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, A or C, then φ is

reroutable; if v2 ∈ φa2, ψ
c
1 or B, then ψ is reroutable.

Suppose v1 ∈ φb1. Then, one verifies that if v2 ∈ φa1, φ
b
1, φ

c
1, φ

a
2, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, A or C, then φ is

reroutable; if v2 ∈ φb2, ψ
c
1 or B, then ψ is reroutable.

Suppose v1 ∈ φa2. Then, one verifies that if v2 ∈ φb1, φ
c
1, φ

a
2, φ

b
2, ψ

b
1, ψ

c
1, ψ

a
2 , ψ

b
2, B or C, then φ is

reroutable; if v2 ∈ φa1, ψ
a
1 or A, then ψ is reroutable.

Suppose v1 ∈ A. Then, one verifies that if v2 ∈ φa1, φ
b
1, φ

c
1, ψ

a
1 , ψ

b
1, ψ

a
2 , ψ

b
2, A or C, then φ is

reroutable; if v2 ∈ φa2, φ
b
2, ψ

c
1 or B, then ψ is reroutable.

By symmetry, if v1 ∈ ψ
a
1 , ψ

b
1 or ψa2 , then Gφψ is reroutable.

Let GB be the subgraph of G induced on the edges of ψ1[B,R2] and φ2[B,R1] and GC be
the subgraph induced on the edges of φ1[C,R1] and ψ2[C,R2]. If v1, v2 ∈ GB , either φ or ψ is
reroutable, and hence v1 6∈ GB or v2 6∈ GB . Similarly, we deduce that v1 6∈ GC or v2 6∈ GC . Then
we just need to check the last possibility: v1, v

′
1 ∈ GB and v2, v

′
2 ∈ GC , for which we can also easily

rule out the subcases when (1) v1 ∈ φ1 and v′1 ∈ ψ2 (2) v2 ∈ φ2 and v′2 ∈ ψ1 (3) v1, v
′
1 ∈ B (4)
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v2, v
′
2 ∈ C (5) v1, v

′
1 ∈ φ2 and v2, v

′
2 ∈ φ1 (6) v1, v

′
1 ∈ ψ1 and v2, v

′
2 ∈ ψ2. So, in the following, we

examine the remaining two subcases:

(1) v1, v
′
1 ∈ φ2 and v2, v

′
2 ∈ ψ2. By symmetry, we assume that v1 < v′1 on φ2 in

−→
Gφψ. If v2 < v′2,

then ξ is reroutable; If v2 > v′2, then φ or ξ is reroutable.

(2) v1, v
′
1 ∈ ψ1 and v2, v

′
2 ∈ φ1. By symmetry, we assume v1 < v′1 on ψ1 in

−→
Gφψ. If v2 < v′2, then

ξ is reroutable; If v2 > v′2, then ψ is reroutable. Now, we are ready to conclude that any minimal
and non-reroutable graph in N (2, 2, 2) has at most 12 hubs.

We next consider the case when G is a minimal but reroutable (2, 2, 2)-graph. Suppose
ξ is reroutable in the subgraph Gψξ . By Theorem 2.1, there exists a ξ-consistent cycle

p1 ◦ e1 ◦ p2 ◦ e2 ◦ · · · ◦ pd ◦ ed,

where each pi is a subpath of some ξ-path and each ei is a private ψ-edge (in Gψξ). We further
assume that d (the number of private ψ-edges) is the smallest among all possible ξ-consistent cycles
in Gψξ . Then, each ei belongs to a different ψ-path, which implies d ≤ 2. Since G is minimal,
each ξ-private edge (in Gψξ) in p1, p2, . . . , pd must belong to φ-paths as well. So, each edge of the
ξ-consistent cycle in G belongs to either some φ-path or ψ-path. Note that for any edge e of this
cycle, Gφψ\{e} does not belong to N (C1, C2), since otherwise, together with the observation that
ξ can be rerouted using edges in G\{e}, we deduce that G\{e} ∈ N (C1, C2, C3), which contradicts

the minimality of G. Then we can find a minimal subgraph Ĝφψ of Gφψ, which is of either Case 1
(when d = 2) or Case 2 (when d = 1). Let Gξ be the subgraph induced on the edges of ξ-paths.

Then G = Ĝφψ ∪ Gξ , by the minimality of G. Notice that all contradictions in Case 1 and Case
2 arise from the rerouting of φ or ψ-paths. So we can follow similar arguments and conclude
H(G) ≤ 12. The proof is then complete.
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