
Title Vertex-Ball Spring Smoothing: An efficient method for
unstructured dynamic hybrid meshes

Author(s) Lin, TJ; Guan, ZQ; Chang, JH; Lo, SH

Citation Computers & Structures, 2014, v. 136, p. 24-33

Issued Date 2014

URL http://hdl.handle.net/10722/202731

Rights

NOTICE: this is the author’s version of a work that was accepted
for publication in Computers & Structures. Changes resulting
from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for
publication. A definitive version was subsequently published in
Computers & Structures, 2014, v. 136, p. 24-33.  DOI:
10.1016/j.compstruc.2014.01.028



1 

Vertex-Ball Spring Smoothing: An efficient method for 
unstructured dynamic hybrid meshes 

T.J. Lina, Z.Q. Guana,*, J.H. Changa, S.H. Lob  

a. State Key Laboratory of Structural Analysis for Industrial Equipment, Dept. of Engineering 

Mechanics, Dalian University of Technology, Dalian 116024, China 

b. Dept. of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China 

ABSTRACT：Spring analogy approach is one of the most popular dynamic mesh 
deformation methods. In the Ball-vertex method, vertical linear springs are introduced 
to deal with the element collapse problem. However, it is not very efficient as a large 
system of linear equations has to be resolved. In order to overcome this difficulty, the 
Vertex-Ball Spring Smoothing algorithm (VerBSS) is proposed in this paper. 
Following the mesh smoothing concept, a sub-spring system derived from the 
“Ball-Vertex” model is built and solved on a node by node basis using a LDLT solver. 
Interior nodes are smoothed layer by layer in an iterative manner to achieve the best 
result. Parallel scheme is also introduced in the smoothing process for further 
improvement of the efficiency. Numerical examples in two and three dimensions 
show that VerBSS is much more efficient than the Ball-vertex method, and is capable 
of dealing with practical engineering objects with complex geometries subject to large 
deformations. VerBSS can be applied to complicated mesh topologies as well, not 
only to 2D/3D dynamic mesh, but also to the hybrid dynamic mesh. 

Key words：Mesh deformation; dynamic mesh；ball-vertex method；Vertex-Ball 
spring 

1. INTRODUCTION 

In modern numerical simulation of engineering applications, we often need to 
deal with many unsteady flow problems, such as free surface flows, bio-fluid 
mechanics problems, forced vibration and fluid-structure interaction problems. The 
mesh of the solution domain needs to be updated at each time step of the numerical 
simulation process when flow parameters and geometries of the computational field 
are changing with time. The dynamic mesh approach is one of the most popular 
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methods to solve this class of problems, especially for multi-block structures moving 
in unsteady flow with irregular boundary displacement specifications. There are 
generally three ways to dynamically update unstructured meshes [1,2]. (1) Remeshing: 
according to the changes in the domain, local or global mesh is regenerated by mesh 
generator, in which the flow properties of the new mesh are obtained by interpolation. 
However, generating new meshes will not only increase the computational cost, but 
will also bring additional errors [3] in the computation. (2) Mesh deformation: 
through nodal repositioning, the shape and the size of the elements are changed while 
keeping nodal connectivity intact. It is simple to implement and it does not require 
topological modifications. Nevertheless, it is difficult to be applied in large 
displacement problems. (3) Combination of the two approaches: compared to mesh 
deformation, remeshing is much more computationally expensive, especially for the 
three-dimensional applications.  

Mesh deformation method is mainly divided into three categories: the PDE-based 
mapping, the pseudo-material and the spring analogy method. Lohner [4] and 
Helenbrook [5] proposed Laplacian or bi-harmonic equation methods, which are 
based on PDE. This kind of methods employs potential equations to determine how 
nodes should be repositioned. By avoiding mesh degenerating and maintaining the 
size of elements, they can efficiently solve the problem of intersection between mesh 
edges. Due to the restriction of non-coupling property between displacement variables, 
PDE-based method is not suitable for complex geometries and large-scale problems. 
It is usually applied to small-scale mesh or optimization problems. For the 
pseudo-material approach [6,7], the basic idea is to map the fluid domain to a 
pseudo-material and to calculate the mesh deformation following the classical laws of 
mechanics governed by a set of boundary displacement conditions. The main 
drawback of the pseudo-material approach is its low computational efficiency. The 
most widely used mesh deformation technique is the spring analogy method, which 
was first introduced by Batina [8], in order to deform a mesh around a pitching airfoil. 
By this method, a network of springs connecting all vertices (nodes) in the mesh is 
created, that is, each edge in the mesh is replaced by a fictitious spring whose stiffness 
is inversely proportional to its length. In this method, the equilibrium length of the 
spring is equal to the initial length of the edge. When the boundary moves, the interior 
nodes will be repositioned so that the spring system will converge to a new static 
equilibrium. Spring analogy is more often applied to aero-elastic calculations [9,10]. 
The method is also applied to structured meshes as well, for example, by Nakahashi 
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and Deiwert [11]. The system works well as long as the displacement is small 
compared to the element size. However, in some applications, the fluid domain 
boundary undergoes a motion with relatively large amplitude. It does indeed fail, 
when local invalid elements occur at some parts of the mesh. The reason why it fails 
has been studied for years. First of all, the resulting equation from the spring system is 
elliptic; it means that local perturbations only have local impact. Boundary 
perturbation cannot propagate into the interior solution domain effectively. Therefore, 
the spring analogy can only solve problems of small deformations. Some researchers 
have made improvements to the spring analogy method. By increasing the stiffness 
near the boundary, Blom [12] relieved the localization of deformation and enhanced 
the deformation capacity of the mesh. Secondly, the method lacks control 
mechanisms for element collapse. The spring method only considers the stretching 
effect of the spring, the stiffness of the edges is not related neither to the areas of the 
connected triangles nor to the angles of these triangles. To address this issue, torsional 
springs were added to the linear springs by Farhat et al. [13,14] in order to prevent the 
collapse of the elements. Later, Bottasso et al. [15] proposed a ball-vertex method 
which is arithmetically less complex than the torsional spring analogy method. The 
method introduces additional vertical linear springs that restrict the motion of the 
vertex towards its corresponding opposite face. These vertical springs effectively 
confine each vertex within the polyhedral ball that encloses it. The resulting linear 
equation is solved by a Gauss–Seidel solver. When dealing with repeated cycles of 
severe deformations, such as airfoil oscillation, the ball-vertex method shows a 
remarkably consistent behavior, which seems to be more robust than the torsional 
spring. The method can be implemented with only a little additional computational 
cost comparing with the spring analogy method. The combination of the vertical 
springs and the original springs can greatly improve the deformation capacity of the 
spring analogy method. However, it is still rather time consuming as a large system of 
linear equilibrium equations has to be resolved. Recently, a novel method [16,17,18] 
based on the creation of a background graph of the original mesh is developed. The 
mesh movement is carried out using the background graph with ease and efficiency. 
The mesh is then mapped back onto the deformed graph to provide the new mesh. 
Zhang [19] and Lin [20] et al. recommended improved methods for two-dimensional 
mesh deformation by adding new nodes into the background graph. Although the 
mesh update time is reduced, difficulties occur when it is extended to 
three-dimensional applications. 



4 

In this paper, a dynamic mesh deformation method named VerBSS (Vertex-Ball 
Spring Smoothing Method) is proposed. The algorithm is found to be robust for 
substantially distorted mesh and the solution strategy based on the LDLT solver can 
significantly improve the computational efficiency. 

2. THE SPRING BASED METHODS 

2.1. Spring analogy method 
The classical edge spring analogy method is easy to implement. A basic spring 

system model is shown in Figure 1. The edges of the mesh are considered as springs 
with stiffness inversely proportional to its length, and the spring system is in a 
balanced state. Given a mesh edge eij, which is connected by vertices i and j, the force 
on vertex i exerted by vertex j can be written as 

( )Edge Edge
ij ij j i ij ij jik= − ⋅ = −f u u n n f                      (1) 

where kij is the stiffness of edge eij. nij is the unit vector from i to j. The displacement 
of vertex i and j are denoted by ui and uj respectively. Considering the effect of all its 
n vertices connected to vertex i, the equilibrium of node i is given by 

1
0

n
Edge

ij
j=

=∑ f                                (2) 

The elastic problem is solved for each interior node of the mesh and a large linear 
system Kx=b is established. The global matrix K is formed with the edge spring 
stiffness kij, the vector x represents the displacements of the mesh vertices (nodes), 
and the vector b is formed based on the given boundary conditions. 

By solving the linear system, the displacements of the interior nodes are obtained. 
A new mesh can be created by updating the nodal coordinates of the mesh according 
to the displacement vector. 

 
Fig.1. Spring system.  
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2.2. Ball-Vertex method 

The disadvantage of the spring analogy method is the lack of collapse controlling 
mechanisms. That is, element inversions cannot be detected by the spring system. 
Node penetrations may occur as shown in Figure 2. This is usually the case when 
large amplitude of motion is involved. To prevent elements inversion, additional 
vertical linear springs are added in the ball-vertex method.  

 
Fig.2. Collapse mechanism. (a) Tri, (b) Quad, (c) Tet, (d) Hex. 

As is shown in Figure 3 [21], a convex polyhedron can always be defined around 
an interior node (the set of element faces that are one layer adjacent to the node). 
Vertical springs that connect node i and its projection points on the face of the ball are 
constructed as depicted in Figure 4. The node can be restricted by the vertical springs 
not to leave its ball. 

 
Fig.3. “Ball-vertex” concept. (a) Tri, (b) Quad, (c) Tet, (d) Hex. 

For the sake of simplicity, we only take a single tetrahedron for consideration. 
Let Tpijk denote a tetrahedron whose vertices are respectively p i j and k, and q is the 
projection of vertex p on to its opposite face. Vertical spring Spq is constructed with 
the stiffness inversely proportional to its length. Similarly to the previous spring 
equilibrium equations, the resulting force of spring Spq can be expressed as  

( ).ball vertex ball vertex
ip ip p i ip ip pik− −= − = −f u u n n f                     (3) 

where kip is the stiffness of the new spring, nip is the unit vector from i to p. The 
displacement of vertex i and p are denoted respectively by ui and up. 
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In the triangle Fijk, since node p is an artificial point, its displacement is 
interpolated linearly with the existing vertices (i, j, k) such that  

(1 )p j k lξ η ξ η= + + − −u u u u                            (4) 

where ξ and η are the area coordinates of the point p.  

 Fig.4. Ball-vertex springs: additional vertical springs. (a) Tri, (b) Quad, (c) Tet, (d) Hex. 

The position of each mesh node is determined by the equilibrium under the 
combined action of its edge-connected springs and the additional ball-vertex springs 
as shown in Eq. (5) 

1 1
0

n m
Edge ball vertex

ij ip
j p

−

= =

+ =∑ ∑f f                 (5)       

where n and m are the number of nodes and elements in the convex ball of vertex i. 
The contribution of the vertical springs and the original edge springs are 

combined to form a new spring system. Similar to the edge spring method, a global 
linear equation is established for all the interior nodes. Nodal displacements are 
determined by solving the system of linear equations with a SOR solver [22]. 

In summary, among the mesh deformation methods, spring analogy method is 
applicable to problems with relative small movements, and the ball-vertex method 
introduces additional vertical springs to control on the element deformation and avoid 
the occurrence of element inversions. 

3. THE VERBSS ALGORITHM 

3.1. Basic principle 

Compared to the spring analogy method, the ball-vertex method effectively 
constrains the interior node within its polyhedral ball. Though the scheme is able to 
deal with large deformations, it is rather time consuming as the solution for a large 
system of equilibrium equations to determine the new positions of the interior nodes 
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is required in each incremental step. When a large number of nodes are involved, the 
computational efficiency may be pretty low. As an improvement to the original 
ball-vertex algorithm, the VerBSS method (Vertex-Ball Spring Smoothing Method) is 
introduced in this paper. From the basic concept of mesh smoothing, each vertex-ball 
spring system is solved by means of the LDLT solver, and the interior nodes are 
smoothed layer by layer in an iterative manner for a higher efficiency. 

 
Fig.5. 2D sub-system of VerBSS algorithm. 

Following the vertex-ball spring system, a sub-system for a vertex i is formed by 
edge springs together with the ball-vertex springs as shown in Figure 5. The global 
system equation K u = b is reduced to 2×2 sub-systems whose right-hand vector b is 
written as 

1 1
( ) ( ) '

n m

i ij j ij ij ip p ip ip i i
j p

k k
= =

= ⋅ + ⋅ =∑ ∑ Bb u n n u n n u       (6) 

where ui
’ is the nodal displacement vector of the ball. n and m are the number of 

nodes and elements in the ball. Bi is a matrix of constant coefficients.  
As displacements are solved by iteration for each node in turn, LDLT matrix 

decomposition is employed for repeated calculations. Introduction of a relaxation 
factor can further speed up convergence, that is  

unew
i =w unew

i +(1-w) u0ld
i                          (7)                 

Numerical examples show that w can be set between 1.5 and 1.7 (over-relaxation). 
There are various alternatives for the termination control of VerBSS algorithm. Since 
solutions for mesh deformation do not require a high accuracy, we use formula (8) as 
the termination criterion. 

( )

1
| | / ( )

D N
prev

i i q
i

x x D N ε
⋅

=

− ⋅ <∑                         (8) 

where xi
(prev) is the result from the previous iteration step. N is the number of interior 

nodes and D is the spatial dimension. That is, for a given tolerance εq ∈ R+, when the 
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mean value of the difference between two adjacent iteration results falls below a 

prescribed value εq, the mesh smoothing will terminate. However, a maximum 
number of iteration steps kmax can also be defined for practical applications. 

3.2. Procedure of the algorithm 

The procedure of the new mesh deformation algorithm is given as follows: 
Step 1：For( i = 0; i < Number_of_Interior_Nodes; i ++_) 

{ Find the polyhedral ball Oi of interior node(vertex) i according to the 
topological relations (set of triangle faces, one layer adjacent to vertex i); 
store the topological data of ball Oi. } 

Step 2：For( i = 0; i < Number_of_Interior_Nodes; i ++_) 
{ Construct the vertex-ball spring system of interior node(vertex) i so as to 
form stiffness matrix Ki and coefficient matrix Bi; decompose matrix Ki into 
Li and Di using a LDLT solver; store the matrix Li , Di and Bi for subsequent 
steps. } 

Step 3：Set displacements of boundary nodes to the specified values. 
Step 4：For( i = 0; i < Number_of_Interior_Nodes; i ++_) 

{ Form linear equilibrium equations for interior node(vertex) i; solve the 
equations by LDLT matrix decomposition and update the displacements. } 

Step 5：Repeat step 4 until the result of the displacements meets the computational 
accuracy requirements. 

Step 6：Option 1: update the coordinates of the nodes according to the displacement 
result.  

Option 2: output the displacement result directly. 
Step 7：Repeat step2-6 (for option 1) or step3-6 (for option 2) for the next boundary 

displacement increment step until the simulation process is completed. 

3.3. A simple parallel scheme  

Parallel technology is popular as today’s microcomputers are all equipped with 
more than one processor. An efficient parallel algorithm making the full use of all the 
processors will boost the efficiency of computers. In mesh deformation applications, 
the CUP time required is increased as the problem size becomes larger. Generally, the 
construction of parallel solution for large system of linear equations may not be a 
simple task.  

In this paper, based on the VerBSS algorithm framework, a generic parallel 
scheme can be easily constructed according to the characteristic of the sub-spring 
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system of VerBSS. Each interior node is a new system and multiple sub-systems can 
be solved simultaneously in parallel by several processors using the LDLT solver. The 
parallel method is used in section 5.2 and 5.3 with 3D large-scale problems. Results 
show that the efficiency is much improved compared to the classical sequential 
process. Furthermore, there is no additional memory requirement for the parallel 
process. 

On OpenMP platform, the simple parallel scheme can be described as follows: 
… 
{Step 3}  
# pragma  omp  parallel  for  NP( the Number of Processors) 
{Step 4}  
… 

4. TWO-DIMENSIONAL APPLICATIONS 

In this section, the performance of the proposed VerBSS algorithm will be 
compared to the classical spring analogy method and the ball-vertex method for 
two-dimensional dynamic meshes. For this purpose, applications of translational 
rectangle, pitching and plunging aerofoil and multi-element aerofoil are considered. 
The numerical simulations were all carried out on a 2.66MHz Duo Core computer. 

Mesh quality measures expressed in terms of geometric criteria are used for 
assessing the characteristics of these methods. In this paper, we consider quality 
measures based on the ratio of the radii of the inscribed and circumscribed circles (or 
spheres in three dimensions) [23], which gives a measure of the stretching of an 
element. It is evaluated as 

ρ=C ⋅ r / R    （0＜ρ≤1）               (9) 

where r and R are respectively the radii of the inscribed circle and the circumscribed 
circle. C equals 2 and 3 for 2D and 3D applications respectively, and it is noted that 

for equilateral triangles and tetrahedra, the value of ρ equals to 1. 

4.1. Translational motion of the rectangle 

A model of translational rectangle with 496 triangles and 298 vertices is studied. 
Large vertical displacements are applied to the rectangle inside while the outer 
geometries remains fixed. The initial mesh configuration is shown in Figure 6(a). The 
tolerance adopted for the SOR algorithm in the test is 10-6 and the maximum iterative 



10 

number for SOR is limited to 300.  

Apart from efficiency, the robustness of the scheme is also an important 
consideration. In Figure 6(b), we observe that invalid triangles are formed when the 
vertical displacement reaches 2.6 units for the spring analogy method. On the other 
hand, the rectangle can move to a maximum displacement of 5.0 units for both the 
ball-vertex and the VerBSS algorithms (Figure6(c)). 

 
Fig.6. Dynamic meshes of translational rectangle. (a) Initial configuration, (b) Spring 
analogy method: failed, (c) VerBSS algorithm. 

In fact, the proposed algorithm is equivalent to the Block-SOR iterative method 
in principle. As can be seen from table 1, the VerBSS algorithm and the ball-vertex 
method converge to the same result. These two methods are capable of yielding a 
valid mesh, even when the rectangle is very close to the domain boundary, and they 
both have strong ability of dealing with large boundary deformations. However, the 
required CPU time of the ball-vertex method is 20ms for a single time step, whereas 
the proposed algorithm takes only 0.5ms, and VerBSS is much faster than the 
ball-vertex method for this example. 

Table 1.  
Quality distribution of triangular elements (a movement of 4.0 units). 

 ball-vertex 
method 

VerBSS algorithm 

0.0-0.02 6 6 

0.02-0.1 35 35 

0.1-0.4 81 81 

0.4-0.7 126 126 

0.7-1.0 248 248 

Next, we give a further investigation on the efficiency of the scheme, using 
exactly the same model with much finer mesh, which consists of 3055 elements and 

Quality 
Method 
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5830 vertices as shown in Figure 7. In this refined model, the computational time of 
the ball-vertex method needed 3.714s and the VerBSS algorithm took 0.021s. 

The comparison of the CPU time of the two methods for different mesh density is 
shown in Table 2, and the corresponding graph is shown in Figure 8. From the results, 
we can see that efficiency is further improved for more complicated large-scale 
meshes. 
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Fig.7 Model with finer mesh.      Fig.8. CPU time for meshes of different density. 

        Table 2. 
CPU time required by the two methods in a single time step. 

tim
e 
numbers 

Ball-vertex (s) VerBSS (s) 

298 0.020 0.0005 

1035 0.349 0.004 

3055 3.174 0.021 

8081 20.532 0.165 

21376 --- 0.685 

4.2. Pitching and plunging airfoil 

In this example, the aerodynamic benchmark problem of a standard wing, the 
NACA0012 airfoil [24] is chosen as a test case. The pitching and plunging airfoil of a 

unit chord moves according to Eq. (10) with pitching amplitude θ0=40°and plunging 
amplitude h0 =0.2 chord. The flow domain is discretized into 8664 triangles (4485 
nodes). 

θn = θ0sin(2πn/N) 

hn = h0sin(2πn/N)                       （10） 
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N=160 stands for the total number of incremental time steps. The maximum 
number of SOR iterations is limited to 300 and the SOR convergence criterion chosen 

is εq=10-5 .The performance of the proposed method is compared with the spring 
analogy method and the ball-vertex method with regard to robustness, efficiency and 
mesh quality. For the spring analogy, the elements near the trailing edge is distorted 
when the airfoil rotates to 18°, whereas full required displacement is achieved within 
the allowable number of displacement increments by the ball-vertex and VerBSS 
algorithms. The mesh quality has also been well maintained at each stage of the 
movement as shown in Tables 4 and 5. Figure 9 shows the upper and lower mesh 
configurations at the end of the first cycle by the VerBSS algorithm.  

 

Fig.9. Pitching and plunging airfoil with upper and lower configurations. 

For efficiency comparison, as the solution for a large system of equations 
consumes much more time, the computational time of spring analogy is similar to that 
of ball-vertex method with 9.11s and 9.328s for a single time step respectively, which 
is much more than that of the VerBSS algorithm. The average number of iterations is 
65 for the VerBSS algorithm, and the CPU time is only 0.11s for a single time step.  

Table 3. 
CPU time required for a single mesh update step. 

VerBSS algorithm Time 
Part Ⅰ: Formation of equations for each vertex 0.031s 
Part Ⅱ: Solution for displacements 0.076s 
Part Ⅲ: Mesh update time 0.003s 
Total time 0.110s 

Quality of the meshes is presented in the following tables for rotation angle of 15° 
and 30°, which verify the consistent convergence property of the two methods. The 
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local mesh quality around the airfoil is also maintained after large deformations. A 
rotation angle as large as 96° can be achieved by VerBSS as shown in Figure 10. 

Table 4. 
Quality comparison with a rotation angle of 15°. 

       method       
quality 

spring 
analogy 

ball-vertex VerBSS 

0.0-0.02 2 0 0 

0.02-0.1 3 0 0 

0.1-0.4 28 6 6 

0.4-0.7 158 120 120 

0.7-1.0 8473 8538 8538 

Table 5 
Quality comparison with a rotation angle of 30°. 

         method 
quality 

Ball-vertex VerBSS 

0.0-0.02 0 0 

0.02-0.1 1 1 

0.1-0.4 12 12 

0.4-0.7 206 206 

0.7-1.0 8445 8445 

 

 
Fig.10. Original configuration and airfoil rotates to 96°. 

4.3 Multi-element aerofoil with large dynamic flap deployment 

A three-element aerofoil is studied in the last test. The aerofoil is composed of a 
leading edge slat, the main airfoil section and a trailing edge flap that has been used as 
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an effective high-lift device. Both the front and back flaps move towards the main 
configuration. The fluid mesh has a total of 11372 mesh vertices (nodes) and 22177 
elements. The SOR convergence criterion is the same as the previous section. The 
average number of iterations is 80 by the VerBSS algorithm, and the required CPU 
time for the formation of equations and solution of the aerodynamic problem by the 
LDLT solver is given in Table 6. 

Table 6. 
CPU time required for a single mesh update step. 

VerBSS algorithm Time 
Part Ⅰ: Formation of equations for each vertex 0.094s 
Part Ⅱ: Solution for displacements 0.196s 
Part Ⅲ: Mesh update time 0.018s 
Total time 0.308s 

 

Fig.11. Mesh deformation of multi-element aerofoil. 
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A sequence of the moving mesh for a relatively large displacement using the 
approach described in Section 3 is depicted in Figure 11. Results show that the 
VerBSS algorithm manages to update the mesh around the wing’s flaps. Although the 
mesh is subjected to a strong compression in the slot areas, the entire process is well 
completed without any node penetration or element inversion. 

5. THREE-DIMENSIONAL APPLICATIONS 

The commonly used spring analogy method, classical Laplacian equation method 
[4] and the ball-vertex method are chosen to compare with the VerBSS algorithm for 
three-dimensional applications. The tolerance adopted for Section 5.1 is 10-5, and 10-4 
for Section 5.2 and 5.3. In order to demonstrate the improvement by the parallel 
scheme, the last two cases are carried out on a 2.20MHz four cores computer, and 
only the CPU time for the solution part is considered for comparison in this section. 

5.1 Movement of a sphere in a fixed cube 

We consider the dynamic mesh for a sphere of radius 5 moving from the center to 
the left-hand side within a 50×50×50 cube. The mesh consists of 2058 nodes and 
9496 elements. The original configuration is shown in Figure 12(a). 

 
Fig.12. Moving meshes around a sphere in the cube. (a) Initial configuration, (b) 
Moved mesh by VerBSS algorithm. 

The maximum displacements of the sphere are both approximately 10 units for 
the spring analogy method and the classical Laplacian equation method; whereas the 
ball-vertex and the VerBSS algorithms can move the sphere to a total displacement of 
16 units. The deformed mesh obtained by the VerBSS algorithm is presented in 
Figure 12(b). The number of iteration is 60 for the VerBSS algorithm, and the 
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required CPU time for one single time step is shown in table 7. 

Table 7. 
CPU time comparison between different methods in one step . 

Spring analogy [8] 1.683s 
Ball-vertex method [15] 1.954s 
Classical Laplacian equation [4] 0.621s 
VerBSS algorithm 0.067s 

From this example, we can see that the VerBSS algorithm and the 
ball-vertex method are superior to the spring analogy and the classical Laplacian 
equation method in terms of mesh deformations. As for efficiency, the methods 
based on the spring concept need to solve a large system of linear equations, 
which leads to a low computational efficiency. Since the displacements in three 
directions, x,y,z are independently solved out in the Laplacian method, the scale 
of the problem is reduced. On the other hand, by considering a sub-system for 
each individual node to avoid the resolution of a global system of equilibrium 
equations, the proposed VerBSS algorithm tremendously improves the 
computational efficiency. 

5.2 Dynamic mesh around swimming fish 

In the field of bionics, we use the undulatory flexible body as a simplified 
model to study the relevant mechanisms of swimming animals. In this example, 
model of swimming fish is carried out to investigate the viscous flow around a 
flexible body. A mesh of two fish swimming side by side is generated with 20840 
nodes and 108322 tetrahedra. The geometric model consists of two fish with 
anti-phase undulation, of which the spacing is 0.5 length of the body. The Initial 
configuration is shown in Figure 13. 

 
Fig. 13. Initial configuration 

Movement of fishes is as follows: 
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y(x,t) = A(x) cos [2π/λ (x-ct)]                       (11) 

where x is the distance from a point on the body to the head of the fish. λ=1.0 is the 
wavelength of the swing and the phase speed c is taken as 1.5 in this example. A(x) is 
the function which is formed based on the amplitude of the movement at different 
parts of the fish. Figure 14 shows four typical moments of the swimming fish in one 
cycle. Each deformation cycle is broken into a sequence of 60 steps. The CPU time 
for a single time-step movement by the serial scheme is 0.205s and the whole process 
takes 14.409s. Parallel technology is used in this example to further improve the 
computational efficiency. The parallel computing time is shown in table 8. 

        
       

CPU timeof one processorSpeed up
CPU timeof multiple processors

=  

 

 
Fig.14. Four typical moments of the swimming fishes. 

Table 8.  
CPU time for one step with different number of processors, NP= number of 
processors. 

NP CPU time (s) Speed up 

1 
2 

0.205 
0.112 

1.000 
1.830 
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4 0.076 2.697 

5.3 Deformation of a bending wing 

For the last case, the geometry of a wing-body combination is considered for 
aero-elastic studies, which is discretized into 106755 nodes and 610252 
tetrahedra. A view of the initial mesh is given in Fig.15(a). We assume the wing 
is clamped at its root and bend with a tip bending amplitude of 0.4L, where L is 
the span of the wing. The bending angle of the tip is 40° approximately. The 
deformed configuration is achieved in 40 steps, i.e. about 1° per step. Figure 15(b) 
shows the wing at the upstroke positions. 

 

 

Fig.15. The bending wing with deformation of 40°. (a) Initial configuration, (b) 
Mesh after the deformation. 

Table 9. 
CPU time for one step with different number of processors, NP= number of 
processors. 

NP CPU time (s) Speed up 

1 
2 
4 

1.198 
0.743 
0.463 

1.000 
1.612 
2.587 
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In terms of efficiency, The CPU time by the serial process was 1.198s in a single 
time-step movement and the entire process took 55.236s. The corresponding parallel 
CPU time is shown in table 9. 

6 ANALYSIS OF VERBSS ALGORITHM 

In terms of mathematical modeling, the three methods, namely, the spring 
analogy, ball-vertex method and the VerBSS method, are all based on a system of 
D*N linear equations, where N is the number of interior nodes and D represents 
the spatial dimensions. In the solution phase, the first two methods use the same 
classic SOR iterative procedure, and the VerBSS algorithm uses a different 
solution strategy which is similar to the Bolck-SOR iterative method. By solving 
the vertex-ball spring system of each node in turn, the three displacement 
components of each node are obtained by means of LDLT matrix decomposition, 
which is equivalent to reducing the D*N linear equations into N sub-blocks of 
much smaller sizes. As the vertex-ball spring system is a linear elastic structure, 
the stiffness matrix of the sub-block system is symmetric positive definite. These 
characteristics enable VerBSS algorithm to converge faster with the highest 
computation efficiency among the three methods. Moreover, the Block-SOR and 
SOR algorithms will converge to the same solution as solution is unique for a 
linear elastic system irrespective how the solution is determined. However, the 
order in processing the nodes has an impact on the CPU time and the symmetric 
SOR method (SSOR) can improve the computational efficiency in some 
situations. Furthermore, only non-zero components of large sparse stiffness 
matrix K are stored instead of the whole matrix in the VerBSS algorithm to save 
memory space. 

7. CONCLUSIONS 

As an improvement over spring analogy method in terms of robustness and 
efficiency, a dynamic mesh deformation approach named VerBSS is proposed. From 
the basic mesh smoothing concept, the sub-spring system derived from the 
“Ball-Vertex” model is solved by means of a LDLT solver. Interior nodes are 
smoothed layer by layer in an iterative manner. In principle, this procedure bears the 
same concept as the Block-SOR iterative method. The algorithm simplifies the global 
spring system to sub-systems of individual interior nodes. Because of the 
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characteristic of the sub-block, a parallel scheme can be easily implemented. As a 
result, the efficiency is significantly enhanced, especially in three dimensional 
large-scale meshes. Furthermore, memory required is greatly reduced, as only the 
non-zero coefficients of the sparse matrix are stored. Numerical examples in two and 
three dimensions have shown that the VerBSS algorithm is simple to implement and 
is capable of dealing with practical engineering problems of complex geometries 
subject to large boundary deformations. In comparison with other dynamic mesh 
deformation methods, the new method exhibits both robustness and computational 
efficiency. 
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Appendix: The LDLT approach 

The VerBSS algorithm only needs solving the sub-spring system. It converts 
large linear equations into a 2×2 (three-dimensional 3×3) symmetric linear 
equations. The corresponding fictitious stiffness matrix is symmetric and positive 
definite.  

In certain applications, the coefficient matrix of the stiffness is constant, and only 
the right-hand vector changes from time to time. To deal with this situation, a great 
deal of calculations can be saved if matrix decomposition is done only once for 
different right-hand side vectors. One of the most effective methods is the LDLT 
decomposition approach, especially, if the coefficient matrix is symmetric.  

The analysis of computational cost is as follows: 

(a) The analytical method 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

k x k x k x b
k x k x k x b
k x k x k x b

+ + =
 + + =
 + + =

                    (12) 

Eq. (12) shows the equation of three dimensional applications whose solution is 
evaluated as 
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x1 =D1 /D , x2 =D2 /D , x3 =D3 /D. 
where 

11 12 13 1 12 13 11 1 13 11 12 1

21 22 23 1 2 22 23 2 21 2 23 3 21 22 2

31 32 331 32 33 3 32 33 31 3 33

                                   
                                        

                       

k k k b k k k b k k k b
D k k k D b k k D k b k D k k b

k k bk k k b k k k b k
= = = =  

Each determinant needs 12 multiplications to evaluate. While determinant D keeps 
unchanged, D1, D2, D3 change with vector b, at least 36 multiplications and 3 
divisions are needed for each iteration. 

(b) The LDLT method 

The LDLT decomposition of matrix K to solve Kx=b is referred to as the LDLT 
decomposition approach, in which 
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Since the coefficient matrix K will not be used again after decomposition, 
memory can be saved by putting the reduced coefficients in their original position, 

Solving symmetric linear equation Kx=b according to the decomposition 
K=LDLT, we have (LDLT) x=b, which can be broken into three steps, i.e. Ly=b，Dz=y 
and LTx=z. Thus the solution are obtained as 
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                       （13） 
As seen from equation (13), each iteration requires 6 multiplications and 3 divisions, 
when n equals to 3. If the inverse matrix of D is also stored, there needs only 9 
multiplications 
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