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Recursive Parametric Frequency/Spectrum
Estimation for Nonstationary Signals With

Impulsive Components Using Variable
Forgetting Factor

Zhi Guo Zhang, Member, IEEE, and Shing-Chow Chan, Member, IEEE

Abstract— This paper proposes a general and computation-
ally efficient parametric model-based framework for recursive
frequency/spectrum estimation and feature detection of nonsta-
tionary signals, which may contain different extents of non-
stationarities and impulsive components. The estimation of
time-varying frequency or spectrum is formulated as a time-
varying linear model identification problem, where the spectral
information is estimated from the model coefficients. We then
employ a QR-decomposition-based recursive least M-estimate
(QRRLM) algorithm for recursive estimation of the time-varying
model coefficients in impulsive environment using M-estimation.
New variable forgetting factor (VFF) schemes are developed
to improve the tracking performance of the QRRLM method
in nonstationary environment and we use theoretical deriva-
tion and simulations to prove that the proposed VFF schemes
can approach the optimal VFF selection. The resultant VFF-
QRRLM algorithm is able to restrain and isolate impulsive
components whereas it is able to handle different extents of
spectral variations. Simulation results show that the proposed
VFF-QRRLM algorithm is more robust and accurate than
conventional recursive least squares-based methods in estimating
both time-varying narrowband frequency components and broad-
band spectral components with impulsive components. Potential
applications of the proposed method can be found in power
quality monitoring, online fault detection and speech analysis.

Index Terms— M-estimation, recursive frequency estimation,
spectrum estimation, time-varying linear model, variable
forgetting factor.

I. INTRODUCTION

FREQUENCY and spectrum estimation of nonstationary
signals have a wide range of practical applications in

power quality monitoring [1], speech processing [2], biomed-
ical signal analysis [3], vibration analysis and measurement [4]
and so forth. Commonly used frequency/spectrum estima-
tion methods can be broadly classified into two categories:
nonparametric and parametric methods [5]–[7]. Nonparametric
methods assume that the signal is composed of a specific
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type of basis functions, such as sinusoids in discrete Fourier
transform or wavelets in wavelet transform (WT) and the
magnitude and phase of the signal at certain frequency are
estimated by means of filtering or fitting. On the other
hand, parametric methods, such as autoregressive (AR) or
autoregressive moving averages (ARMAs) modeling, assume
that a certain model generates the signal and the spectrum
is computed from the model coefficients that are estimated
by fitting the data with the model. Generally, if the assumed
model is appropriate and the signal-to-noise ratio (SNR) is
high,1 parametric methods, which are the subject of this paper,
have better frequency resolution than nonparametric methods
in the analysis of narrowband signals. In parametric frequency
and spectrum estimation methods, linear models in which the
output depends linearly on the input and model coefficients
are most widely used. For instance, in AR spectral estimation,
the output is a linear combination of a set of immediate past
outputs plus a noise-like excitation. The least squares (LS)
method usually estimates the coefficients of the linear model,
which minimizes the mean squared error of the noiselike
sequence. In the context of frequency estimation, a commonly
used approach is based on linear prediction (LP) [5] where the
frequencies of a set of sinusoids are determined from the roots
of a polynomial formed from the LP coefficients (LPCs).

In analyzing real-world signals and systems, classical
linear-model-based parametric frequency and spectrum esti-
mation methods often encounter two fundamental problems2:
1) nonstationarity and 2) sensitivity to impulsive components.

1) Firstly, most parametric frequency and spectrum esti-
mators are intended for batch processing of a block
of stationary data, and hence they are unsuitable for
estimating signals with time-varying spectrum. An easy
way to deal with time-varying spectrum is the sliding
window approach [8], [9], but the automatic window
selection for the best tradeoff between time resolution
and frequency resolution is still an unaddressed problem.

1At very low SNR, it is generally known that the performance of parametric
methods may degrade considerably and nonparametric methods may be more
preferable [7].

2Another fundamental issue is model order selection, which can be
addressed using the Akaike information criterion, Bayesian information cri-
terion and related criteria [7].
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In the context of parametric estimation using the linear
model, the coefficients of the model are time varying,
resulting in a time-varying linear model (TVLM) [10],
[11]. The recursive estimation of TVLMs under noise
is nontrivial as it usually involves the selection of an
appropriate window size for fitting to seek a proper
tradeoff between bias and variance. If the window size
is too small, the variance of the estimated model coef-
ficients will be large. On the other hand, the model
may be unable to explain the observations in a large
window, resulting in large bias In [10] and [11], a
new local polynomial modeling method can approach
the optimal bias-variance tradeoff and can offer good
performance for both slowly and fast varying signals,
but its arithmetic complexity is high. For low-complexity
implementation, recursive techniques such as adaptive
filtering [12]–[15] are desirable. However, the selection
of the forgetting factor, which controls the size of the
exponential window in adaptive filtering, remains a great
challenge.

2) Secondly, conventional LS-based estimators are sensi-
tive to impulsive components, which violate the usual
assumption of additive Gaussian noise. Furthermore, the
adverse influence of impulsive components, which act
as innovative variables for succeeding measurements in
the AR or ARMA model, will last for a long period
Therefore, the performance of the LS-based methods
will be severely degraded when such impulsive compo-
nents are encountered. Much research has been devoted
to mitigate their adverse effect on parametric spectral
analysis [16]–[19], but online tracking of time-varying
frequency/spectrum in presence of impulses has not been
studied.

These two problems are particularly important in practical
applications such as power quality monitoring, vibration and
speech analysis and so forth. For example, power signals
may contain harmful frequency variations caused by faults of
power transmission systems and may be contaminated with
impulsive transients caused by lightning [20]. Thus, realtime
tracking of fundamental frequency and harmonics of power
signals in presence of impulses is crucial for monitoring
power quality [21]. Similar problems also exist in speech
communication and recognition systems [22], [23], where
the impulsive components may originate from transmission
errors or adverse environments. Although several recursive
frequency/spectrum estimation methods are available [8], [9],
[14], [15], they still do not have the desired properties for
addressing these two problems.

In this paper, we propose a general parametric frame-
work for recursive frequency and spectrum estimation of
nonstationary signals, which may contain different extents
of spectral variations and impulsive components. The pro-
posed framework is based on a recursive least M-estimation
(RLM) for identifying the TVLM using: 1) the M-estimation
function to safeguard the coefficients from adverse influence
of the impulsive components and 2) variable and adap-
tive exponential windows to deal with different extents of
spectral variations. The RLM algorithm [24] and [25] is

implemented using the QR decomposition (QRD) structure
that leads to lower roundoff error and more efficient hard-
ware realization. To address the limited tracking performance
of the conventional QR decomposition-based recursive least
M-estimate (QRRLM) in nonstationary environments, a new
variable forgetting factor (VFF) control scheme is developed.
The forgetting factor (FF), which is related to the size of the
exponential window, is chosen from a possible candidate set
to minimize the M-estimate errors (MMEs). It was shown by
theoretical analysis that the performance of this MME-VFF
scheme is close to that of the optimal parameter. Because the
MME-VFF scheme has a high computational complexity, a
lowcomplexity VFF scheme based on approximated derivative
variable forgetting factor (AD-VFF) of coefficients is also
introduced for real-time processing Compared with the MME-
VFF scheme, the AD-VFF scheme has a much lower complex-
ity and slightly degraded performance. Simulation results show
that the VFF-QRRLM algorithm can significantly improve
the tracking performance over the conventional recursive least
squares (RLS)/RLM algorithm in recursive frequency and
spectrum estimation. In addition, other advanced adaptive
filtering techniques, such as state regularization (SR) [26] and
local polynomial regression (LPR) [27] can be incorporated
into VFF-QRRLM to enhance its performance.

To illustrate the effectiveness of the proposed VFF-QRRLM
method, we focus on two classical problems: 1) robust
frequency estimation of real-valued multiple sinusoids with
impulsive components and 2) robust ARMA spectral estima-
tion with impulsive components The first problem is important
as LP-based models are well-suited for describing signals con-
taining multiple sinusoids [28], [29], which occur frequently in
detecting electromechanical modes in power systems to ensure
stability [1]. The second problem is more general and it applies
to signals with both narrowband and broadband spectra. The
simulation results show that the VFF-QRRLM algorithm can
satisfactorily estimate the time-varying frequency or spectrum
and is particularly suitable for practical applications where
online spectral feature detection is required. Compared with
conventional methods such as RLS/RLM with fixed forgetting
factors, the VFF counterpart in the proposed method can
offer a faster response and hence a shorter lag. Compared
with conventional nonparametric spectral methods (such as
short-time Fourier transform and WT) that have large time
lags in online spectral estimation because of the two-sided
time window used, the VFF-QRRLM method only makes use
of past data and thus is capable of extracting time-varying
spectral features with much shorter lags.3

This paper is organized as follows. Section II is devoted
to the problems of parametric frequency and spectrum esti-
mation to be addressed. The proposed VFF-QRRLM algo-
rithm will be introduced in Section III. Simulation results
are presented in Section IV. Finally, conclusion is drawn in
Section V.

3Though the filtering delay can be reduced by low-delay filterbanks and
wavelets [30], [31], the delay is closely tied up with its length and hence
stopband attenuation or performance. It should be noted that for certain
situations such as phasor estimation, the non-parametric methods can be
tailored to substantially reduce the estimation delay [32], [33].
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II. TVLM BASED FREQUENCY AND

SPECTRUM ESTIMATION

A. Parametric Model (Linear Prediction)-Based Frequency
Estimation

We start with the recursive frequency estimation of a
multiple sinusoidal signal from its real-valued discrete-time
measurements

z(n) = s(n)+ ε(n), n = 1,2, . . . , N (1)

where s(n) = ∑M
m=1 αm(n)cos[ωm(n)n + φm(n)] are the cor-

responding discrete-time samples of the signal with αm(n) >
0, ωm(n) = 2π fm(n)/Fs ∈ (0, π), and φm(n) ∈ [0, 2π]
being, respectively, the time-varying amplitude, frequency
(normalized by sampling frequency Fs), and phase of the mth
frequency component. For simplicity, we assume that the num-
ber of sinusoids M is known and the frequencies are distinct,
i.e., ωm1(n) �= ωm2(n) when m1 �= m2. Conventionally, ε(n)
is assumed to be an additive white Gaussian noise with zero
mean and variance σ 2

ε . It was observed by Prony that s(n) in
(1) can be expressed as a linear combination of its 2M past
samples based on the idea of LP [28] as follows:

s(n) =
2M∑

i=1

bi (n)s(n − i) (2)

where bi (n), i = 1, . . . , 2M , are the time-varying LPC.
Through the symmetric property of the LPCs of real-valued
sinusoids, bi (n) = b2M−i (n), (2) can be rewritten as

s(n)+ s(n − 2M) =
M−1∑

i=1

bi (n)[s(n−i)+ s(n−2M+i)]

+bM (n)s(n − M). (3)

Combining (1)–(3), one gets the following TVLM:

y(n) = xT (n)β(n)+ e(n) (4)

where y(n) = z(n) + z(n − 2M) , x(n) = [z(n − 1) +
z(n −2M +1), . . . , z(n − M +1)+ z(n − M −1), z(n − M)]T ,
β(n) = [b1(n), . . . , bM (n)]T , and e(n) is the prediction
residual given by

e(n) = ε(n)+ ε(n − 2M) −
M−1∑

i=1

bi (n)[ε(n − i)

+ε(n − 2M + i)] + bM(n)ε(n − M). (5)

In the conventional LP approach, the signals are assumed to be
stationary and (4) can be solved using the LS estimator.4 On
the other hand, if ε(n) contains impulsive components, then
robust regression techniques [34] should be employed.

4If ε(n) is a zero-mean, independent and identically distributed (i.i.d.)
Gaussian random process, then e(n) is also a zero-mean Gaussian process.
It was shown in [28] that e(n) is correlated and a weighted LS estimator,
which approximates the maximum likelihood estimator through estimating
the covariance of the error and whitening the error, can be adopted for a
better estimation accuracy. However, the estimation of the covariance of e(n)
involves an iterative process and hence a higher complexity. Moreover, from
our simulation, it was found that the performance of the weighted LS estimator
is only slightly better than that of the LS estimator. Therefore, we shall focus
on the LS estimator in this paper.

After β(n) is estimated, the frequency of the sinusoids can
be computed by solving the following polynomial equation:

2M∑

i=0

bi (n) exp ( − jωm(n)i ) = 0 (6)

where bi(n) = b2M−i (n), i = 1, . . . , 2M , b0(n) = −1, and
j = √−1. After estimating the frequencies of the sinusoidal
signals, the amplitudes and phases can be estimated using LS
fitting [28], if ε(n) is Gaussian.

B. Parametric Spectrum Estimation

In parametric spectrum estimation, a discrete-time signal
z(n), which may consist of both broadband and narrowband
components, is modeled as the following time-varying ARMA
process:

z(n)+
P∑

p=1

a(n, p)z(n− p)=
Q∑

q=1

c(n, q)ε(n−q)+ ε(n) (7)

where a(n, p) and c(n, q) are, respectively, the time-varying
AR and MA coefficients, P and Q are, respectively, the
orders of the AR and MA processes, and ε(n) is the
additive white noise with zero mean and variance σ 2

ε .
Equation (7) can be written as a TVLM: y(n) =
xT (n)β(n) + e(n) as (4) where y(n) = z(n), x(n) =
[−z(n − 1), . . . ,−z(n − P), e(n − 1), . . . , e(n − Q)]T ,
β(n) = [−a(n, 1), . . . ,−a(n, P), c(n, 1), . . . , c(n, Q)]T , and
e(n) = ε(n). In the regression vector x(n), e(n − q) is
also unknown and needs to be estimated recursively from the
estimated coefficients β̂(n) as ê(n) = y(n)− xT (n)β̂(n). The
spectrum of z(n) can then be calculated from the estimated
â(n, p) and c(n, q) as

P(n, ω) = σ 2(n)

∣
∣
∣
∣
∣
1 +

Q∑

q=1
ĉ(n, q)e− j qω

∣
∣
∣
∣
∣

2

∣
∣
∣
∣
∣
1 +

P∑

p=1
â(n, p)e− j pω

∣
∣
∣
∣
∣

2 . (8)

III. VFF-QRRLM ALGORITHM

We have shown in the previous section that both the recur-
sive frequency estimation and recursive spectrum estimation
can be formulated as a problem of solving a TVLM. In this
section, a low-complexity recursive algorithm, called the VFF-
QRRLM algorithm is introduced to address the two problems
(nonstationarity and sensitivity to impulses) in identifying a
TVLM.

A. Recursive Least M-Estimation

In the LP-based frequency estimation problem (1) and the
ARMA-based spectrum estimation problem (7), the additive
noise e(n) is usually assumed to be Gaussian distributed. For
recursive estimation of a TVLM under Gaussian noise, the LS
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cost function in the form of the sum of exponentially weighted
LS error is commonly used as follows:

JLS[β(n)] =
n∑

i=1

λn−i e2(i) (9)

where λ is a FF between 0 and 1. It can be seen that the FF
is used to control the effective size of the exponential window
by weighting distant measurements, say the i th one, by λn−i .
Because of the recursive nature of (9), it can be solved using
the celebrated RLS algorithm [6]. It is well known, however,
that the LS cost function is sensitive to impulses and a more
robust approach is to employ M-estimation [34]. The cost
function in M-estimation consists of the following sum of
exponentially weighted M-estimate errors:

JME[β(n)] =
n∑

i=1

λn−iρ(e(i)) (10)

where ρ(e) is an M-estimate function usually chosen as an
appropriate function to reduce the sensitivity of the estimator
to non-Gaussian distributed noise. An effective M-estimation
function is the Hampel’s three parts redescending function
(Fig. 1) as follows:

ρ(e) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e2

2 0 ≤ |e| < ξa

ξa |e| − ξ2
a
2 ξa ≤ |e| < ξb

ξa[(ξb + ξc)− ξa + (|e|−ξc)
2

(ξb−ξc )]
2

ξb ≤ |e| < ξc

ξa(ξb+ξc)
2 − ξ2

a
2 ξc ≤ |e|

(11)

where ξa , ξb, and ξc are the thresholds to control the degree of
impulse suppression. The thresholds can be estimated based
on the variance of the impulse-free prediction error, which can
be recursively estimated as [24]

σ̂ 2(n) = λσ σ̂
2(n − 1)+ c1(1 − λσ ) median[Ae(n)] (12)

where λσ is the FF of the updating process, Ae(n) =
{ê2(n), . . . , ê2(n − Nw + 1)}, ê(n) = y(n) − xT (n)β̂(n − 1),
c1 = 1.483(1+5/(Nw−1)) is a finite sample correction factor,
and Nw is the length of the estimation window. Usually Nw
is chosen between 5 and 11, so that the system can restrain
two to five consecutive impulses and it can be increased
if necessary, at the expense of slower adaptation to system
changes [24]. For the Hampel’s M-estimate function, these
thresholds can be set as ξa = 1.96 · σ̂ , ξb = 2.24 · σ̂ , and
ξc = 2.58 · σ̂ , which correspond to 95%, 97.5%, and 99%
confidence intervals of a Gaussian distribution N(0, σ̂ ). More
details about M-estimation functions and parameter selection
can be found in [24].

The solution of (10) can be obtained by setting its deriv-
ative with respect to β(n) to zero, resulting in the following
M-estimate normal equation:

R̃ME(n)β(n) = P̃ME(n) (13)

where R̃ME(n) = λR̃ME(n − 1)+ q̃(n)x(n)xT (n), P̃ME(n) =
λP̃ME(n − 1) + q̃(n)y(n)x(n), and q̃(n) = q(ê(n)) =
ρ′(ê(n))/ê(n). Therefore, a similar derivation of the conven-
tional RLS algorithm can be followed to obtain the RLM

Fig. 1. Hampel’s three parts redescending function.

algorithm [24]. Here, we propose to implement the RLM
algorithm using QRD because the QRD holds a higher numer-
ical stability over the direct implementation of RLS [6].
In addition, QRD simplifies an approximate but computation-
ally efficient implementation of the SR techniques, which will
be detailed in Section III-D.

The arithmetic complexity of the VFF-QRRLM algorithm is
of the order O(�2), where � is the dimension of coefficients
β(n). The convergence performance of the RLM algorithm
under the contaminated Gaussian (CG) impulsive noise model
has been analyzed in [24] and [36] .5 The CG noise model has
the following probability density function:

P(e) ∼ (1 − pr)N(0, σg )+ pr N(0, σim) (14)

where σ 2
g and σ 2

im are, respectively, the variances of two
independent zero mean Gaussian processes with σ 2

im >> σ 2
g .

pr is a small positive value between 0 and 1 and it denotes
the occurrence probability of the impulsive component with
variance σ 2

im. In this paper, the CG noise model is adopted
to simulate the additive Gaussian noise (with variance of σ 2

g )

plus the impulsive component (with variance σ 2
im). It should

be noted that the impulsive components are only additive to
the measurements but not served as excitation variables to the
ARMA model.

B. VFF Schemes

1) Minimum M-Estimate VFF: To cope with nonstation-
ary TVLM using the RLS/RLM algorithm, one can select
appropriately the FF λ to achieve a proper tradeoff between
estimation bias and variance. Ideally, for Gaussian noise, the
optimal FF is the one that minimizes the sum of squared
filtering error as follows:

λIdeal = arg min
λ∈

N∑

n=1

[y0(n)− ŷλ(n)]2 (15)

5In [24] and [36] we have theoretically and experimentally shown that the
RLM algorithm is more robust than the RLS algorithm under such additive
CG noise. For the LP and AR models, the convergence analysis in [36] will
apply directly. This will allow us to obtain the evolution equations describing
the mean and covariance of the weight vector over time and their steady
state MSE. For the ARMA model, the coupling between the excitation and
regression vector makes the analysis very involved, and due to page limitation,
we do not analyze it further here.
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where ŷλ(n) = xT (n)β̂λ(n − 1) is the a prior estimate of
y0(n) = xT (n)β(n) based on a FF λ and  is a FF set
containing all possible FFs. In practice,  is limited to a series
of candidate FFs and one needs to use the noisy measurements
y(n) since the noise-free measurements y0(n) are unavailable
In [37], it has been shown theoretically and experimentally
that the data-driven FF λ obtained from (15) using the noisy
measurements performs nearly as well as the ideal FF λIdeal in
presence of Gaussian noise. In addition, it is also shown in [37]
that, instead of using a global FF, a locally adaptive λ (or local
FF for short), which uses the most recent L measurements
instead of all the measurements, can better adapt to the time-
varying coefficients and achieve better performance.

If the measurements are contaminated with CG or impulsive
noise, it is preferred to use the M-estimate instead of the
LS estimate, which suggests the following MME data-driven
global FF:

λ = arg min
λ∈

N∑

n=1

ρ(y(n)− ŷλ(n)) (16)

and local FF as follows:

λ(n) = arg min
λ∈

n∑

i=n−L+1

ρ(y(n)− ŷλ(n)) (17)

where L is the length of a moderately short period of neigh-
boring time points preceding n

In the Appendix, we show that such MME data-driven FF
can achieve nearly as good performance as the ideal FF in
presence of impulsive noise, providing a theoretical justifi-
cation of the proposed MME-VFF schemes. The MME-VFF
method and the coupled analysis are actually very general and
can be applied to the selection of other possible parameters,
such as the step-size in the least mean squares algorithm and
the number of measurements in the Kalman filer.

To find the MME-VFF at time point n based on
Section III-B.2, one needs to start from time point n − L
and estimate the coefficients β̂λ(i), i = n − L, . . . , n − 1,
with every λ in the set . Then, the mean of M-estimate
error of the most recent L samples is calculated to determine
λ(n) according to Section III-B.2. Although the MME-VFF
scheme works well in practice, it has a high computational
complexity. More precisely, if the number of candidate FFs in
 is N, the MME-VFF scheme requires extra NL times of
QRD-based recursions for calculating the VFF at each time
instant. Therefore, an alternative low-complexity empirical
VFF scheme is introduced next.

2) Approximated Derivative Variable Forgetting Factor:
A reasonable and effective approach to determine the FF is
based on the AD of the estimated model coefficients as it
is a measure of the time variation of the underlying time-
varying model parameters. Intuitively, if the variation of β̂(n)
is large, a small FF should be used and vice versa. Such an AD
scheme has been employed in [37] for selecting the number of
measurements in updating the Kalman filter and, in this paper,
the AD scheme is adopted to select the FFs of QRRLM. More
precisely, the variation of coefficient β̂(n) is approximated as
δ(n) = β̂(n − 1) − β̃(n − 1), where β̃(n) = λββ̃(n − 1) +

(1−λβ)β̂(n−1) is the smoothed past coefficient estimates and
0 < λβ ≤ 1 is the corresponding FF of the smoothing process.
We can see that if β̂(n) changes rapidly, the magnitude of
the AD of ||δ(n)||, Gδ(n) = |||δ(n)|| − ||δ(n − 1)|||, will be
large, and vice versa. A more robust measure of the coefficient
variation can be obtained by smoothing and normalizing Gδ(n)
as follows:

Ḡδ,N (n) = Ḡδ(n)/Ḡδ0 (18)

where Ḡδ(n) is the average of Gδ(n) over a smoothing window
of length NS and Ḡδ0 is the median of the first NT estimates
(training samples) of Ḡδ(n) for normalization. Ḡδ0 is obtained
as the median value to avoid the influence of large estimation
error when the algorithm has not converged at the beginning.
After the training period, the FF λ(n) can be updated at each
time instant as

λ(n) = λmin + [1 − g(Ḡδ(n))](λmax − λmin) (19)

where λmin and λmax are, respectively, the lower and upper
bounds of λ(n) and g(u) = min{max{u, 0}, 1} is a clipping
function used to keep λ(n) between λmin and λmax. During the
training period (n < NT ), a fixed FF, such as (λmin +λmax)/2,
can be used.

C. RLM Based Frequency and Spectrum Estimation

We now discuss the applications of the proposed VFF-
QRRLM algorithm to the problem of recursive frequency
and spectrum estimation. Since both the LP-based frequency
estimation and ARMA-based spectrum estimation use past
data measurements to estimate the current coefficients, impul-
sive measurements, once detected, should be replaced with
their approximated impulse-free counterpart to avoid the
adverse effects from propagating to subsequent estimates. The
impulse-free measurements can be approximated as

ỹ(n) = q̃(n)y(n)− (1 − q̃(n))ŷ(n) (20)

where ŷ(n) = xT (n)β̂(n), q̃(n) = q(ê(n)) = ρ′(ê(n))/ê(n),
and ê(n) = y(n) − xT (n)β̂(n − 1). It can be seen that q̃(n)
will be equal to one when the prediction (a priori) error ê(n)
using β̂(n − 1) is small, which means that the measurement
is less likely to be corrupted by impulses and hence ỹ(n) will
be equal to y(n). In contrast, if ê(n) is very large, it is likely
that y(n) is corrupted by impulse and hence q̃(n) will assume
a small value, so that impulse-contaminated measurement will
be replaced by its impulse-free estimate ỹ(n).

In addition, in the recursive ARMA-based spectrum estima-
tion, the a posteriori estimation error ē(n), ē(n) = y(n)− ŷ(n),
are also a part of the regression vector and thus it should
be safeguarded from impulse-contaminated measurements in
a similar manner. More precisely, we estimate the impulse-
free estimation error as ẽ(n) = ỹ(n) − ŷ(n). The robust
estimation of amplitudes and phases in impulsive environment
can be achieved using M-estimation cost function instead of
the LS cost function as well [34]. Finally, because the impul-
sive components may also contain meaningful information,
we propose to approximate the impulse components as the
difference between the impulse-free estimation noise ẽ(n) and
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TABLE I

VFF-QRRLM FOR FREQUENCY/SPECTRUM ESTIMATION

the estimation noise ē(n). The final proposed VFF-QRRLM
algorithm for recursive frequency/spectrum estimation is listed
in Table I.

D. State Regularization

The proposed two VFF schemes can also be applied
to variants of the QRRLM algorithms, for example, the
SR-QRRLM. The SR technique was developed in [26] to
address the inherent problem of conventional RLS when
the input is not persistently excited that results in an input
covariance matrix being ill-conditioned. In such situations, the

variance of the RLS estimator will increase considerably or
even become unstable. The SR technique aims at reducing
the estimation variance of RLS estimator by an adaptive
regularization term without introducing any asymptotic bias.
To incorporate the SR technique into QRRLM, we can rewrite
the M-estimation normal function of (13) as

[ R̃ME(n)+ κ(n)I ]β(n) = P̃ME(n)+ β(n − 1) (21)

where κ(n) is the regularization parameter that can be
selected adaptively as in [26]. In the new state-regularized
M-estimation normal equation, κ(n)I is the regularization
term for addressing the possible ill-conditioned problem of
R̃ME(n) whereas β(n − 1) acts as prior information to com-
pensate for the extra bias introduced by the regularization term.
Equation (21) can be recursively updated by an approximate
but computationally efficient QRD implementation (the second
QRD in Table I). The idea underlying is that, in a period
of � time points, updating each row of q̃(n)�κ(n)I in the
second QRD at each time point approximates the updating
with q̃(n)κ(n)I at every time point. Such implementation
can reduce the complexity of the second QRD in VFF-SR-
QRRLM from O(�3) to O(�2). Therefore, compared with
the VFF-QRRLM algorithm, the VFF-SR-QRRLM only needs
one more QRD operation in each recursion, as listed in Table I.

E. Practical Issues

1) Complexity Analysis: The conventional QRRLS algo-
rithm has a complexity of O(�2) at each time instant. The
QRRLM algorithm also includes the calculations of ê(n),
the noise variance in (12) and the M-estimation weight,
which only require several flops or has a complexity of
O(�). Therefore, the QRRLM has a complexity of O(�2)
as well. The computationally expensive part is the MME-
VFF scheme, because it requires calculating extra NL times
of QRD-based recursions for calculating the VFF at each
time (L = 32 and N = 7 in our simulations). In the
AD-VFF scheme, (18), (19), and other calculation only need
a few flops. Therefore, the AD-VFF scheme will not increase
the computational complexity substantially and its complexity
is still O(�2). In summary, the AD-VFF-QRRLM algorithm
is computationally efficient and it can achieve comparable
results to the theoretically nearly optimal but computationally
expensive MME-VFF-QRRLM algorithm.

2) Selection of Model Order: The order of AR or MA
models is an important parameter for the proposed VFF-
QRRLM method as it is susceptible to overfitting. To avoid
the latter problem, the model order can generally be selected
by certain model complexity measure such as the Akaike
information criterion or Bayesian information criterion [7],
which imposes a penalty on the model complexity during
data fitting. In the context of frequency estimation, the model
order (i.e., the number of frequency components) can also be
determined by other spectral analysis techniques. For example,
an exact model order ESPRIT has been developed in [39]
to give an initial estimate of the number of components in
the signal. The method in [39] can also be used to provide
initial values for the VFF-QRRLM algorithm for a faster
convergence.
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Fig. 2. Comparison between various recursive frequency tracking methods on a two-component sinusoidal signal in presence of impulses. (a) Data
measurements. (b) Two sinusoidal components reconstructed from AD-VFF-QRRLM. (c) Impulsive components reconstructed from AD-VFF-QRRLM.
(d) Estimated frequency. (e) Enlarged regions of interests of (d). (f) VFF used.

Fig. 3. RMSD curves of various recursive frequency tracking methods
(SNR = 30 dB).

3) Selection of Hyperparameters Used in VFF: In the
VFF schemes, the minimum and maximum FFs, λmin and
λmax, determine the ability of the algorithm in tracking fast-
varying frequency components and estimating stable frequency
components. In our simulations, λmin and λmax are selected as
0.5 and 0.99, which correspond to effective window lengths
of 2 and 100, respectively. That is to say, the VFF-QRRLM
coupled with λmin = 0.5 and λmax = 0.99 is capable of dealing
with signals that are stationary (i.e., frequency components

or spectra are unchanged) within 2 to 100 samples. In other
applications, λmin and λmax can be determined according to
prior knowledge (such as the sampling rate, the longest, and
shortest period of local stationarity) about the signal. In the
AD-VFF scheme, the length of training samples NT can be as
long as possible to obtain an accurate value for normalization,
but an unnecessarily large NT may include sharp changes or
impulsive components in the training. In our simulations, NT

was set to 32, which implies the difference between the true
mean and the sample mean is less than half of the standard
deviation with a probability of >99.5% [40]. Similarly, the
average window size NS is set as 32 to obtain a tradeoff
between statistical power and the capability of detecting sharp
changes. The FF λβ for updating the variation of coefficient
can be selected as 0.9 to avoid over smoothing or under
smoothing.

In the MME-VFF scheme, the optimal FF is selected from
a number of candidate FFs in a set N. More FFs in the
candidate set will lead to more refined estimation results, but
will also increase the computational complexity. To achieve
a good tradeoff between performance and complexity, we
usually select 3 to 5 FFs between λmin and λmax. The window
parameter L for obtaining the local MME in (17) is selected as
32 for a tradeoff between tracking performance and estimation
accuracy.

Our intensive simulations show that the proposed selection
and estimation of hyperparameters in VFF schemes gave
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Fig. 4. Comparison between various recursive frequency tracking methods on a power signal in presence of harmonics and impulses. (a) Power measurements.
(b)–(d) Fundamental, third harmonic, and fifth harmonic components reconstructed from AD-VFF-QRRLM. (e) Impulsive component reconstructed from
AD-VFF-QRRLM. (f)–(h) Estimated frequency of the fundamental, the third harmonic, and the fifth harmonic components. (i) Estimated amplitude of the
fundamental component. (j) VFF used.

satisfactory results and the proposed method was not sensitive
to small variations of most of hyperparameters. Except for
λmin and λmax, other hyperparameters do not have a substantial
effect on the performance of the VFF-QRRLM algorithm.

4) Postprocessing and Trajectory Smoothing: Frequency
and amplitude of time-varying sinusoidal components or
spectral peaks convey important information regarding the
trajectories of sinusoidal or spectral components constitut-
ing the signal under study. Although the VFF-QRRLM can
achieve a reasonably good bias-variance tradeoff, variations
still exist in the estimated trajectories because of noise and
other imperfections. Therefore, it is advantageous to perform
further smoothing of the trajectories to suppress these vari-
ations. The trajectory smoothing can be achieved by LPR
[27], [41], and [42], which can achieve a better bias-variance
tradeoff in smoothing. The theory and implementation of the
LPR method are omitted and interested readers can refer to
[27], [41], and [42] for details.

IV. EXPERIMENTAL RESULTS

A. LP-Based Frequency Estimation (Simulations)

The sinusoidal signal under test has 500 samples and
the sampling rate is 1. It consists of two sinusoidal

components (M = 2) and their amplitudes and phases are
αm = [1, 2] and φm = [π/4, π/3], respectively. One
sinusoidal component has a sudden frequency change from
0.28 to 0.25 Hz at the 250th sample, while the other sinu-
soidal component has a linearly increasing frequency, as
shown in Fig. 2(d). An additive Gaussian white noise with
zero mean and a SNR of 30 dB is added. Two impulsive
components with signal-to-impulse ratio (SIR, defined as the
ratio between power of impulse and power of signal) of
−20 dB are added at the 150th and the 350th samples for
illustration.

In the VFF-QRRLM algorithm, the hyperparameters used
for MME-VFF is  = [0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99],
L = 32; the hyperparameters used for AD-VFF selection are
NT = NS = 32, λmin = 0.5, λmax = 0.99, λβ = 0.9; the
hyperparameters used for estimation of impulse-free error in
(12) are λσ = 0.9 and Nw = 32. The performances of the
proposed VFF-QRRLM algorithms are compared with the LS
version, VFF-QRRLS, and QRRLM with a fixed FF (λmin or
λmax). The performance of LPR-based trajectory smoothing
for estimated frequency is evaluated as well. After trajectory
smoothing, the frequency estimates from MME-VFF-QRRLM
and AD-VFF-QRRLM are very similar. Thus, we only show
the results of LPR trajectory smoothing for AD-VFF-QRRLM.
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Fig. 5. Comparison between various recursive spectrum tracking methods on a time-varying ARMA-generated signal in presence of impulses. (a) Two
sinusoidal components used to generate the time-varying AR coefficients. (b) Spectrum of MA coefficients. (c) True time-varying power spectrum. (d) Data
measurements. (e) Reconstructed impulsive component from MME-VFF-SR-QRRLM. (f)–(j) Time-varying power spectra obtained by MME-VFF-QRRLS,
QRRLM (λ = 0.7), QRRLM (λ = 0.99), MME-VFF-QRRLM, and MME-VFF-SR-QRRLM, respectively. (k) VFF used.

A root mean squared deviation (RMSD) criterion is used to
quantitatively compare different frequency tracking methods,
and it is given by

RMSD(n) =
√
√
√
√ 1

M

M∑

m=1

| fm(n)− f̂m(n)|2 (22)

where f̂m(n) is the mth estimated frequency. The RMSD
curves from averages of 100 independent Monte Carlo runs
are shown in Fig. 3. Fig. 2 shows the tracking performance
of different methods for one example of testing signal,
where the two impulsive components have amplitudes 10 and
−10. It can be seen from Figs. 2 and 3 that the QRRLM
method can well suppress the adverse effects of impulses
and effectively separate sinusoidal components and impulses.
On the other hand, the tracking performance of QRRLS is
seriously degraded in presence of impulses. We can also see
that, although the QRRLM with a small FF can track the
sudden frequency change quickly, its variance is very large.
On the other hand, the QRRLM with a large FF has relatively
smaller variance when tracking static frequency but it has
a long lag in tracking the sudden frequency change. Both
the MME- and AD-VFF schemes can obtain good results

in tracking both static and fast varying frequencies using a
small FF for fast frequency changes and a large FF for static
frequency components. In addition, LPR-based trajectory
smoothing can further reduce the variance of static frequency
estimation without introducing a long lag for sharp frequency
change. The performance of the VFF-QRRLM method is
also tested under different amount of additive Gaussian noise,
and the results can be found in the supplementary materials
( http: //www.eee.hku.hk/ ~zgzhang/publication/ tim2013_supp.
pdf).

B. LP-Based Frequency Estimation (Application to Power
Quality Monitoring)

Next, the effectiveness of the VFF-QRRLM method is
illustrated in estimating frequency variations of power signals
in presence of both harmonics and impulsive transients. Our
simulation is carried out in PSCAD/EMTDC, which is an
electromagnetic power transient software widely used for
simulating power system transients. The power signal has a
fundamental frequency of 50 Hz, a third harmonic component
(150 Hz), and a fifth harmonic component (250 Hz). The sam-
pling frequency of the power signal is 1000 Hz. The amplitude
of the fundamental component decreases from 1 to 0.8 at
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Fig. 6. RMSD curves of various recursive spectrum tracking methods.

0.6 s and recovers to 1 at 0.7 s, which simulates a typical
voltage dip event. The amplitudes of the third and the fifth
harmonic components are 20% and 10% of the amplitude
of the fundamental component. At 1.5 s, the fundamental
frequency jumps sharply from 50 to 49.5 Hz. The signal is
also contaminated with an impulse transient, which has an
amplitude of 10, at 0.7 s. A Gaussian white noise with zero
mean and a SNR of 60 dB, which is in the normal SNR
range (50–70 dB) of power signals, is added. The signal is
also contaminated with an impulse transient, which has an
amplitude of 5.5, at 2.575 s. We can see from Fig. 4 that
the proposed VFF-QRRLM method can track the frequency
change and amplitude change very quickly (∼15 ms) and can
achieve stable frequency estimates in the steady state. It is
not only robust against impulsive transients, but also able
to isolate the impulsive transient and harmonics effectively,
thereby providing rich information about the status of the
power quality.

C. ARMA-Based Spectrum Estimation (Simulations)

We now test the performance of the VFF-QRRLM and
VFF-SR-QRRLM methods in recursive ARMA-based spec-
trum estimation. First, we use two time-varying sinusoidal
components, as shown in Fig. 5(a), to generate a fourth-
order time-varying AR coefficient vector. The MA coeffi-
cient vector is [−1.5857, 1.9208, −1.5229, 0.9224], which
implies a spectrum, as shown in Fig. 5(b). The true time-
varying power spectrum of the time-varying ARMA process
is shown in Fig. 5(c). Fig. 5(d) shows an example of testing
signal simulated using the ARMA process, where the variance
of the excitation noise is 1. An impulsive component with
an amplitude of −100 is added at the 350th sample. The
hyperparameters for VFF are λmin = 0.7, λmax = 0.99, and
 = [0.7, 0.8, 0.9, 0.95, 0.99]. Other hyperparameters used in
the recursive spectrum estimation are the same as those in the
recursive frequency estimation.

The RMSD criterion for the recursive spectrum estimation
is given by

RMSD(n) =
√
√
√
√ 1

Nω

Nω∑

nω=1

|P(n, ω)− P̂(n, ω)|2 (23)

Fig. 7. (a) Extracted spectral peaks obtained from various recursive spectrum
tracking methods. (b) RMSD curves of various recursive spectrum tracking
methods.

where P̂(n, ω) is the estimated spectrum and Nω is the number
of frequency bins evaluated. The RMSD curves from averages
of 100 independent Monte Carlo runs are shown in Fig. 6. In
each independent run, one impulse with SIR of −20 dB is
added at the 350th samples for illustration.

We can see from Figs. 5 and 6 that the spectrum of the VFF-
QRRLS method is seriously degraded by the impulsive compo-
nent after 350th sample. The QRRLM method can effectively
restrain the adverse influence of impulses on the spectrum
estimated, but its performance still heavily depends on the FF.
A small FF leads to a large variance in the spectrum estimates,
but it can track the sharp changes of spectrum rapidly. On the
contrary, a large FF has a small estimation variance, which
is especially noticeable at the steady state, but it blurs the
time resolution of the fast-varying spectrum (∼250th sample).
The proposed VFF-QRRLM method has a satisfactory perfor-
mance in the example, thanks to its advantages of robustness
and adaptability. We can also see that the VFF-SR-QRRLM
method can further stabilize the estimation especially when
the signal level is small (∼100–150 ms in this example). From
Fig. 6, we can further see that the VFF-SR-QRRLM method
can achieve better performance than other methods under test
while the two VFF schemes (MME and AD) have comparable
results. We can notice from Fig. 6 that the performance of
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some methods in ARMA estimation become worse (diverges
to some extent) after a largely deviated estimate (such as VFF-
QRRLS after the impulse and QRRLM with a FF of 0.99 after
the sharp spectrum change). The reason is that such ARMA
methods use the estimation residual as regression vector for
subsequent estimation. Thus, the adverse effects of deviated
estimates will propagate over a long period.

Next, we extract the frequencies of two spectral peaks
by detecting the maximum values in two frequency ranges
(0–0.25 Hz) and (0.25–5 Hz) and compare the estimation
accuracy of extracted frequencies obtained using different
recursive spectrum tracking algorithms. It can be seen from
Fig. 7 that: 1) the VFF-QRRLM algorithms can achieve better
performance than the VFF-QRRLS algorithm and the QRRLM
algorithm with a fixed FF; 2) two VFF schemes (MME and
AD) have similar results; and 3) the LPR smoothing can lead
to a better accuracy. The proposed VFF-QRRLM method
can also yield improved performance in its applications
to recursive fault detection and speech analysis, and the
relevant results can be found in the supplementary materials
( http: //www.eee.hku.hk/ ~zgzhang/ publication/ tim2013_supp.
pdf).

V. CONCLUSION

A general parametric model-based recursive fre-
quency/spectrum estimation approach for nonstationary signals
in presence of impulsive components is proposed in this paper.
A TVLM is used to describe the time-varying frequency
or spectrum, and a VFF-QRRLM method is proposed to
identify the TVLM. The VFF-QRRLM method is capable
of achieving time-varying frequency/spectrum estimates with:
1) adaptability to different extents of frequency/spectrum
variations and 2) robustness against impulsive components.
The former is achieved by the VFF control scheme while the
latter is due to the M-estimation used. It is expected that this
robust recursive frequency/spectrum estimation method will
find applications in online frequency/spectrum estimation and
its potential applications in power quality monitoring have
been illustrated by simulation.

APPENDIX

PERFORMANCE ANALYSIS OF MME-VFF

We show that the performance of the proposed MME-VFF
scheme is close to that of the optimal FF parameter in the sense
that it minimizes the sum of squared prediction error [37]. In
other words, the FFs selected by the MME-VFF scheme can
achieve nearly optimal results.

A. �0(λ): Ideal Measure for Selecting the Optimal FF

We first derive the ideal measure (the sum of squared
prediction error) for selecting the optimal FF. Consider the
TVLM y(n) = xT (n)β(n)+ e(n) with n = 1, . . . , N samples
in presence of the CG noise of (14). In the MMEVFF scheme,
the following sum of M-estimate weighted prediction errors is

minimized

�(λ) =
N∑

n=1

q̃(n)[y(n)− ŷλ(n)]2

=
N∑

n=1

q̃(n)[y0(n)− ŷλ(n)+ e(n)]2 (A1)

where y0(n) = xT (n)β(n) is the noise-free measurement,
ŷλ(n) = xT (n)β̂λ(n − 1) is a priori estimate of y0(n) based
on λ, e(n)is the additive noise, and q̃(n) = q(ê(n)) =
ρ′(ê(n))/ê(n) is the M-estimate weight (0 < q̃(n) ≤ 1). In
the ideal case, the noise e(n) is absent and q(n) = 1, then
�0(λ) = ∑N

n=1 [y0(n)− ŷλ(n)]2 is a reasonable measure for
selecting the optimal FF since it measures the squared error
between the true signal and the one predicted by the given FF.

B. �′
0(λ)�0(λ): Robust Counterpart for Selecting the Optimal

FF in the Presence of CG Noise

We show that the difference between �(λ) and the ideal
measure �0(λ) is small for a sufficiently large N even in
presence of noise e(n) To this end, we first rewrite (A1) as

�(λ) = �′
0(λ)+�C(λ)+�E (A2)

where �′
0(λ) = ∑N

n=1 q̃(n)[y0(n)− ŷλ(n)]2, �C(λ) =
2

∑N
n=1 q̃(n)[y0(n)− ŷλ(n)]e(n), and�E = ∑N

n=1 q̃(n)e2(n).
We now check the three terms respectively to see how they
influence the selection of the optimal FF.

Note that, q(n) will normally (with a probability of
1 − pr ) assume a value of one, except when an exceptional
large value of e(n) (impulsive component) is encountered so
that its value will be much smaller than one or even equal to
zero. Therefore, we can assume that q(n) are independent of
λ. Consequently, �E is independent of λ and can be removed
from the objective function of (A2) for finding the optimal λ.
Thus, minimizing �(λ) is equivalent to minimizing ��(λ) =
�′

0(λ) + �C(λ). Again, since q̃(n) depends mainly on e(n),
�′

0(λ) approximately retains the reliable measurements and
computes the corresponding sum of square errors between the
true model and the predicted model. Hence, �′

0(λ) is a robust
counterpart of �0(λ) for selecting λ in presence of CG noise.

If we can prove that �C(λ) is small compared with �′
0(λ)

for a sufficiently large value of N , then minimizing �(λ) (or
��(λ)) can give nearly the same performance as minimizing
�′

0(λ), which allows us to obtain a FF nearly as good as the
optimal one obtained from �0(λ). In [37], it is shown that this
is in fact the case for the LS criterion. Here, we shall extend
this analysis to the case of M-estimation. To achieve this, we
will derive the upper bound of �C(λ), and then prove that the
difference between �′

0(λ) obtained from MME-VFF and that
from optimal FF is small.

C. Upper Bound of �C(λ) in Terms of �0(λ)

The main idea, following [37], is to bound �C(λ) by
employing recent results in deviation probability of martin-
gales [43]. In particular, we note the cross term �C(λ) is a
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square integrable martingale

Mλ(n) =
n∑

i=1

q̃(i)[y0(i)− ŷλ(i)]e(i) (A3)

with zero mean and finite power Gaussian increments and
stopping time N . Note, e(i) may have different power at
different time instants. To model the impulsive noise, we
assume that there are on average pr n such e(i)’s that have
a large variance of σ 2

im and others are nominal samples with
noise variance σ 2

g . The predictable quadratic variation V 2
λ (n)

of Mλ(n), which is defined via its increments ξ(n) = Mλ(n)−
Mλ(n − 1), is given by

V 2
λ (n) =

n∑

i=1

E[ξ2(i)|Fi−1]

=
n∑

i=1

[y0(i)− ŷλ(i)]2 E[q̃2(i)e2(i)]. (A4)

Next, we shall show that V 2
λ (n) is bounded by �0(λ).

If adaptive threshold selection is employed, then ξ j (i) =
kξ j σ̂e(i), where σ̂e(i) is the standard deviation of the estimated
impulse free (or nominal) noise. Then, we get E[q̃2(i)e2(i)] =
1/

√
2πσe(i)

∫ ∞
−∞ e2q2(e + δ(i)/kξi σ̂e(i)) exp(−e2/2σ 2

e (i))de,
where δ(i) = y0(i) − ŷλ(i) and σ 2

e (i) is
the variance of e(i). Using the change of
variable u = e/σe(i), we get E[q̃2(i)e2(i)] =
σ 2

e (i)/
√

2π
∫ ∞
−∞ u2q2(uσe(i)+ δ(i)/kξi σ̂e(i)) exp(−u2/2)du.

Since σ̂ 2
e (i) is a robust estimator of (δ2(i) + σ 2

eg
),

where δ2(i) is the mean of δ2(i) and σ 2
eg

is the
nominal Gaussian noise, we have for σe(i) = κσeg ,
that E[q̃2(i)e2(i)] = Sψ(σ 2

e (i))σ
2
e (i), where Sψ(σ 2

e (i)) =
1/

√
2π

∫ ∞
−∞ u2q2(κuσeg(i)+ δ(i)/κ/kξi σ̂e(i)) exp(−u2/2)du.

For nominal Gaussian noise, κ is nearly equal to 1 and kξ is
chosen so that most of the area under the exponential function
is covered and hence Sψ(σ 2

e (i)) ≡ Sψ ≈ 1. For the impulsive
component, κ >> 1 and Sψ(σ 2

e (i)) will be nearly zero.
Provided that the variance of the impulses σ 2

im is sufficiently
large, Sψ(σ 2

e (i)) is independent of δ2(i) and hence the FF.
Consequently, we have the following:

V 2
λ (n) =

n∑

i=1

[y0(i)− ŷλ(i)]2Sψ(σ
2
e (i))σ

2
e (i). (A5)

For LS criterion, Sψ(σ 2
e (i)) = 1.

Since Sψ(σ 2
e (i))σ

2
e (i) is finite, there exists a constant υ2

such that Sψ(σ 2
e (i))σ

2
e (i) ≤ υ2. Substituting into (A4) gives

V 2
λ (N) ≤ υ2�0(λ). (A6)

Equation (A6) will be used later to prove that �C(λ) is
bounded by

√
�0(λ) in (A9).

To proceed further, we show that �C(λ) is bounded by√
�0(λ) by making use of the following theorem from [43]

(the proof is omitted for simplicity and the readers are referred
to [43] for details).

Theorem 1 (Analogous to Theorem 2.1 in [43]): Let M(n)
be a discretetime martingale with conditionally Gaussian

increments and predictable quadratic variation V (n), and N be
fixed or the stopping time. For deterministic constants b > 0,
S ≥ 0, and γ ≥ 1, we have the following:

P{|M(N)| > γ V (N), b ≤ V (N) ≤ bS} ≤ αλ(γ ) (A7)

where αλ(γ ) = 4
√

e(1 + log S)γ exp[−γ 2/(2)].
Applying Theorem 1 (A7) to Mλ(n) = �C(λ) for all

candidate λ′s in the set , we get the following:
∑

λ∈
P{�C(N) > 2γ Vλ(N), b ≤ Vλ(N) ≤ bS}

≤
∑

λ∈
αλ(γ ). (A8)

Using (A6) and the definition of �C (λ) in (A2), it follows
from (A8) that the event:

�C (λ) ≤ 2γ υ
√
�0(λ) ∀λ ∈  (A9)

has a probability at least 1 − ∑
λ∈ αλ(γ ). Equation (A9)

will be used later in (A12) and (A13) to prove that the
difference between �′

0(λ) obtained from MME-VFF and that
from optimal FFs is small.

D. Upper Bound of �C(λ) in Terms of �′
0(λ)

Next, denote ��′
0(λ) as the reduction of the ideal measure

�0(λ) due to robust estimation in suppressing the impulses
[i.e., ��′

0(λ) = �0(λ) − �′
0(λ)], we consider the event

B = {��′
0(λ) ≤ c�′

0(λ) } for some finite non-
negative constant c. The purpose of considering the
event B is to avoid the pathological case that all
the measurements are removed for small n due to
small but finite probability variations. The condition of
B is equivalent to

∑N
n=1 (1 − q̃(n))[y0(n)− ŷλ(n)]2 ≤

c
∑N

n=1 q̃(n)[y0(n)− ŷλ(n)]2. As long as q̃(n) is not identical
to zero, there exists a nonnegative constant c such that the
condition is satisfied As N → ∞, P(B) → 1. The value of
c mainly depends on the occurrence probability of impulses
pr and depends weakly on N for a sufficiently large N
To prove the latter, we note from the law of large number
that

N∑

n=1

(1 − q̃(n))[y0(n)− ŷλ(n)]2 → �0(λ)E[1 − q̃(n)]

as N → ∞ (A10)

and

N∑

n=1

q̃(n)[y0(n)− ŷλ(n)]2 → �0(λ)E[q̃(n)]
as N → ∞. (A11)

Therefore, the minimum value of c is c′ =
(1 − E[q̃(n)])/E[q̃(n)], which is independent of N . Under
the condition B , we have �′

0(λ) ≤ �0(λ) ≤ �′
0(λ)(1 + c′).

Thus, we can get from (A9) that

�C(λ) ≤ 2γ υ
√

1 + c′
√
�′

0(λ). (A12)
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E. Upper and Lower Bounds of ��(λ) in Terms of �′
0(λ)

Subsequently, using (A12), we get

��(λ) = �′
0(λ)+�C(λ) ≤ �′

0(λ)+ 2γ υ
√

1 + c′
√
�′

0(λ)

+γ 2υ2(1 + c′). (A13)

Taking square root on both sides of (A13) gives
√
��(λ) ≤

√
�′

0(λ)+
√

1 + c′γ υ. (A14)

On the other hand, it can be seen that

��(λ) ≥ �′
0(λ)− 2γ υ

√
1 + c′

√
�′

0(λ). (A15)

Using the identity,
√

a − b ≥ √
a − b/

√
a, for all positive a

and b, it follows that:
√
��(λ) ≥

√

�′
0(λ)− 2γ υ

√
1 + c′√�0(λ) ≥ �′

0(λ)

−2γ υ
√

1 + c′. (A16)

Combining (A15) and (A16), we get the upper and lower
bounds for

√
��(λ) as

√
�′

0(λ) − 2γ υ
√

1 + c′ ≤ √
��(λ)

≤
√
�′

0(λ)+ γ υ
√

1 + c′, for each λ ∈ �′
0(λ).

(A17)

F. Difference Between Obtained from MME-VFF and That
from Optimal FFs is Small

Suppose the FF that minimizes ��(λ) = �′
0(λ) + �C(λ)

is λ� (i.e., the FF selected by MME-VFF) while the FF
that minimizes �′

0(λ) is λ0 (i.e., the optimal FF), we have
��(λ�) ≤ ��(λ0). Using (A17), we get the following upper
bound of �′

0(λ�):
√
�′

0(λ�) ≤ √
��(λ�)+ 2γ υ

√
1 + c′ ≤ √

��(λ0)

+2γ υ
√

1 + c′ ≤
√
�′

0(λ0)+ 3γ υ
√

1 + c′.
(A18)

The deviation of �′
0(λ�) from the optimal �′

0(λ0) can be
summarized as follows. It holds for every γ > 1 and every
υ > 0

P

{√
�′

0(λ�) ≥
√
�′

0(λ0)+3γ υ
√

1 + c′, A

}

≤
∑

λ∈ αλ(γ )

with A = ⋂
λ∈ {b ≤ Vλ(N) ≤ bS} ∩ {V 2

λ (N) ≤ υ2�0(λ)} ∩
B , which is analogous to Theorem 1 in [37].

If γ >
√

2ar log N for a given positive r , then αλ(γ ) =
o(N−r ). When the number of elements in  is of order
O(Nr ),

∑
λ∈ αλ(γ ) → 0. Thus, the extra term 3γ υ

√
1 + c′

compared with �′
0(λ0) is only of order O(log(N)1/2), which

is small as compared with �′
0(λ0) and can be neglected.

To conclude, among the three terms of the objective function
�(λ) of (A1), �C(λ) is sufficiently small compared with
�′

0(λ) and �E is independent of λ. Therefore, the data-driven
optimal λ� that minimizes �(λ) can achieve nearly as good
performance as the theoretically optimal λ0 that minimizes
�′

0(λ).

G. Effect of Impulsive Noise on MME-VFF

Finally, we examine the effect of impulsive noise and
robust estimation on the MME-VFF scheme. In the LS
criterion, q̃(n) and Sψ(σ 2

e (i)) are equal to one and hence
υ2 = max{Sψ(σ 2

e (i))σ
2
e (i)} = σ 2

im. Since the deviation of√
��(λ�) from the optimal measure

√
��(λ0) is proportional

to υ as depicted in (A18) we expect that the impulsive noise
has a substantial effect on the selection process. More samples
are thus needed to obtain the right FF. On the other hand,
for M-estimation υ2 = max{Sψ(σ 2

e (i))σ
2
e (i)} ≈ σ 2

g , since
Sψ(σ 2

e (i)) will become zero for large σ 2
e (i) and hence the

effect is effectively mitigated. An unavoidable consequence is
that more samples are also needed as those corrupted samples
are discarded during the estimation. The estimator itself is
however, safeguarded from the adverse influence of σ 2

im, which
could be arbitrarily large.
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