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ABSTRACT 

New ideas are presented in this paper for the boundary recovery of 3D Delaunay 

triangulation. Fully constrained Delaunay triangulations in terms of geometrical and 

topological integrity on all boundary edges and facets are required in many applications, 

such as meshing by components, fluid-structure interactions, parallel mesh generation, 

local remeshing and interface problems, etc. The geometry of boundary edges and facets 

can be recovered by the introduction of Steiner points. However, for a fully constrained 

Delaunay triangulation, these Steiner points have to be removed or repositioned towards 

the interior of the domain to restore the topological integrity of the boundary edges and 

the facets. It is found that Steiner points on edges could be removed more systematically 

following a specific sequence in an alternative manner rather than a random selection 

commonly adopted in practice; whereas for Steiner points on a facet, a weight on the 

Steiner point adjacency would lead to an optimal order to facilitate their removal. A 

linear programming technique is also employed to determine the feasible region for the 

relocation of Steiner points in the interior of the domain. Work examples and industrial 

applications with details in the boundary recovery are presented to illustrate how the 

algorithm works on objects with difficult boundary conditions. 

Keywords: Boundary recovery; fully constrained Delaunay triangulation; linear 

programming; sequence for removal of Steiner points 
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1.  INTRODUCTION 

 

Efficient and robust automatic mesh generation plays a significant role in computational 

science and engineering [1-4]. For automatic mesh generation over complex domains, 

unstructured tetrahedron meshing is widely employed due to its inherent theoretical and 

implementation merits. Basic meshing algorithms such as Advancing-front [5, 6], 

Octree [7] and Delaunay triangulation [8-12] have been proposed and implemented over 

the last three decades. Among these methods, Delaunay triangulation is the most 

popular and well studied. While the 2D Delaunay triangulation method is mature and 

fully investigated, in three dimensions, there are still a number of difficulties including 

the boundary recovery problem. 

Taking the triangular surface mesh as input, boundary recovery requests all triangles on 

the input surface mesh be preserved without introducing Steiner points on the boundary. 

The integrity of the boundary (both geometry and topology) is crucial in meshing by 

components, parallel mesh generation, partial remeshing and multi-interface problems. 

With the development of the Finite Element Method and its applications, how to 

generate a tetrahedral mesh with an integral boundary is increasingly important [13-17]. 

 

Generally, the existing boundary recovery approaches can be grouped into two 

categories: (1) local mesh reconnection; (2) introduction of Steiner points. In the first 

approach, no Steiner point will exist in the final tetrahedron mesh. However, there is no 

theoretical basis for the success of such methods due to the existence of Schönhardt 

configuration. In the second approach, Steiner points are introduced to achieve 

boundary recovery. Although they could recover the geometry of the missing quantities, 

as how to remove the non-positive tetrahedral elements so created systematically to 

ensure topological integrity is still an open issue. 

 

1.1 Local mesh reconnection 

As no Steiner points are inserted in the final mesh, approaches by local mesh 

reconnection attract interest of many researchers. Weatherill and Hassan [18] split the 

constrained boundary by inserting Steiner points on edges and facets, then suppressed 

the inserted points by locally remeshing tetrahedra linked to them. However, the 

remeshing routine could not guarantee a valid boundary-recovered topological structure 

even though it exists. Liu et al. [16] employed an exhaustive method named small 

polyhedron reconnection (SPR) to achieve the boundary recovery. For a small 

polyhedron with no more than 20 triangular facets, SPR evaluates all possible 

topological structures to detect if the missing quantities could be recovered in one of the 

configurations. Ghadyani et al. [17] carved out a hole in the vicinity of missing 

boundary facets, and the hole and missing boundary facets formed a polyhedron, which 

is to be meshed by a method known as LAST RESORT. 

 

1.2 Introduction of Steiner points 

With the help of Steiner points, missing edges and facets could be recovered. An edge is 

represented as broken line segments separated by Steiner points, and facets are 
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represented by a concatenation of sub-triangles supported on Steiner points. Such 

meshes are known as semi-constrained Delaunay triangulation; and if topological 

integrity of boundary edges and facets are not required, the boundary recovery process 

can stop at this point. However, if a fully constrained Delaunay triangulation including 

topological integrity is required, all Steiner points have to be removed or repositioned 

towards the interior of the domain. George et al. [13] improved their previous work [19] 

to propose a method to mesh an arbitrary polyhedron. By this method Steiner points are 

inserted on constrained boundary as Weatherill and Hassan [18] did, which are 

suppressed one by one later in a separate process. For each Steiner point, a Delaunay 

triangulation on missing facets is constructed and flat elements of zero volume are 

created to recover the related topological structure. Du and Wang [14] inserted Steiner 

points on boundaries through a heuristic approach [20] to reduce the number of Steiner 

points. They used an edge-swap procedure on the missing boundary facets to remove 

some of the Steiner points. However, there is some drawback in the method proposed 

by George et al. [13] and Du and Wang [14]: a number of locked Steiner points are 

generated which could not be easily removed. Chen et al. [21] combined the work of Du 

and Wang [14] and Liu et al. [16]. They employed SPR to reduce the number of Steiner 

points in the final mesh. However, their method still faces the problem of locked Steiner 

points. Guan et al. [22] proposed a technique named ‘dressing wound’. Compared to the 

method proposed by George et al. [13] or Du and Wang [14], it introduces more Steiner 

points. However, this method provides a new perspective for the boundary recovery 

problem. 

 

In summary, boundary recovery for meshing arbitrary polyhedrons is still difficult. New 

ideas for the boundary recovery of the 3D Delaunay triangulation are presented in this 

paper to address some of the difficulties. The method proposed focuses on systematic 

removal of Steiner points. As a departure from the previous works [13, 14, 21, 22], in 

the process of removing Steiner points, the proposed approach optimizes the sequence 

and locations in the removal of Steiner points to reduce the number of locked Steiner 

points as much as possible. Moreover, a linear programming optimization is adopted to 

determine the feasible region in relocating Steiner points. Compared with Laplacian 

smoothing based methods, it guarantees finding feasible positions for Steiner points 

should they exist.  

 

2.  INSERTION ALGORITHM AND BOUNDARY RECOVERY 

 

Delaunay triangulation is the geometric dual of a Voronoi tessellation. It was presented 

in 1934 by Delaunay who found the property of empty circumsphere criterion [23]. In 

3D domain, empty circumsphere criterion can be presented as below: for every 

tetrahedron there are no vertices in its circumsphere except for the four vertices of its 

own. In 1981, Bowyer [24] and Watson [25] independently proposed the method of 

point insertion, which is simple and efficient. The kernel of this method is to insert 

points one by one until all the points are treated. In order to satisfy the empty 

circumsphere criterion, the topology of the mesh is corrected after each point insertion.  
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For a polyhedron represented by a set of triangles, the 3D Delaunay triangulation by 

point insertion will generate the boundary facets of a convex polyhedron, but there is no 

guarantee for a concave or multi-connected polyhedron. For the boundary integrity of a 

general polyhedron, additional work needed be done after point insertion. After partial 

recovery of some edges and facets by local element swaps 2-3, 3-2 and 4-4 [26], Steiner 

points can then be inserted on the boundary to recover the remaining boundary edges 

and facets. The Steiner points have to be removed or repositioned to ensure the 

topological integrity of the boundary. Algorithm 1 presents the main ideas of the 

constrained boundary recovery procedure proposed in this paper. 

 

Algorithm 1. Boundary recovery for 3D Delaunay triangulation 

Step 1: Take the given polyhedron as input. Set original triangular facets on the 

boundary as the restricted boundary. 

Step 2: Perform Bowyer-Watson algorithm for points on the boundary of the 

polyhedron, and obtain an initial triangulation of the boundary points. 

Step 3: Carry out local element swaps to recover boundary edges and facets. 

Step 4: Insert Steiner points to unrecovered boundary edges and facets. 

Step 5: Suppress Steiner points on boundary edges. 

Step 6: Optimize the tetrahedral mesh, and eliminate flat elements. 

Step 7: Suppress Steiner points on boundary facets. 

Step 8: Optimize the tetrahedral mesh, and eliminate flat elements. 

Step 9: Delete tetrahedra outside the model to obtain the final tetrahedral mesh. 

 

 

3.  DETAILED ALGORITHM FOR BOUNDARY RECOVERY 

  

The recovery of the geometry of a triangulated boundary has been studied by many 

researchers. Effective methods [15, 18, 20] were proposed to resolve this problem. For 

the geometric boundary recovery, a method similar to that proposed by George et al. [13] 

is adopted in this paper, in which intersection points on the boundary facets are taken as 

Steiner points, which are inserted by means of an enhanced Delaunay insertion to 

preserve the existing boundary facets. Once the boundary facets are recovered, the next 

phrase is to remove the Steiner points which have been inserted onto the boundary 

facets to assist their recovery. Points on the boundary can be removed through local 

reconnections and the creation of flat elements of zero volume [13, 14], but no 

systematic procedure is given as how these elements could be effectively opened up. 

Hence, the focus of this paper is to devise a systematic procedure to remove the 

elements so created in the boundary recovery process. 

 

Before we could present a detailed account of the proposed method, the notion and the 

definition of locked points have to be clarified. 

 



5 

Locked point: A point will be said to be locked if a movement in any direction will 

render one or more tetrahedral element(s) connected to it to be negative. 

 

As shown in Figure 1, S1 is a locked point and S2 is not. Specifically, in Figure 1, ACB 

and ABD are boundary facets, tetrahedra ACS1S2, DAS1S2, ACBS1 and ABDS1 are 

non-positive elements. To remove S1 and S2 from the boundary facets, the possible 

direction to reposition the points is along the direction normal to triangle BAD. There is 

no problem to relocate S2 as both tetrahedra ACS1S2 and DAS1S2 will be opened up to 

have a positive volume. However if S1 is to move upwards, tetrahedra ACS1S2 and 

DAS1S2 will be inverted to have a negative volume; thus point S1 is locked. 

 

Figure 1. S1 is a locked point and S2 is free to move upwards. 

 

As the movement of locked points is restricted, and they will significantly increase the 

difficulty in the removal of non-positive elements, an effective boundary recovery 

procedure should produce as few locked points as possible in the recovery process. 

 

3.1 Suppressing Steiner points to recover boundary edges 

Steiner point removal consists of lifting point on the facets and edges of the boundary. 

When an edge is broken up by several Steiner points, the order of point removal is 

crucial for reducing the number of locked points.  

 

 

3.1.1 Removal of one Steiner point 

 

As shown in Figure 2a, P is a Steiner point on the edge shared by facets F1 and F2. To 

suppress P, triangles on F1 and F2 are reconnected through edge swaps as shown in 

Figures 2b and 2c. Then triangles acb and abg are formed respectively on F1 and F2 to 

recover the missing edge. In the reconnection process, elements decP, cebP, cbaP, abgP 

and bfgP are created and P is repositioned upwards normal to facets F1 and F2 as shown 

in Figure 2d.  
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Figure 2. Removal of Steiner point on a boundary edge:  

(a) Steiner point P on boundary edge; (b) Suppressing P on F1;  

(c) Suppressing P on F2; (d) segment ab is recovered. 

 

3.1.2 Optimization of the order in removing Steiner point  

Suppose boundary edge E is broken up by a series of Steiner points  niSi ,2,1: 
 

counting from one end of E to the other end. To recover edge E, we first deal with 

points 2/)1(,, 1231  nkSSS k , and then the rest of the Steiner points 

2/,, 242 nkSSS k  . By dividing the Steiner points into two groups, only half of the 

points, namely, kSSS 242 ,,  are locked points. A boundary edge AB with three Steiner 
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points S1, S2 and S3 as shown in Figure 3 is taken as an example, and the result will be 

compared with the procedure by random point selection. 

 

Figure 3. Boundary edge with three Steiner points. 

 

The proposed method removes the Steiner points in the order of S1, S3 and S2. The 

results are depicted in Figure 4a and 4b. In the process of recovering edge AB, flat 

elements AS1S2C, AS1S2D, BS2S3C, BS2S3D, ABCS2 and ABDS2 are created. S2 is locked 

as wherever S2 is repositioned at least one of the above six elements will be made 

negative. S1 and S3 are not locked as they could move upwards normal to facet CBA or 

BAD without producing any negative tetrahedral element(s). 

 

 

Figure 4. Edge recovered through the proposed sequence. Colours indicate different 

steps of node reposition. 

 

When Steiner points are removed by a random selection, there are six possible 

suppression orders: S1S2S3, S1S3S2, S2S1S3, S2S3S1, S3S1S2 and S3S2S1. And four of them 

(i.e. S1S2S3, S2S1S3, S2S3S1 and S3S2S1) will produce two locked points. In other words, 

methods by random point selection have 66.6% chance to create one extra locked point 

in this 3-Steiner-point edge recovery. In removing Steiner points S1, S2 and S3, flat 

elements AS1S2C, AS1S2D, AS2S3C, AS2S3D, ABCS3 and ABDS3 are created, which 
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makes S2 and S3 locked. In this case, node reposition takes three steps to open up all 

these flat elements as shown in Figures 5a, 5b and 5c. 

 

Figure 5. Edge recovered by random order. Colours indicate different steps of node 

reposition. 

 

 

3.2 Suppressing Steiner points to recover boundary facets 

Boundary face recovery is performed after all boundary edges are recovered and all flat 

elements are opened up. Steiner points, which are connected locally to form a valid 

topological structure with possibly some flat elements, are then lifted from the boundary 

faces by means of an optimization process. Two special cases for boundary face 

recovery are discussed in details to elucidate the idea.  

 

 

3.2.1 Removal of one Steiner point 

Edges connected to Steiner point P on the boundary facet are removed by proper 

element swaps. In Figure 6a, Steiner point P is on triangular facet F. P could be 

suppressed by swapping Pa with be and Pc with bd as shown in Figure 6b. As shown in 

Figure 6c, flat elements Pabe, Pbde and Pbcd are created to recover the correct 

topological structure.  
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Figure 6: Point removal and topology recovery for a boundary facet: (a) Steiner point P 

on a triangular facet; (b) Removing P on F; (c) Topology recovered 

 

3.2.2 Optimization of the order of Steiner point removal 

 

When there are more than one Steiner points on a facet, the order of point removal is 

crucial. A proper sequence could significantly reduce the number of locked points. The 

central idea in optimizing the order of suppression is to give priority to the Steiner point 

with the least number of Steiner point neighbors. In other words, for each Steiner point 

on a facet we take the number of its Steiner point neighbors as weight; and Steiner 

points are removed following the attached weight in an ascending order. 

 

To be more specific, the operations of a boundary facet with four Steiner points are 

discussed in details as shown in Figure 7a. The weights of Steiner points S1, S2, S3 and 

S4 are 3, 2, 2 and 3 respectively. According to the proposed scheme, the order for 

recovery is S2, S3, S4 and S1 and elements S1CS4S2, S1BCS2, S1ABS3, S1S4AS3, S1CAS4 

and ABCS1 are created as shown in Figure 7b. The above weighted method produces 

two locked points S1 and S4. On the other hand, if Steiner points are removed from the 

boundary facet by a random selection, there are totally 24 possible suppression orders, 

and 20 (83.3%) of them will create three locked points. For instance, one of the orders is 

to suppress S1, S2, S3 and S4 sequentially. As shown in Figure 7c, the elements created 

are S2S4BS1, S3BS4S1, CS4BS2, ABS4S3 and ABCS4. Consequently, three points instead of 

two points S2, S3 and S4 become locked. 
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Figure 7.  Recovering a boundary facet with four Steiner points: (a) Missing facet;   

(b) Sequence S2, S3, S4, S1; (c) Sequence S1, S2, S3, S4. Colours indicate different steps of 

node reposition. 

 

Solutions for special cases of equal weighting 

In general, if the weights (number of Steiner point neighbors) of the Steiner points are 

the same as shown in Figure 8a and 9a, the proposed weighted method will not reduce 

the number of locked points. However, under this circumstance, an extra Steiner point 

could be introduced to reduce the locked points. Recovery procedures for the cases of 3 

Steiner points and 4 Steiner points are described as follows, where points not locked are 

moved slightly in the figures.  

 

 

Case I: 3 Steiner points 

 

As shown in Figure 8b, an extra Steiner point P  is created at the barycenter of S1, S2 

and S3. The missing boundary facet ABC is recovered through the creation of elements 

PABC, PS1S2S3, PAS2S3, PBS1S3, PCS1S2, PS1BC, PS2AC and PS3AB. Consequently, 

there is only one locked point P in the recovery of facet ABC. Unlike our approach, the 



11 

method of George and Du creates elements S1S2S3B, S1S2BC, S2S3CB, S2S3CA and 

S3ABC as shown in Figure 8c, in which S2 and S3 are locked points. 

 

 

Figure 8. Case I: (a) Boundary facet with 3 Steiner points; (b) Extra point P is 

introduced; (c) Recovery by the method of George and Du. Colours indicate different 

steps of node reposition. 

 

Case II: 4 Steiner points 

As shown in Figure 9b, an extra Steiner point P is introduced at the barycenter of any 

three points of S1, S2, S3 and S4. Elements PABC, PS1S2S3, PS1S3S4, PS1S4S2, PAS2S3, 

PBS4S3, PCS4S2, PS4BC, PS2AC and PS3AB are created to recover the boundary facet 

ABC, in which P and S4 are locked points. On the other hand, by the method of George 

and Du, elements S1S2S3S4, S2S3S4C, S2S3CA, S3S4AC, S3S4AB and S4ABC are created, in 

which three points S2, S3 and S4 are locked as shown in Figure 9c. 
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Figure 9: case II: (a) Boundary facet with 4 Steiner points; (b) Extra point P is 

introduced; (c) Recovery by the method of George and Du. Colours indicate different 

steps of node reposition. 

 

 

4.  REMOVAL OF FLAT ELEMENTS 

 

In the process of boundary recovery, flat elements of zero volume are created. These 

elements have to be opened up by a combination of face-swap, reposition 

(Laplacian-smoothing) and the insertion of extra nodes. Reposition method is an 

essential part of flat element removal. Among existing reposition approaches [27-30], a 

reposition method by means of linear programming is adopted, in which the optimal 

position of a Steiner point could be determined such that all tetrahedra connected to it 

are ensured to be positive. The method is illustrated with a 2D example. 

 

4.1 2D non-positive element removal 

As shown in Figure 10a, P(x1, x2) is a point in a 2D triangular mesh with adjacent 

elements bounded by polygon V1V2V3V4V5. Let 1n


 be a normal vector to edge V1V2 
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pointing towards the interior of polygon V1V2V3V4V5. If 011 nPV


, triangle V1V2P is 

positive, hence P(x1, x2) is valid if it satisfies the following conditions: 

)2,1(0 minPV ii 


                       (4.1) 

where m is the number of the boundary edges, ),( iyixi nnn


is the unit normal vector to 

edge Ei  and Vi is the first vertex of the edge Ei. The constraints can be represented by 

the following inequalities. 
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It may not be easy to solve the formulation 4.2 directly, but we can convert this problem 

into a linear programming problem, which can be readily solved by the simplex method. 

Now, equation (4.2) is transformed to a standard format of linear programming: 
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As we aim at obtaining the feasible region, the objective function could be an arbitrary 

linear polynomial of the slack variables. The feasible region exists if f > 0, and it 

degenerates into a line or a point if f = 0. The feasible region v1v2v3v4v5 of formulation 

(4.3) for a concave pentagon is shown in Figure 10b. As the feasible region is always 

convex, the barycenter of v1v2v3v4v5 can be the new position for the relocation of P.  
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Figure 10. 2D point reposition: (a) a point inside a polygon; (b) the feasible region. 

4.2 3D non-positive element removal 

In three dimensions, all tetrahedra connected to a point form a polyhedron. As shown in 

Figure 11a, node P is shared by 8 tetrahedra in the form of a twisted Schönhardt 

polyhedron. Tetrahedron ABCP is a flat element. The problem of opening up flat 

element ABCP is equivalent to finding a feasible position for P in the polyhedron 

ABCDEF as shown in Figure 11b. 

 

Figure 11. A twisted Schönhardt polyhedron: (a) tetrahedral mesh with flat element 

ABCP; (b) the boundary of the polyhedron. 

The node reposition problem can be transformed into an optimization problem as in the 

2D case. The inequalities in the format of linear programming are given by 

)2,1(0 minPV ii 


                      (4.4) 
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where m is the number of the boundary facets, in


 is the unit normal vector to boundary 

facet Fi and Vi is a vertex on facet Fi. The inequality (4.4) is rewritten in a standard form 

for linear programming as explained in Section 4.1. In case the feasible region exists, 

the objective function f is greater than 0, and the barycenter of the feasible region is the 

new position of P. In fact, the feasible region is given by the bounded region of the 

extended boundary facets of the given polyhedron.  

 

4.3 Comparison with Laplacian based methods 

 

The drawback of Laplacian based methods is that a valid position for a Steiner point 

cannot be determined inside a non-convex polygon, whereas the proposed reposition 

method by means of linear programming could always give the optimal solution should 

it exist. As shown in Figure 12a, there are six tetrahedra, PCBA, PECA, PBDA, PDEA, 

CBEP and EBDP, where CBEP and EBDP are flat elements. To relocate point P, 

Laplacian based methods move P along PQ outside the polyhedron as shown in Figure 

12b. However, the proposed linear programming reposition method finds a valid 

position Q which is well within the polyhedron as shown in Figure 12c. In the actual 

implementation, we combine the linear programming reposition method and the smart 

Laplacian method to relocate Steiner points. Specifically, smart Laplacian method is 

first applied to determine a new position for a Steiner point, and if this fails, the 

proposed linear programming reposition method is invoked. 
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Figure 12: Comparing the proposed reposition method with Laplacian based methods: 

(a) tetrahedral mesh with flat elements; (b) reposition by the Laplacian based methods; 

(c) reposition by linear programming. 

 

 

 

5.  NUMERICAL EXAMPLES 

 

Four application examples are presented to describe some key features of the proposed 

method in details. The first example is a mechanical support model as shown in Figure 

13a. 152 boundary facets were missing in the initial Delaunay triangulation. To recover 

these missing boundary facets, 50 Steiner points were inserted including 43 points on 

the original boundary edges. The largest number of Steiner points inserted on a single 

edge was 5 as shown in Figure 13b. The missing edge is shown in blue color and the 5 

Steiner points are marked with different colors. To remove these Steiner points, only 

two iterations were required following the method proposed in this paper. As shown in 

Figure 13d, in the first iteration three unlocked points are first relocated; then the other 

two locked points are repositioned in the second iteration. On the other hand, random 

procedure would need 5 iterations to remove all these 5 Steiner points as 4 out of 5 

Steiner points were locked. As shown in Figure 13e, only one Steiner point could be 

relocated in each iteration.  

 



17 
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Figure 13. Boundary edge recovery: (a) the support model; (b) and (c) missing edge 

with 5 Steiner points; (d) Steiner point removal by the proposed method; (e) Steiner 

point removal by random order  

 

The second example is a screw model as shown in Figure 14a. In this model, 433 

Steiner points are introduced including 40 points on the boundary facets, in which the 

largest number of Steiner points inserted on a single facet is 4. One facet with 4 Steiner 

points is shown in Figure 14b and 14c, where Figure 14c is the mesh of Figure 14b in a 

different view. To remove these Steiner points, Figure 14d depicts the process following 

the proposed suppression order optimization (i.e. higher priority to points with small 

number of Steiner point neighbors). Compared with the proposed method, the random 

procedure required more iterations to suppress Steiner points on the missing boundary 

facet. As shown in Figure 14e, although it is not the worst case (4 iterations), it still 

needed one more iteration compared to the weighted method. 

 

Another case of boundary facet recovery is shown in Figure 14f and 14g. All the 3 

Steiner points on the missing facet have the same number of Steiner point neighbors. 

Figure 14h and 14i depict respectively the procedures of the proposed approach and that 

of George and Du. Although the proposed approach introduces one more Steiner points, 

it took only 2 iterations as shown in Figure 14h, which is less than the method of 

George and Du as shown in Figure 14i.  
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Figure 14. Boundary facet recovery: (a) the screw model; (b) and (c) missing facet with 

4 Steiner points; (d) relocating 4 Steiner points by the proposed method; (e) relocating 4 

Steiner points by random order; (f) and (g) missing facet with 3 Steiner points; (h) 

relocating 3 Steiner points by the proposed method; (i) relocating 3 Steiner points by the 

method of George and Du  

The third example is an impeller model with 172 Steiner points inserted as shown in 

Figure 15a. Point relocation is an essential part in opening up flat elements. Magnified 

views of a critical recovery zone in the form of a concave polyhedron are shown in 

Figure 15b and 15c. The node reposition aims at relocating the Steiner point shown in 

red color in Figure 15b and 15c to remove the flat elements connected to it. The feasible 

region of the Steiner point is presented as the green polyhedron as shown in Figure 15d. 

The new position for the Steiner point is at the barycenter of the region, which is 
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marked red in Figure 15e. Consequently, all flat elements connected to the point are 

opened up as shown in Figure 15f. 

 

 

 

Figure 15. Boundary facet recovery: (a) An impeller model; (b) and (c) concave 

polyhedron; (d) feasible region and its bounding box; (e) new position of the Steiner 

point; (f) Steiner point relocated 

The boundary recovery approach proposed in this paper has been integrated into our 

own in-house developed mesh generator. Surface mesh models from the repository 

http://www-roc.inria.fr/gamma/gamma.php are utilized to demonstrate the effectiveness 

of the proposed approach. The falcon model as shown in Figure 16a is reported here to 

discuss the main features of our tetrahedral mesh generator. There are 141470 triangles 

on the boundary, including 19738 (14%) sharp triangles with an angle less than 5°. The 

result of mesh generation is shown in Figure 16b. To compare with existing tetrahedral 

mesh generators, ANSYS13.0, HyperMesh10.0 and HyperMesh11.0 were applied to 

mesh the falcon model. If Steiner points were permitted to stay on the boundary, all 

three mesh generators succeeded in producing a valid tetrahedral mesh; otherwise, only 

HyperMesh11.0 was able to produce a valid mesh, and ANSYS13.0 and 

HyperMesh10.0 crashed in the process of boundary recovery. Comparing the tetrahedral 

mesh generated by the proposed method with the one by HyperMesh11.0, the smallest 

dihedral angle in the mesh by the new approach is 2.09°, whereas in the mesh of 

HyperMesh11.0 it is 0.513°. Considering the distribution of dihedral angles from 0° to 
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3° with an increment interval of 0.3
o
, there are much fewer sharp angles in the mesh 

generated by the proposed recovery procedure compared to the mesh of HyperMesh11.0 

as shown in Table 1 and Figure 16c. 

 

 

 

Figure 16. (a) A falcon model; (b) tetrahedral mesh generated by our mesh generator; (c) 

sharp angles in the falcon mesh 

 



23 

 

Table1. Sharp angles in falcon 

Angle (degree) 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 

Hyper Mesh 11.0 0 1 2 5 16 32 54 102 171 248 

Proposed Method 0 0 0 0 0 0 2 19 36 59 

 

Four more industrial examples are included to demonstrate the capability and the 

characteristics of the proposed boundary recovery procedure in dealing with complex 

practical applications. The general description and the statistics in the boundary 

recovery process of the model are listed in Table 2. For the quoted examples, in each 

case, there are about one thousand missing edges and a couple of thousands of missing 

faces; however, the number of Steiner points needed to assist the edge and face recovery 

are relative few, showing that most of the missing quantities can already be recovered 

by some topological operations involving the swap of element edges and faces. The 

seahorse model is the largest example with 173160 boundary faces meshed in 833309 

tetrahedral elements. However, it is not the most difficult example as the shape qualities 

of the boundary triangles are not that bad, even though 11 Steiner points are needed in 

the recovery of one boundary face. The tyre and engine models can be considered as 

more difficult as more Steiner points are required for the edge and face recovery. The 

minimum -quality of the tetrahedral elements are quite low, probably due to the poor 

boundary facets and more Steiner points are used in recovering the boundary faces. 

 

Table 2. Statistics of the boundary recovery process for industrial applications 

 

Model Seahorse Fish Tyre Engine 

Figure 17 18 19 20 

Model description 

Number of boundary faces 173160 93054 99198 25502 

Number of nodal points 86576 46519 49581 12703 

Edge aspect ratio (worst/average) 0.192/0.697 0.270/0.721 0.012/0.733 0.022/0.580 

Radius aspect ratio (worst/average) 0.069/0.857 0.176/0.878 2.08e-4/0.892 1.39e-4/0.712 

Minimum angle 8.24 15.18 0.28 0.36 

Statistics of the boundary recovery process 

Number of missing edges 2161 897 1963 2611 

Number of missing faces 4226 1798 3835 4168 

Number of Steiner points on edges 26 11 40 306 

Max. Steiner points on one edge 5 4 4 4 

Number of Steiner points on faces 62 45 1975 875 

Max. Steiner points on one face 11 8 5 5 

Characteristics of output tetrahedral mesh 
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Number of tetrahedral elements 833309 517766 463147 51766 

Number of nodal points 184611 111161 98599 14670 

-quality (worst/average) 0.064/0.776 0.064/0.809 3.85e-5/0.738 3.4e-4/0.477 

Edge aspect ratio (worst/average) 0.139/0.629 0.118/0.657 0.008/0.620 0.002/0.445 

Radius aspect ratio (worst/average) 0.038/0.805 0.037/0.836 2.54e-4/0.770 2.04e-4/0.508 

Dihedral angle (minimum/average) 10.03/47.33 5.42/49.23 0.27/44.71 0.24/32.43 

 

Key: Radius aspect ratio = Inradius/circumradius 
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Figure 17. A seahorse of 173160 boundary triangles meshed in 833309 tetrahedra 
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Figure 18. Fish of 93054 boundary triangles meshed in 517766 tetrahedra 

 

 
Figure 19. A tyre of 99198 boundary triangles meshed in 463147 tetrahedra 
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Figure 20. An engine of 25502 boundary triangles meshed in 51766 tetrahedra 

 

 

6.  CONCLUSIONS AND DISCUSSIONS 

 

New ideas for the constrained boundary recovery of 3D Delaunay triangulation are 

presented to address some of the critical issues in finite element mesh generation. The 

notion of locked points has been introduced to elucidate why the repositioning and the 

removal of flat elements are sometimes very difficult. The sequence in removing the 

Steiner points on an edge has been carefully reviewed so as to minimize the number of 

locked points in the recovery process. As for the removal of Steiner points on a 

triangular facet, the order of removal is determined by a weight related to the number of 

neighboring Steiner points, which in general is superior to a random selection process 

commonly adopted. A linear programming technique is also employed to determine the 

feasible region, at the center of which a Steiner point can be relocated to ensure that all 

tetrahedral elements connected to it are positive. Work examples are included to show 

the details of the boundary recovery procedure, along with several practical applications 

adopted from the industry with difficult boundary conditions. It is founded that the 

method proposed in this paper can handle complicated industrial finite element models 

and could produce better results than popular commercial software available in the 

market in terms of mesh quality. 
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