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Solving a static repositioning problem in bike-sharing systems

using iterated tabu search

Abstract

In this paper, we study the static bike repositioning problem where the problem consists of
selecting a subset of stations to visit, sequencing them, and determining the pick-up/drop-
off quantities (associated with each of the visited stations) under the various operational
constraints. The objective is to minimize the total penalties incurred at all the stations. We
present an iterated tabu search heuristic to solve the described problem. Experimental results
show that this simple heuristic can generate high quality solutions using small computing
times.
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1 Introduction

Bike sharing is very popular in many places nowadays. In April 2013, there were 535 schemes
worldwide, in 49 countries (Larsen, 2013). It is therefore important to research bike sharing.
Currently, bike sharing research topics include bike network design (dell’Olio et al., 2011; Lin and
Yang, 2011; Martinez et al., 2012; Romero et al., 2012; Sayarshad et al., 2012; Lin et al., 2013;
Lu, 2013), bike demand analysis (Froehlich et al., 2008; Borgnat et al., 2009; Kaltenbrunner
et al., 2010; Borgnat et al., 2011; Vogel et al., 2011; Lathia et al., 2012), bike network flow
analysis (Shaheen et al., 2011; Kitthamkesorn et al., 2013; Shu et al., 2013), bike service level
analysis (Nair et al., 2013; Raviv and Kolka, 2013), and many others. As we can see, the bike
sharing research has only received attention recently.

One fundamental problem of bike-sharing is that the numbers of bikes required at some stations
are not enough to satisfy the bike user demand. Hence, in practice, trucks are deployed to
transport bikes from surplus stations or depots to deficit stations to meet the demand. This
problem is called a bike repositioning problem, which determines the optimal vehicle (truck)
routes and the number of bikes loaded and unloaded at each station to meet the objective,
such as satisfying bike user demand, subject to various constraints including routing, vehicle,
station, and operational constraints. Very often, it is not necessary for the trucks to visit all bike
stations. This means that the problem involves selecting and determining the sequence of the
visited stations. This problem is more complicated than the classical vehicle routing problem
(VRP) (Ho and Gendreau, 2006; Szeto et al., 2011) and the classical traveling salesman problem
(TSP) (Gendreau et al., 1992) because the repositioning problem further requires determining
the pick-up and drop-off quantities. These extra variables imply that the solution space is
larger than that of the classical VRP and TSP. The repositioning problem was also referred
to as a bike sharing rebalancing problem (BRP) (Dell’Amico et al., 2014) and belongs to the
class of many-to-many pickup and delivery problems (Parragh et al., 2008). When the BRP
only considers only one vehicle, the problem becomes one-commodity pickup-and-delivery TSP
(1-PDTSP) introduced by Hernández-Pérez and Salazar-González (2004a). When the BRP
considers multiple vehicles and a maximum duration constraint for each route, the problem
belongs to one-commodity pickup-and-delivery VRP introduced by Shi et al. (2009).

Although bike sharing is very popular and the repositioning problem is a practical one, the
literature on the problem is rather sparse (around 15 papers) compared with those of the classical
VRP and TSP. In the literature, various bike repositioning problems with different constraints
and objective functions have been studied. The problems can be broadly classified into two
types, namely static and dynamic repositioning problems. The static repositioning problem
considers the night time repositioning operation in which the numbers of bikes required by and
presence in each station are fixed and known before repositioning takes place. The dynamic
repositioning problem considers the case in which the number of bikes required by and presence
in each station are changing over time. This problem is always found in the daytime repositioning
operation or the 24-hour bike-sharing operation. To the best of our knowledge, very few (Nair
and Miller-Hooks, 2011; Caggiani and Ottomanelli, 2012; Contardo et al., 2012) studied the
dynamic problem and most of the existing studies are related to the static bike repositioning
problem.

In the repositioning problem, the objectives considered include minimizing the total unmet
demand or total user dissatisfaction (Contardo et al., 2012), minimizing the sum of relocation
and lost user costs (Caggiani and Ottomanelli, 2012), minimizing the total travel cost (Benchimol
et al., 2011; Chemla et al., 2013), minimizing the weighted sum of the deviation from the targeted
number of bikes in each station, the numbers of loading and unloading quantities, and the
total travel time on all routes (Papazek et al., 2013; Di Gaspero et al., 2013), minimizing the
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maximum tour length (Schuijbroek et al., 2013), and minimizing the sum of travel and handling
costs (Erdoğan et al., 2013). The choice of objectives should be determined by the application
of bike-sharing operations. Very often, the concern of the operator governs the choice of the
objective. If the bike sharing system is operated by the government, the societal benefit measure,
such as user satisfaction, the maximum deviation, and the penalty cost, should be included in
the objective function. However, if the bike sharing system is operated by a private operator, the
travel distance or travel time is the key concern and the cost minimizing objective is considered
when determining the truck route. Nevertheless, we can observe that some objectives are more
general than the others. For example, minimizing the total penalty cost is more general than
minimizing the total user dissatisfaction and minimizing the sum of the deviation from the
targeted number of bikes in each station, because we can choose a penalty function that assigns
a value of zero to the level equal to or greater than the demand level and a very large number to
other levels to replicate the effect of minimizing the total user dissatisfaction, and we can select
a penalty function that assigns a value to a level equal to the absolute difference between that
level and the target level to replicate the effect of minimizing the sum of deviations.

Various operational constraints are also considered in the repositioning problem. For example,
despite the maximum time for each repositioning activity, Benchimol et al. (2011) proposed a
routing constraint that requires each node being visited exactly once by the vehicle as in the
traveling salesman problem. In terms of demand-related constraints, Benchimol et al. (2011)
and Chemla et al. (2013) set the perfect balance requirement as a hard constraint but relaxed
the time constraint. Lin and Chou (2012) considered road conditions, traffic regulations, and
geographical factors in the constraint. Nair and Miller-Hooks (2011) introduced a probabilistic
level-of-service constraint such that the repositioning activity must satisfy a certain proportion of
the most nearest future demand but ignored the routing constraint. The operational constraints
included in the problem should be related to the application. They also determine the complexity
of the problem.

Most of the preceding bike sharing studies do not predefine a station to be 1) a pick-up one, 2) a
drop-off one, or 3) a neither pick-up nor drop-off station. In fact, a station can be easily classified
into one of these three types. We only need to handle the demand at drop-off stations. It is not
necessary for a truck to visit all pick-up stations to satisfy the demand of each drop-off station
or minimize the total penalty cost. Hence, the problem can be refined so that a more efficient
solution method can be proposed. Based on this approach, Ting and Liao (2013) modeled the
bike repositioning problem as the selective pick-up and drop-off problem. The input of the bike
repositioning problem includes the sets of pick-up and drop-off stations. The truck must visit
all the drop-off stations to satisfy the demand but it is unnecessary for the truck to visit all the
pick-up stations. However, they considered the total travel time of the vehicle in the objective
function and the number of bikes required by each drop-off station is explicitly given. In reality,
not all the demand can be satisfied because the supply of bikes from depots and pick-up stations
may be insufficient or the operational period is too short to reposition bikes to some of the
drop-off stations. In these two cases, it is unwise to ensure the truck to visit all drop-off stations
and satisfy all the demand. Moreover, the penalty cost of not satisfying one unit of demand at
a station may also vary from one to another. In an area with high (low) bike station density or
many (few) transport mode alternatives, the penalty cost may be low (high) because the users
can (cannot) easily walk to other nearby bike stations or take other transport modes. It is more
reasonable to consider such penalty cost than just user demand for the bike service provided by
the government.

To address this issue, we propose a refined problem to consider such penalty cost. We use the
concept of the penalty function proposed by Raviv et al. (2013) and consider a fixed planning
horizon. The objective is to minimize the total penalty cost. The constraints in Raviv et al.
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(2013) are modified to consider the sets of pick-up and drop-off stations individually and to
reduce the solution space. As pointed out by Ting and Liao (2013), the original problem is
already NP-hard. The refined problem with a more complicated objective function is also NP-
hard. It is intractable to use exact methods such as those shown in Table 1 to solve large,
realistic repositioning problems. Moreover, because the existing heuristics or approximation
methods shown in Table 1 are tailored for solving their bike repositioning problems that are
different from ours (in terms of objective function or constraints), their methods cannot be
directly applied to solve our problem. Hence, we develop a heuristic that makes use of the
problem’s properties to solve our problem.

Table 1: A summary on the existing solution methods for bike repositioning problems

Algorithm Reference

Exact algorithms:
Dantzig-Wolfe and Benders decomposition Contardo et al. (2012)
Benders decomposition Erdoğan et al. (2013)

Approximation method :
9.5-approximation algorithm Benchimol et al. (2011)

Heuristics:
Variable neighborhood search Papazek et al. (2013)

Rainer-Harbach et al. (2013)
Cluster-first route-second Schuijbroek et al. (2013)
Ant colony and constraint programming Di Gaspero et al. (2013)
PILOT/GRASP Papazek et al. (2013)

Hybrid algorithm:
Branch-and-cut method with tabu search Chemla et al. (2013)

As the proposed problem involves a routing problem, we considered to enhance an existing
heuristic for routing problems to solve our proposed problem. Because tabu search is well-known
to be very efficient to solve routing problems compared with other non-hybrid methods and tabu
search has rarely been used to solve the static repositioning problem as shown in Table 1, we
choose tabu search as the backbone of our solution method. However, the repositioning problem
involves pick-up and drop-off quantity variables in addition to routing variables. Hence, we could
not directly apply tabu search for routing problems to solve our proposed problem and some
new operators must be added to tabu search to handle the extra variables. For this purpose, we
develop specific operators to ensure solution feasibility. In order to accelerate the search when
evaluating a neighbor solution, several ideas are incorporated into the heuristic in order to avoid
re-computing all the pick-up/drop-off quantities. To improve the solution quality, the tabu search
procedure is embedded into an iterative framework, where several intensification/diversification
mechanisms are applied to the solution obtained from tabu search. To show the efficiency and
accuracy of our method, we set up different test scenarios and compare the results obtained
from IBM Ilog CPLEX.

The remainder of the paper is organized as follows. Section 2 presents the formulation. Section 3
depicts the solution method. Section 4 describes the test cases and discusses the results. Section
5 gives the conclusion.
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2 Mathematical formulation

In this section, we develop the formulation based on Raviv et al. (2013), but modify their
formulation, consider single vehicle only, and explicitly define pick-up and drop-off stations
similar to the studies by Caggiani and Ottomanelli (2012) and Ting and Liao (2013). However,
unlike their studies, pick-up and drop-off stations are deduced from their penalty functions. A
station is defined as a drop-off station if the initial number of bikes at the station is smaller
than the optimal number of bikes at that station (i.e., the level at which the penalty cost is
minimum). On the other hand, if the initial number of bikes at a station is larger than the
optimal number of bikes at that station, then the station is defined as a pick-up station.

The formulation of Raviv et al. (2013) was modified by performing the following sequentially:
1.) Split each constraint into a pair of constraints, one for pick-up stations and one for drop-
off stations. 2.) Simplify each resultant constraint according to the definition of the associated
station. 3.) Refine the meanings of loading and unloading variables according to the definition of
stations. 4.) Simplify the whole formulation for the single vehicle case by eliminating redundant
notations such as the notations’ subscript for vehicles and the notation for the set of vehicles, and
5.) Simplify the objective function to only consider the sum of the penalty cost of each station
and define a specific form of the penalty function for the objective function. Note that if we
removed step 4 in the preceding procedure, we could actually have a multi-vehicle formulation
for the static bike repositioning problem.

The modified formulation assumes that the depot is both a pick-up and drop-off node and has
sufficient bikes and capacity. The formulation also assumes that each station can only be visited
by the vehicle at most once as in the literature (e.g., Raviv et al., 2013) because this assumption
can make the solution space smaller, leading to the development of an efficient heuristic for
solving large-scale bike repositioning problems much easier. Moreover, the formulation allows the
vehicle leaving the depot with some bikes loaded on board and returning to the depot non-empty.
Furthermore, the formulation allows the vehicle visiting the depot multiple times if necessary.
To ease the description of the mathematical formulation of the static bike repositioning problem,
we start by introducing the notations.
N Set of stations, indexed by i = 1, . . . , |N |
N0 Set of nodes, including the stations and the depot (denoted by i = 0)
ci Number of lockers installed at station i ∈ N0, referred to as the station’s capacity
fi(si) A convex penalty function for station i ∈ N ; the function is defined over the

integers si = 0, . . . , ci
s0i Number of bikes at node i before the repositioning operation starts
sIi argminsi fi(si), i.e., optimal number of bikes at node i
P Set of pick-up stations, i.e., {i ∈ N|s0i > sIi }
D Set of drop-off stations, i.e., {i ∈ N|s0i < sIi }
k Vehicle capacity
tij Traveling time from station i to station j
T Repositioning time, i.e., time allotted to the repositioning operation
L Time required to remove a bike from a station and load it onto the vehicle
U Time required to unload a bike from the vehicle and hook it to a locker in a station
ai,bi Parameters associated with the penalty function for station i
M A very large number

Decision variables:

xij =

{
1, if the vehicle travels directly from node i to node j;
0, otherwise.

5
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yij Number of bikes carried on the vehicle when it travels directly from node i to node j.
yij is zero if xij = 0.

si Inventory level at station i at the end of the repositioning operation
yDi Number of bikes dropped off at node i ∈ D ∪ {0} by the vehicle
yPi Number of bikes picked up at node i ∈ P ∪ {0} by the vehicle
qi Auxiliary variable associated with node i used for the sub-tour elimination constraints

The problem can be stated mathematically as:

min
∑
i∈N

fi(si) =
∑
i∈N

(ai(si − sIi )
2 + bi) (1)

s. t. si = s0i − yPi ∀i ∈ P (2)

si = s0i + yDi ∀i ∈ D (3)

s0 = s00 − yP0 + yD0 (4)

yPi =
∑

j∈N0,j ̸=i

yij −
∑

j∈N0,j ̸=i

yji ∀i ∈ P (5)

yDi =
∑

j∈N0,j ̸=i

yji −
∑

j∈N0,j ̸=i

yij ∀i ∈ D (6)

yP0 =
∑
j∈N

y0j (7)

yD0 =
∑
j∈N

yj0 (8)

yij ≤ kxij ∀i, j ∈ N0, i ̸= j (9)∑
j∈N

x0j ≥ 1 (10)

∑
j∈N0,j ̸=i

xji −
∑

j∈N0,j ̸=i

xij = 0 ∀i ∈ N0 (11)

∑
j∈N0,j ̸=i

xij ≤ 1 ∀i ∈ N (12)

yPi ≤ s0i ∀i ∈ P (13)

yDi ≤ ci − s0i ∀i ∈ D (14)∑
i∈P∪{0}

yPi −
∑

i∈D∪{0}

yDi = 0 (15)

∑
i∈P∪{0}

LyPi +
∑

i∈D∪{0}

UyDi +
∑

i,j∈N0,i ̸=j

tijxij ≤ T (16)

qj ≥ qi + 1−M(1− xij) ∀i ∈ N0, j ∈ N , i ̸= j (17)

xij ∈ {0, 1} ∀i, j ∈ N0, i ̸= j (18)

yPi ≥ 0, integer ∀i ∈ P ∪ {0} (19)

yDi ≥ 0, integer ∀i ∈ D ∪ {0} (20)

yij ≥ 0 ∀i, j ∈ N0, i ̸= j (21)

si ≥ 0 ∀i ∈ N0 (22)

qi ≥ 0 ∀i ∈ N0 (23)

The objective function (1) is defined as the sum of the penalty cost incurred at each station,
which differs from that of Raviv et al. (2013) that used the weighted sum of the total penalty
and operational costs. The penalty cost at each station is calculated by the associated penalty

6
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function. Each penalty function is defined over the integers from zero to the maximum station
capacity because these integers are the possible number of bikes at that station. Because static
repositioning occurs during the night, the numbers of bikes at each station before and after
the repositioning operation are usually different. The penalty cost of a station is defined by
the number of bikes at that station after the operation. Raviv et al. (2013) suggested that
the penalty function or cost represents the expected number of shortages for bicycles or lockers
during the next working day. They argued that the penalty function has been captured the
effect of stochastic bicycle demand and can be estimated using the method proposed by Raviv
and Kolka (2013).

Constraints (2)-(4) define the final inventory level at each node at the end of repositioning.
The inventory level of the pick-up station at the end of repositioning equals the initial level
minus the pick-up quantity whereas the inventory level of the drop-off station at the end of
repositioning equals the initial level plus the delivery quantity. Constraints (5) state that the
number of bikes obtained from a pick-up station equals the difference in the number of bikes
on the vehicle between after and before visiting the station. Constraints (6) state that the
number of bikes delivered to a drop-off station equals the difference in the number of bikes on
the vehicle between before and after visiting the station. Constraints (7) and (8) define the pick-
up and drop-off quantities at the depot, respectively. Constraints (9) are the vehicle capacity
constraints, requiring the number of bikes on the vehicle not greater than its capacity. Constraint
(10) ensures that the vehicle must leave the depot at least once. Constraints (11) make sure
that if the vehicle visits a station, it must leave that station. Constraints (12) ensure that the
vehicle can visit a station at most once. Constraints (13) and (14) require that the pick-up and
drop-off quantities at each pick-up and drop-off station are not larger than the number of bikes
available at the pick-up station and the remaining capacity of the drop-off station, respectively.
Constraints (15) make sure that all the picked-up bikes are delivered eventually. Constraints
(16) limit the total operating time, including loading, unloading, and travel times, is not greater
than the total time available for repositioning. Constraints (17) are the sub-tour elimination
constraints (see Miller et al. (1960)). Finally, constraints (18) define xij to be a binary variable.
Constraints (19) and (20) restrict pick-up and drop-off quantities to be nonnegative integers.
Constraints (21)-(23) ensure that the number of bikes on the vehicle, the inventory level at each
station, and the auxiliary variables are non-negative.

As (1) is not linear, it needs to be linearized in order to be solved by CPLEX. Raviv et al. (2013)
show how (1) can be linearized. They also show how their mathematical formulation can be
strengthened. Based on their idea, we add the following constraints:

yPi ≤ min{s0i , k}
∑

j∈N0,i̸=j

xij ∀i ∈ P (24)

yDi ≤ min{ci − s0i , k}
∑

j∈N0,i ̸=j

xij ∀i ∈ D (25)

yPi ≥
∑

j∈N0,i ̸=j

xij ∀i ∈ P (26)

yDi ≥
∑

j∈N0,i ̸=j

xij ∀i ∈ D (27)

Constraints (24)-(25) further tighten the solution space for loading and unloading quantities at
each of the pick-up and drop-off stations, respectively, by including the vehicle’s capacity, and
conditioning the quantities only for cases in which the vehicle visits the corresponding station.

7
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Constraints (26)-(27) tighten the solution space by ensuring that a vehicle enters a station must
have a loading and an unloading bike activity, respectively. These constraints are valid when
the distance matrix satisfies the triangle inequality because then it is always possible to skip a
station without loading and unloading activities.

3 Solution methodology

In our proposed solution, a solution x consists of two parts: 1) a routing sequence (i0, i1, i2, . . . , in)
where i0 = in = 0 (i.e., the depot), ih ∈ N , h = 1, 2, . . . , n− 1, the subscript h is used to define
the order of stations being visited, and 2) the decision variable yPih or yDih that describes how
many bikes to be picked up or dropped off at each station ih, respectively. Except for the de-
pot, only one of the decision variables is defined for each ih, as the station has been classified
into either a pick-up or drop-off station before constructing an initial solution. The evaluation
function is defined as z(x) =

∑
i∈N fi(si), where si is defined by equations (2) and (3). Every

neighbor solution x is evaluated based on the evaluation function z(x).

The proposed method consists of the following: the initial solution construction procedure, new
solution generation method (based on the insertion, removal and exchange moves) incorporated
into a tabu search procedure, and intensification and diversification procedures to further im-
prove and diversify the search.

3.1 Initial solution construction

The initial solution to the repositioning problem is obtained by a simple construction heuristic
depicted below:

Step 0 Sort the pick-up and the drop-off stations individually in a descending order based on
|fi(s0i )− fi(s

I
i )|, ∀i ∈ N . Set l = 1. Initialize the route as (i0, in).

Step 1 Choose the l-th pick-up station from the list of ordered pick-up stations. Let g be the
station number of the station placed in the lth place, and τ be the remaining time of the
repositioning operation if station g is appended at the end of the route (i.e., before in). If
τ > 0, then set yPg = min{k − yin−1in , s

0
g − sIg, ⌊τ/(U + L)⌋}. If yPg > 0, then station g is

added to the end of the route. Remove station g from the ordered list. Set l = l+1. Step
1 is repeated until no more pick-up stations can be added to the route without violating
the constraints. Set l = 1.

Step 2 Repeat Step 1 for drop-off stations, replace yPg with yDg , and the min function with

min{yin−1in , s
I
g − s0g}.

Step 3 Repeat Steps 1 and 2 until no more stations can be appended at the end of the route
without violating the constraints.

3.2 Tabu search

Tabu search is a well known metaheuristic proposed by Fred Glover in 1986 (Glover, 1986).
Many difficult combinatorial optimization problems (e.g., vehicle routing problems) have been
efficiently solved by tabu search. Tabu search is based on the local search principle: At each
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iteration, the best solution in the neighborhood is chosen. To avoid getting stuck in a local
optimum and to prevent cycling of solutions, solutions possessing some attributes of previously-
visited-solutions are banned from being chosen for a certain number of iterations (i.e., those
attributes are recorded in a tabu list). Sometimes tabu lists may be too powerful as they
restrain excellent solutions to be chosen. Aspiration criteria are very useful to overcome this
obstacle.

The tabu search heuristic runs γ iterations. At each iteration, a feasible solution that minimizes
z(x̄) is chosen from the three neighborhoods: R(x), I(x) and E(x). The selected solution is
either a non-tabu solution or a solution that satisfies the aspiration criterion. If the objective
function value evaluated at the selected solution is less than that evaluated at the current best
z∗1 , we update the current best solution z∗1 . The reverse move is set tabu for a certain number
of iterations. Two tabu lists are maintained: TABU1(i) denotes when station i can be removed
from the solution and TABU2(i) states when station i can be inserted into the solution again.
The selected solution is set to be the current solution. The algorithmic description of the
heuristic is given in Algorithm 1.

Algorithm 1 TabuSearch(x0)

Require: Initial solution x0
1: Set x̆∗ = x0 and z∗1 = z(x0).
2: Set TABU1(i) = −1 and TABU2(i) = −1 ∀ i ∈ N .
3: Set x = x0.
4: for c = 1, . . . , γ do
5: Select a solution x̄ ∈ R(x) ∪ I(x) ∪ E(x) that minimizes z(x̄), and the solution is either a

non-tabu solution or a solution that satisfies the aspiration criterion (i.e., z(x̄) < z∗1).
6: if x̄ ̸= ∅ then
7: If z(x̄) < z∗1 , set x̆

∗ = x̄ and z∗1 = z(x̄).
8: Set the move from x̄ to x tabu for θ1 and/or θ2 iterations.
9: Set x = x̄.

10: end if
11: end for
12: return x̆∗.

3.3 The removal move

The neighborhood R(x) is a set of feasible neighbor solutions obtained by applying the removal
moves. Each of the removal moves removes station ih ∈ W (x) \ {0}, where W (x) is the set
of stations used to define the route sequence in the solution x. Sometimes when a station is
removed from the solution, the resultant solution may no longer remain feasible as the values
of the variables yPid and yDid where d > h may no longer satisfy the vehicle capacity constraint
and/or the non-negativity constraint. Instead of recomputing the pick-up or drop-off quantity
at each station for the resultant solution, we only modify the quantity yPi0 , y

P
ih−1

, yDih−1
, yPih+1

or yDih+1
in the resultant solution to generate a feasible neighbor solution efficiently. With each

ih that gets removed, a maximum of three feasible neighbor solutions can be generated. These
three potential neighbor solutions have the same routing sequence. The only difference between
the first potential neighbor solution and solution x is that they have different values of yPi0 .
The difference between the second (third) potential neighbor solution and x is that they have
different values of yPih−1

or yDih−1
(yPih+1

or yDih+1
). The determination of the values of yPi0 , y

P
ih−1

,

yDih−1
, yPih+1

or yDih+1
is described in Sections 3.3.1 and 3.3.2.
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3.3.1 Station ih is a pick-up station

When ih is a pick-up station, we consider three possible ways in adjusting the pick-up/drop-off
quantities in the resultant solution:

Adjusting yPi0 Denote r as the minimum residual capacity of the vehicle before visiting station
ih. Then, r is obtained by minl=0,1,...,h−1{k− yilil+1

}. It is possible to adjust the quantity
yPi0 in the resultant solution to obtain a feasible neighbor solution if the following three

conditions are satisfied by the current solution simultaneously: r ≥ yPih , y
P
i0
+ yPih ≤ k, and

s0i0 − yPi0 − yPih ≥ 0. The three conditions ensure that yPih extra bikes can be loaded to the
vehicle at the depot while satisfying the vehicle capacity constraint. If the three conditions
are satisfied, then the pick-up quantity at the depot in the neighbor solution is set to be
yPi0 + yPih , and the quantities associated with other stations remain unchanged.

Adjusting yPih−1
or yDih−1

If ih−1 is a pick-up station, then it is possible to adjust yPih−1
in

the resultant solution to form a feasible neighbor solution if the current solution satisfies
s0ih−1

−yPih−1
−yPih ≥ 0. This condition ensures that node ih−1 can provide yPih extra bikes for

pick-up. The pick-up quantity at that node in the resultant solution is set to be yPih−1
+yPih

to obtain a feasible neighbor solution. If ih−1 is a drop-off station, then the neighbor
solution is feasible if s0ih−1

+ yDih−1
− yPih ≤ cih−1

(i.e., drop off fewer bikes at ih−1) and

yDih−1
> yPih . If it is feasible, then set yDih−1

= yDih−1
− yPih . If in the latter case, yDih−1

= yPih ,
then ih−1 is also eliminated from the route and that is not ideal.

Adjusting yPih+1
or yDih+1

Same as above, except replace h− 1 with h+ 1.

3.3.2 Station ih is a drop-off station

We also consider three possible ways in adjusting the pick-up/drop-off quantities in the resultant
solution when ih is a drop-off station. They are depicted below.

Adjusting yPi0 Let u be the minimum vehicle load before visiting station ih. Then, u is com-

puted as minl=0,1,...,h−1{yilil+1
}. Then, we may adjust yPi0 in the resultant solution to obtain

a feasible neighbor solution if the current solution x satisfies the following: u − yDih ≥ 0

and yPi0 − yDih ≥ 0. It is because the vehicle can be loaded with fewer bikes at the depot

while satisfying the constraints if the two conditions are satisfied. In this case, yPi0 is set

to be yPi0 − yDih , and the other quantities remain unchanged.

Adjusting yDih−1
or yPih−1

If ih−1 is a drop-off station, then the resultant solution is feasible if

the current solution satisfies s0ih−1
+ yDih−1

+ yDih ≤ cih−1
. In this case, more bikes will be

dropped off at ih−1 and yDih−1
is set to be yDih−1

+ yDih . If ih−1 is a pick-up station, then the

resultant solution is feasible if s0ih−1
− yPih−1

+ yDih ≥ 0 and yPih−1
> yDih . If it is feasible, then

set yPih−1
= yPih−1

− yDih . We do not allow yPih−1
equal to yDih to avoid ih−1 being eliminated

from the route.

Adjusting yDih+1
or yPih+1

Same as above, except replace h− 1 with h+ 1.

10
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3.4 The insertion move

The neighborhood I(x) consists of all feasible neighbor solutions obtained by applying the
insertion moves. Each of the insertion moves involves two steps. The first step is to insert
a station i ∈ (P ∪ D) \W (x) in the routing sequence in the current solution x. The station
can be added between every pair of nodes ih−1 and ih in the sequence. The station can also
be added after the depot but the next visiting node must also be the depot. The second step
is to set the quantity at each station in the resultant solution, including the quantity at the
inserted station. The insertion move is feasible if the travel time on the resultant route does not
violate constraint (16) and the new quantities computed satisfy constraints (5)-(8), (13)-(15),
(19)-(20). To save computation time, instead of recomputing the quantities at each station in
the resultant solution, we set some of the quantities equal to the corresponding quantities in the
current solution, compute yPi or yDi , and only adjust the quantity yP0 , y

P
ih−1

, yDih−1
, yPih or yDih to

obtain a feasible neighbor solution. The rules used for modifying the quantities are described in
Sections 3.4.1 and 3.4.2.

3.4.1 Station i is a pick-up station

We consider four possible ways in adjusting the quantities in the resultant solution after inserting
pick-up station i:

No need to adjust other stations’ quantities Let τ be the remaining time left if station i
is inserted between ih−1 and ih, and κ be the maximum vehicle load after visiting station
ih−1. Then, κ = maxl=h−1,h,...,n−1{yilil+1

} and yPi = min{⌊τ/(U + L)⌋, s0i , k − κ}, which
depends on the remaining time left, the number of bikes available at the station, and the
spare vehicle capacity. If yPi > 0, then the insertion of i between ih−1 and ih is feasible
without altering any of the other stations’ pick-up/drop-off quantities.

Adjusting yPi0 This case is possible if the original pick-up quantity yPi0 > 0 as we aim to reduce
the pick-up quantity at the depot and the reduced number is compensated by the pick-up
quantity at station i, i.e., yPi = min{s0i , u}, where u = minl=0,...,h−1{yilil+1

}. Including u in
the formula is because we cannot reduce too many bikes from i0; otherwise, the load on the
vehicle traveling between some stations would be negative. If yPi > 0, then station i can
be inserted between ih−1 and ih with depot’s quantity reduced by yPi (i.e., yPi0 = yPi0 − y

P
i ).

Adjusting yPih−1
or yDih−1

There are two mutually exclusive cases:

1. If ih−1 is a pick-up station: It is possible to pick-up fewer bikes at ih−1 and let
the vehicle pick-up the rest from i. The quantity yPi in the resultant solution is
determined from

argmin
υ=0,1,...,min{s0i ,yPih−1

}
fih−1

(s0ih−1
− yPih−1

+ υ) + fi(s
0
i − υ).

The insertion is feasible if yPi > 0 and yPih−1
> yPi as this move aims to pick-up yPi

fewer bikes from ih−1. In this case, yPih−1
= yPih−1

− yPi .

2. If ih−1 is a drop-off station: For every additional bike the vehicle drops off at station
ih−1, a bike is picked up from station i. The quantity yPi equals min{yih−1ih , cih−1

−
s0ih−1

− yDih−1
, s0i , ⌊τ/(U + L)⌋}. The insertion is feasible if yPi > 0 because this move

can drop off yPi more bikes at ih−1, In this case, yDih−1
= yDih−1

+ yPi .

11
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Adjusting yPih or yDih There are two mutually exclusive cases:

1. If ih is a pick-up station: Same as above, except replace h− 1 with h.

2. If ih is a drop-off station: For every bike the vehicle picks up from station i, a bike is
dropped off at station ih. The quantity y

P
i is min{k−yih−1ih , cih−s0ih−y

D
ih
, s0i , ⌊τ/(U+

L)⌋}. The insertion is feasible if yPi > 0 so that the vehicle can drop off yPi more
bikes at ih. In this case, yDih = yDih + yPi .

3.4.2 Station i is a drop-off station

We consider five possible ways in adjusting the quantities in the resultant solution after inserting
drop-off station i:

No need to adjust other stations’ quantities Denote ν as the minimum vehicle load after
visiting station ih−1. Then, ν = minl=h−1,h,...,n−1{yilil+1

} and yDi = min{ci − s0i , ν}. If
yDi > 0, then the insertion of i between ih−1 and ih is feasible without altering any of the
other stations’ pick-up/drop-off quantities.

Adjusting yPi0 This case is possible if yPi0 < k as it is only possible to drop off at i if we increase

the pick-up quantity at the depot. The quantity yDi = min{⌊τ/(U+L)⌋, ci−s0i , r, s0i0−y
P
i0
},

where r is defined in Section 3.3.1. If yDi > 0, then it is feasible to insert i between ih−1

and ih, where y
D
i more bikes are picked up from the depot (i.e., yPi0 = yPi0 + yDi ).

Adjusting yDih−1
or yPih−1

There are two mutually exclusive cases:

1. If ih−1 is a drop-off station: It is possible to drop off fewer at ih−1 and drop off the
rest at i. The quantity yDi is determined from

argmin
υ=0,1,...,min{ci−s0i ,y

D
ih−1

}
fih−1

(s0ih−1
+ yDih−1

− υ) + fi(s
0
i + υ).

The insertion is feasible if yDi > 0 and yDih−1
> yDi as the vehicle can drop off yDi fewer

bikes at ih−1 (i.e., yDih−1
= yDih−1

− yDi ).

2. If ih−1 is a pick-up station: For every additional bike the vehicle picks up from station
ih−1, a bike is dropped off at station i. The quantity yDi is min{k − yih−1ih , s

0
ih−1

−
yPih−1

, ci − s0i , ⌊τ/(U + L)⌋}. The insertion is feasible if yDi > 0 because the vehicle

can pick up yDi more bikes at ih−1. In this case, yPih−1
= yPih−1

+ yDi .

Adjusting yDih or yPih There are two mutually exclusive cases:

1. If ih is a drop-off station: Same as above, except replace h− 1 with h.

2. If ih is a pick-up station: For every bike the vehicle drops off at station i, a bike is
picked up at station ih. The quantity y

D
i is min{yih−1ih , ci−s0i , s0ih−y

P
ih
, ⌊τ/(U+L)⌋}.

The insertion is feasible if yDi > 0 as the vehicle can pick up yDi more bikes at ih. In
this case, yPih = yPih + yDi .

Adjusting pick-up quantities at the depot due to creating a new trip When a new trip
is created by inserting both i and the depot after the depot in the route sequence (i.e.,
0− i− 0), the quantity, yDi , is set to be min{ci − s0i , k, s

0
i0
− yPi0 , ⌊τ/(U +L)⌋}. This is also

the pick-up quantity from the depot.
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Note that the term ”trip” of a vehicle means the vehicle leaves the depot, visits one or more
stations, and then return to the depot. The vehicle may make multiple trips on a single route
and hence the vehicle can visit the depot multiple times if necessary.

3.5 The exchange move

The neighborhood E(x) consists of all feasible neighbor solutions obtained by applying the
exchange moves. Each of the exchange moves works as follows: It exchanges station ih ∈
W (x)∩P with station i ∈ P \W (x) in position h in the routing sequence in the current solution
x and set the pick-up quantity at i to be that at ih. This exchange is feasible if s

0
i − yPih ≥ 0 and

the resultant traveling time does not violate constraint (16). Similarly, this move also exchanges
station ih ∈W (x)∩D with station i ∈ D\W (x) and set the drop-off quantity at i equal to that
at ih. The exchange is feasible if s0i + yDih ≤ ci and constraint (16) is not violated.

3.6 Tabu tenures and aspiration criterion

Tabu tenures are set according to the planning horizon T and the number of stations |N |. We
utilize two tabu lists; one for the removal of stations, TABU1(·), and one for the insertion of
stations, TABU2(·). The first tabu tenure θ1 is set to equal [(T/3600) log10 |N |], where T is
given in seconds and [·] is the nearest integer function. The second tabu tenure θ2 equals 2θ1 for
short planning horizon instances, and θ2 = [1.5θ1] for the instances of long planning horizon.

Insertion moves are set tabu as follows: TABU1(i) = c + θ1 if the solution x̄ is selected and
obtained by inserting station i into the solution x at iteration c in Algorithm 1. Hence, the
reverse move is declared forbidden for θ1 iterations. Removal moves are set tabu in a similar
way: TABU2(ih) = c+θ2 if x̄ is selected and obtained by removing station ih from x at iteration
c. Thus, inserting ih back to the solution is declared forbidden for θ2 iterations. Tabu exchange
moves are set as follows: TABU1(i) = c + θ1 and TABU2(ih) = c + θ2 if x̄ is selected and
obtained by removing station ih from x and inserting i into x at iteration c.

When evaluating the removal neighborhood R(x) and the insertion neighborhood I(x), a neigh-
bor solution is considered tabu if TABU1(ih) ≥ c and TABU2(i) ≥ c, respectively. For the
exchange neighborhood E(x), a neighbor solution is considered tabu if both TABU1(ih) ≥ c and
TABU2(i) ≥ c.

Tabu lists can sometimes be too powerful as excellent solutions are not allowed to be chosen.
A remedy is to apply an aspiration criterion in order to revoke the tabu status. The aspiration
criterion used in the heuristic is the most widely used criterion. If z(x) < z(x∗), where x∗ is the
best solution encountered so far, then the solution x can be chosen even though the solution is
obtained by a forbidden move as it is obvious that x has never been encountered before.

3.7 Intensification and diversification procedures

After tabu search, the following intensification and diversification procedures are applied to the
best solution from tabu search.

Adjusting the quantities Sometimes a solution can be improved by re-adjusting the assigned
quantities among the stations (in a heuristically way). In this procedure, we have four

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

cases. In the first two cases, we look at a pair of stations im and ih (of the same type) at
a time, and check whether one/several units of the assigned quantity can be shifted from
one station to the other. In the third case, we check whether the drop-off quantity of the
station just before visiting the depot can be increased by dropping off more bikes at that
station and dropping off fewer bikes at the depot. Finally, in the fourth case, we check
whether the pick-up quantity of the station just after visiting the depot can be increased
(decreased) by picking up more (fewer) bikes at that station and picking up fewer (more)
bikes at the depot.

1. If stations im and ih are pick-up stations and m < h: The number of bikes picked
up at these two stations can be modified by either the forward or backward adjust-
ment method. The forward (backward) adjustment procedure requires that some
of the bikes, which are originally obtained from im (ih), can be picked up at ih
(im) instead. For the forward adjustment method, we compute the adjustment ρ =
argminν=0,1,...,min{yPim ,s0ih

−yPih
} fim(s

0
im

−yPim +ν)+fih(s
0
ih
−yPih −ν) subject to yilil+1

−
ν ≥ 0, l = m+ 1, . . . , h− 1. Hence, yPim = yPim − ρ and yPih = yPih + ρ. The backward

adjustment is computed as ρ = argminν=0,1,...,min{yPih ,s
0
im

−yPim ,k−yimim+1
} fim(s

0
im

−
yPim − ν) + fih(s

0
ih
− yPih + ν) subject to yilil+1

+ ν ≤ k, l = m+ 1, . . . , h− 1. Hence,

yPim = yPim + ρ and yPih = yPih − ρ.

2. If stations im and ih are drop-off stations and m < h: The forward adjustment is
computed as ρ = argminν=0,1,...,min{yDim ,cih−s0ih

−yDih
} fim(s

0
im
+yDim−ν)+fih(s0ih+y

D
ih
+ν)

subject to yilil+1
+ν ≤ k, l = m+ 1, . . . , h− 1. Hence, yDim = yDim−ρ and yDih = yDih+ρ.

For the backward adjustment, we compute

ρ = argmin
ν=0,1,...,min{yimim+1

,yDih
,cim−s0im−yDim}

fim(s
0
im + yDim + ν) + fih(s

0
ih
+ yDih − ν)

subject to yilil+1
−ν ≥ 0, l = m+ 1, . . . , h− 1. Hence, yDim = yDim+ρ and yDih = yDih−ρ.

3. If ih is a drop-off station, ih+1 = 0, and yihih+1
> 0: We compute

ρ = argmin
ν=0,1,...,min{cih−s0ih

−yDih
,yihih+1

}
fih(s

0
ih
+ yDih + ν).

If ρ > 0, then the drop-off quantity at ih is increased by ρ (i.e., yDih = yDih + ρ).

4. If im is a pick-up station, im−1 = 0, and yim−1im > 0: We calculate the adjustment ρ =
argminν=0,1,...,min{s0im−yPim ,yim−1im

} fim(s
0
im

−yPim−ν). If ρ > 0, then yPim = yPim+ρ and

yPim−1
= yPim−1

−ρ. Otherwise, ρ = argminν=0,1,...,min{k−yim−1im
,yPim} fim(s

0
im

−yPim+ν).

If ρ > 0, then yPim = yPim − ρ and yPim−1
= yPim−1

+ ρ.

Note that by adjusting the pick-up/drop-off quantities, one or several quantities may be
reduced to zero. In case they equal zero, the corresponding stations are removed from the
routing sequence.

2-opt This local search procedure removes two edges from the solution and adds two new edges
back so it remains a tour (Lin, 1965). The objective is about reducing the tour-length. The
procedure disregards the pick-up or drop-quantities and employs the best-improvement
(BI) strategy.

Intra-relocation This local search procedure is also about reducing the tour-length (and dis-
regarding the pick-up/drop-off quantities) by relocating a station from its position in the
route sequence and reinserting it into some other position until no improvements of the
tour-length can be achieved.
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Removing a station This procedure removes station i from the solution x. It chooses the
station with the least reduction of the value of objective function (1). The selection

criterion is: argmini∈W (x){fi(s0i )− fi(s
0
i − r) : r =

{
yPi , if i ∈ P;
−yDi , if i ∈ D.

}.

Inserting a station This is the same as described in Section 3.4 where the best solution is
selected from the neighborhood, except that tabu list is not used in this procedure.

Algorithm 2 Perturbation(x̂,z∗)

Require: Tabu search solution x̂ and the best overall solution value z∗

1: z̆ = z(x̂)
2: if z(x̂) < z∗ then
3: x̂ = AdjustQuantities(x̂)
4: x̂ = 2-opt(x̂)
5: x̂ = IntraRelocation(x̂)
6: x̂ = Repairing(x̂)
7: x̂ = AdjustQuantities(x̂)
8: for a = 1 to 5 do
9: x̂ = InsertStation(x̂)

10: x̂ = AdjustQuantities(x̂)
11: end for
12: x̂ = RemoveStation(x̂)
13: x̂ = Repairing(x̂)
14: x̂ = AdjustQuantities(x̂)
15: else
16: x̂ = AdjustQuantities(x̂)
17: for a = 1 to ϕ do
18: x̂ = RemoveStation(x̂)
19: end for
20: x̂ = 2-opt(x̂)
21: x̂ = IntraRelocation(x̂)
22: x̂ = Repairing(x̂)
23: x̂ = AdjustQuantities(x̂)
24: for a = 1 to 5 do
25: x̂ = InsertStation(x̂)
26: x̂ = AdjustQuantities(x̂)
27: end for
28: end if
29: return the best solution x̆∗ and the final solution x̂

After applying the 2-opt, the intra-relocation, and the removal-of-station procedures, the solution
is usually infeasible in terms of the pick-up/drop-off quantities. The solution needs to be feasible
before the AdjustQuantities procedure can be applied. Hence, the solution will be repaired by
initializing all the pick-up/drop-off quantities at stations with zero and then assigning the pick-
up/drop-off quantity at each station with a minimal number of bikes so that the solution becomes
feasible. Then, one pick-up station and one drop-off station are selected and their pick-up and
drop-off quantities are increased by at most two to maximize the reduction of the objective value.
The problem of determining this pair of stations (p, d) and the increase in the pick-up/drop-off
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quantity r is formulated as follows.

(p, d) = argmax
i∈W (x)∩P,j∈W (x)∩D

{fi(s0i − yPi )− fi(s
0
i − yPi − r) + fj(s

0
j + yDj )− fj(s

0
j + yDj + r) :

r = min{s0i − yPi , cj − s0j − yDj , ⌊τ/(U + L)⌋, 2}}

subject to the capacity and loading constraints. Afterwards, the pick-up and drop-off quantities
are updated (yPp = yPp + r and yDd = yDd + r) and the procedure is repeated until τ does not
permit to further increase the pick-up/drop-off quantity of any stations or the objective value
could not be reduced.

The perturbation procedure is given in Algorithm 2 and is divided into two parts; the first part is
devoted to when an overall best solution has been attained in the preceding tabu search, and the
other part is for when an overall best solution has not been obtained. There are some differences
between the two parts. First, the above mentioned procedures are applied in a slightly different
order. In the first part, the removal of a station is executed at the end of Algorithm 2, while in
the second part it is executed in the beginning. This is because in the second part tabu search
has not been able to generate a better solution than the current best solution x∗. Hence, the
algorithm removes ϕ stations in the beginning in order to diversify the search in the hope of
moving into some other more promising regions of the solution space. Second, the strategy used
in 2-opt of the first part is the BI strategy. In the second part, the BI strategy is also used but
with some exceptions. If the BI strategy results in relocating station i1 ∈ P somewhere else in
the route and station i2 ∈ D, then this change is not implemented. Rather, the next best choice
is implemented instead. This is because the objective value is usually deteriorated if the first
visited pick-up station is relocated, where most likely its pick-up quantity is picked up at the
depot instead (which does not contribute anything to the objective function value).

After the route length is shortened by 2-opt and IntraRelocation, there is usually room for
inserting one or more stations into the route. Our preliminary experiments found that inserting
a maximum of five stations into the route is a good choice.

If any of the solutions improves z̆, then the solution is saved as x̆∗ and z̆ is updated. The best
solution x̆∗ and the final solution x̂ are returned from the Perturbation procedure.

3.8 The overall algorithm

To further improve the solutions, the tabu search procedure is embedded into an iterative frame-
work (see Algorithm 3), where several intensification/diversification mechanisms (see Section 3.7)
are applied to the solution obtained from tabu search. Algorithm 3 is run until no improvement
can be achieved or it has run for at least β iterations. Preliminary computational experiments
have shown that when K = 1 and w < β (with β ≥ 5) is left out, the algorithm may some-
times terminate after only two or three iterations which results in inferior solutions. When the
algorithm runs for at least five iterations, the solutions are significantly better.

The algorithm continues with the final solution x̆ from the Perturbation procedure rather than
from the best solution x′. Computational experiments have also shown that restarting the search
from x̆ is more beneficial from a diversification point of view. Otherwise, it may be difficult to
leave valleys in the search space (especially the deep ones) as only small changes are made in
each iteration of the heuristic.
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Algorithm 3 Iterated Tabu Search

1: x0 = InitialSolution()
2: Set x∗ = x0, z

∗ = z(x∗), iterWI = 0 and w = 0.
3: while iterWI < K or w < β do
4: x̂ = TabuSearch(x0)
5: (x′, x̆) = Perturbation(x̂,z∗)
6: if z(x′) < z∗ then
7: Set x∗ = x′, z∗ = z(x∗) and iterWI = 0.
8: else
9: Set iterWI = iterWI + 1.

10: end if
11: Set w = w + 1.
12: Set x0 = x̆.
13: end while
14: return x∗

4 Computational experiments

The heuristic was coded in C++ and all computational experiments were carried out on a Dell
notebook with an Intel Core i5-2520M CPU @ 2.5 GHz. Three sets of instances were used to
conduct the experiments in this study. The sets include:

Set 1 It contains the Paris instances (up to 100 stations) used in the study by Raviv et al.
(2013). They showed the results for 30 and 60 stations, and up to two vehicles. However,
in this paper, instances of varying numbers of stations (30 to 100 stations) were used. The
vehicle capacity is fixed to 20. There is a total of 12 instances in this set.

Set 2 This set contains instances of 100-400 stations, with a step size of 25. The smaller
instances are subsets of the larger ones. The locations of the different stations were taken
from the benchmark instances for the 1-PDTSP studied by Hernández-Pérez and Salazar-
González (2004b). As in Raviv et al. (2013), the following setting was used. a) Manhattan
distances (see the definition in http://en.wiktionary.org/wiki/Manhattan_distance)
were used as they are more realistic than Euclidean distances. b) Two repositioning times
(in seconds) were considered: T = 9000 and T = 18000. c) The time for picking up or
dropping off one bike is 60 seconds. d) Other input data (i.e., s0i , ci, and fi(·)) were taken
from their instances. As their data do not cover all 400 stations, the original data were
replicated when necessary. The vehicle capacity in each instance varied from 10 to 40,
with a step size of 10. This set contains 104 instances.

Set 3 This set contains instances ranging from 200 to 400 stations. The locations of the stations
were also taken from the benchmark instances for the 1-PDTSP. The vehicle capacity is
20. Repositioning times and loading/unloading times are the same as above. Other input
data were randomly generated. This set contains a total of 30 instances.

The first set of instances was included in the experiments because our problem is closely related
to the problem studied by Raviv et al. (2013). Because of the same reason, their solution method
(i.e. CPLEX) was used for comparison. The instances used by Raviv et al. (2013) contain 30-
100 stations and we believe that the sizes of the instances do not justify the usage of heuristics.
Hence, the experiments were also conducted on larger instances, i.e., the second and third sets
of instances with 100-400 stations.
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The results from the heuristic were obtained by setting K = 1, β = 5, and γ = 200 after some
preliminary experiments. The parameter ϕ was set to [0.5η] for the instances of short planning
horizon (i.e., T = 9000), and [0.3η] for the instances of long planning horizon (i.e., T = 18000),
where η is the number of stations visited by the vehicle.

The results obtained from the heuristic were compared to those obtained from CPLEX 12.4
with the default settings and a maximum running time of 2 hours. For each instance, CPLEX
returned a lower bound, an upper bound (zUB), and a solution x∗ (if feasibility was achieved
within those 2 hours). In principle, if CPLEX terminates before the 2-hour limit, it implies that
x∗ is the optimal solution and z(x∗) = zUB. However, this may not always be true regarding the
experiments conducted in this study as it has been verified that for some instances, this holds:
z(x∗) < zUB. The discrepancy between z(x∗) and zUB may be due to some internal rounding
errors in CPLEX. Hence, z(x∗) instead of zUB is reported for all instances in which optimality
has been proven by CPLEX.

Tables 2 and 3 present the results from the experiments conducted on the first set of instances
in which optimality has been proven by CPLEX for most of them. Opt denotes the true optimal
objective value of the solution x∗, i.e., z(x∗) , and Heuristic denotes the result from the heuristic.
Gap denotes the deviation (in %) of the results from Opt. CPU is the running time of CPLEX
or the heuristic (in seconds). ψ =

∑
i∈N yDi and φ =

∑
i∈N yPi denote the total number of bikes

dropped off and picked up at all of the visited stations, respectively. Done is the percentage of
job done, and is the percentage reduction in the expected shortages. This is computed using
the formula stated in Raviv et al. (2013). Finally, ς =

∑
i,j∈N0,i̸=j tijxij is the total travel time

in seconds.

Table 2: Results of Raviv’s instances, β = 5

|N0| T Opt Gap CPU Heuristic CPU η ψ φ Done ς

30 9000 214.16 0.570 22.75 215.38 0.225 8 51 42 40.26 2854
18000 167.07 0.431 523.75 167.79 0.245 18 95 75 66.63 6488

45 9000 335.05 0.546 790.75 336.88 0.305 10 45 45 30.60 3552
18000 273.09 1.058 757.04 275.98 0.375 18 100 80 55.49 5992

60 9000 463.45 -0.047 7200.00 463.23 0.230 9 46 45 22.50 3468
18000 382.52 1.406 638.10 387.90 0.450 20 100 81 45.27 5950

75 9000 568.57 0.026 1437.20 586.72 0.465 8 47 47 21.01 3270
18000 486.15 0.084 1275.20 486.56 0.455 19 97 96 42.54 6350

90 9000 692.00 0.062 323.09 692.43 0.745 11 49 49 18.86 3042
18000 609.48 0.000 1999.15 609.48 0.815 20 97 97 37.40 6334

100 9000 782.69 0.055 760.00 783.12 0.760 11 49 49 17.07 3042
18000 700.17 0.734 2654.00 705.31 0.785 20 93 93 32.80 6814

Avg 0.410 1531.748 0.488

From Tables 2 and 3, we observe that CPLEX found the optimal solution to almost all of the
instances from Set 1 within the 2-hour limit. The results obtained by our heuristic are 0.41%
from the optimal values on average and mean computing time is 0.488 second. Our heuristic
found the optimal solution for one instance (the optimal objective value is bolded in Tables 2
and 3), and improved the bound on another instance (which gives a negative gap value in Tables
2 and 3). When letting the heuristic run a little longer (e.g., β = 30), the average deviation is
then reduced to 0.187% with a slightly increase in computing time (on average 2 seconds more).
Compared with the average running time of CPLEX (i.e., 1531.748 seconds), our heuristic could
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Table 3: Results of Raviv’s instances, β = 30

|N0| T Opt Gap CPU Heuristic CPU η ψ φ Done ς

30 9000 214.16 0.570 22.75 215.38 0.857 8 51 42 40.26 2854
18000 167.07 0.305 523.75 167.58 1.279 17 96 76 66.75 6390

45 9000 335.05 0.546 790.75 336.88 1.403 10 45 45 30.60 3552
18000 273.09 0.549 757.04 274.59 1.653 19 100 80 56.06 5986

60 9000 463.45 -0.222 7200.00 462.42 1.450 9 47 47 22.75 3296
18000 382.52 0.251 638.10 383.48 2.542 17 103 85 46.61 5564

75 9000 568.57 0.026 1437.20 586.72 1.840 8 47 47 21.01 3270
18000 486.15 0.084 1275.20 486.56 3.213 19 97 96 42.54 6350

90 9000 692.00 0.062 323.09 692.43 3.432 11 49 49 18.86 3042
18000 609.48 0.000 1999.15 609.48 4.180 20 97 97 37.40 6334

100 9000 782.69 0.055 760.00 783.12 3.962 11 49 49 17.07 3042
18000 700.17 0.013 2654.00 700.26 4.586 20 97 97 33.82 6334

Avg 0.187 1531.748 2.533

get a very good upper bound efficiently.

Tables 2 and 3 also show that when the operation duration is longer, the number of stations
visited is larger. Moreover, we observe that the number of stations visited is much less than
the number of stations in the network, because the vehicle has a limited capacity and the
repositioning time is not long enough to allow all stations to be visited.

Because our problem is different from Raviv et al. (2013) in the sense that we explicit define
pick-up and drop-off stations and do not consider the operational cost in the objective function,
their results may differ from ours shown in Tables 2 and 3. In principle, without rounding errors
due to CPLEX and the weight of the total operational cost relative to the total penalty cost
equal to zero, the optimal shortage of their problem obtained could be better than that of ours,
because our solution set is smaller as a result of predetermining pick-up and drop-off stations.
Meanwhile, as in their results, the total number of bikes dropped off at all of the visited stations
can be larger than that picked up at these stations. This implies that some bikes that are
dropped off at some visited stations are actually picked up from the depot.

Tables 4-11 present the results from the computational experiments conducted on the second
set of instances. LB and UB stand for the lower and upper bounds obtained from CPLEX,
respectively. CPLEX could not find the optimal solution to any of the 104 instances from the
second set. Feasibility was achieved for less than half of the instances within the 2-hour limit.
The UBs are usually not too good compared to the results obtained from our heuristic which
produces solutions with better quality in more than half of the cases (where feasibility was
achieved by CPLEX) using much less computing time. The overall improvement of the results
obtained by our heuristic over the UBs from CPLEX (for the 45 instances where feasibility was
achieved) is 0.456%.

As can be seen in these tables, the heuristic is very fast and produces solutions with high quality.
For the short planning horizon instances, the average gap (from the LBs) is 0.687%, and for the
longer horizon instances, the average gap is 1.261%. The overall average deviation is 0.974%.
According to the summary table 12, it seems that the heuristic is better in planning vehicle routes
and determining the pick-up/drop-off quantities for the instances of short planning horizon. The
results can be further improved by running the heuristic longer (e.g., β = 30, Table 13) where
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Table 4: Results of the second set of instances, T = 9000 and k = 10

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 765.689 0.843 772.91 -0.092 7200 772.20 0.759 14 53 53 19.29 2610
125 1021.255 0.643 1034.20 -0.613 7200 1027.86 1.444 15 55 55 15.15 2400
150 1247.729 0.545 1257.66 -0.246 7200 1254.57 1.438 18 55 55 12.66 2374
175 1406.761 0.711 1430.66 -0.967 7200 1416.83 1.986 16 58 58 11.65 2016
200 1629.402 0.697 - - 7200 1640.84 2.334 17 57 57 10.51 2136
225 1885.456 0.624 1948.84 -2.645 7200 1897.30 2.989 19 56 56 9.16 2276
250 2106.665 0.817 - - 7200 2124.02 3.281 17 57 57 8.11 2150
275 2270.393 0.685 - - 7200 2286.06 3.764 16 57 57 7.84 2144
300 2493.339 0.785 - - 7200 2513.06 3.703 18 55 55 7.20 2382
325 2752.142 0.920 - - 7200 2777.69 4.195 16 52 52 6.15 2750
350 2974.340 0.732 - - 7200 2996.27 3.577 16 55 55 5.97 2394
375 3138.892 0.705 - - 7200 3161.19 6.195 18 56 56 5.74 2264
400 3375.275 0.659 - - 7200 3397.68 8.186 15 55 55 5.38 2390

Avg 0.721 3.373

Table 5: Results of the second set of instances, T = 18000 and k = 10

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 677.236 1.582 688.07 0.007 7200 688.12 1.250 30 106 106 36.28 5268
125 922.087 1.974 932.67 0.857 7200 940.66 1.675 32 108 107 28.27 5014
150 1142.561 1.113 1158.77 -0.289 7200 1155.42 2.213 33 111 111 25.03 4662
175 1300.503 1.108 - - 7200 1315.08 3.330 31 112 112 23.26 4558
200 1520.752 1.006 1542.33 -0.397 7200 1536.21 2.737 36 113 113 20.99 4422
225 1773.529 1.241 1833.10 -2.034 7200 1795.81 3.917 32 112 112 17.91 4538
250 1995.193 1.061 2134.16 -5.509 7200 2016.59 6.995 37 112 112 16.39 4542
275 2153.474 1.129 - - 7200 2178.06 5.947 35 116 116 15.71 4076
300 2376.437 1.408 - - 7200 2410.37 5.899 31 108 108 14.08 5034
325 2631.309 1.210 - - 7200 2663.54 9.975 37 111 111 13.02 4652
350 2852.320 1.334 - - 7200 2890.89 6.619 31 109 109 11.83 4884
375 3014.210 1.397 - - 7200 3056.93 7.876 32 109 109 11.31 4910
400 3249.340 1.156 - - 7200 3287.34 10.052 32 111 111 10.91 4672

Avg 1.286 5.268

the overall deviation is reduced to 0.87%.

As expected, the runtime of the heuristic increases with the size of the network and repositioning
time because the solution space is larger. However, the runtime does not decrease with vehicle
capacity as shown in Table 12. The runtime decreases with vehicle capacity but increases with
it at the end. It may be because an increase in vehicle capacity reduces the chance of having
infeasible solutions and this is beneficial only if vehicle capacity is small. However, when vehicle
capacity is larger, the feasible solution space is also larger. Hence, a further increase in vehicle
capacity leads to a longer computation time. It may be further explained by the fact that the
heuristic does not terminate after a fixed number of iterations, but rather it terminates after
K consecutive iterations without improvement. Hence, the number of iterations needed by the
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Table 6: Results of the second set of instances, T = 9000 and k = 20

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 757.675 0.845 762.19 0.255 7200 764.13 0.476 10 56 56 20.91 2268
125 1015.481 0.708 1020.08 0.259 7200 1022.72 0.968 15 58 58 15.93 2036
150 1241.588 0.581 1251.86 -0.240 7200 1248.85 1.249 12 56 56 13.37 2262
175 1398.796 0.780 1415.29 -0.389 7200 1409.79 1.557 12 58 58 12.45 1994
200 1620.869 0.853 1651.72 -1.024 7200 1634.81 1.791 9 57 57 11.11 2150
225 1878.321 0.748 1908.03 -0.816 7200 1892.47 2.865 11 58 58 9.58 2032
250 2103.136 0.587 - - 7200 2115.55 2.708 14 59 59 8.77 1912
275 2266.508 0.630 - - 7200 2280.87 2.652 14 59 59 8.22 1902
300 2488.187 0.710 - - 7200 2505.99 3.948 15 60 60 7.67 1772
325 2745.796 0.636 - - 7200 2763.36 3.315 14 60 60 7.01 1800
350 2970.251 0.744 - - 7200 2992.52 2.871 12 56 56 6.18 2274
375 3134.805 0.481 - - 7200 3149.95 4.851 11 61 61 6.34 1678
400 3370.077 0.687 - - 7200 3393.38 3.642 11 56 56 5.59 2264

Avg 0.691 2.530

Table 7: Results of the second set of instances, the second set of instances, T = 18000 and
k = 20

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 657.489 1.501 670.73 -0.480 7200 667.51 0.961 23 114 114 40.44 4300
125 905.537 2.006 919.31 0.518 7200 924.07 1.273 24 111 111 30.76 4680
150 1128.336 1.286 1144.23 -0.104 7200 1143.04 2.797 29 114 114 26.58 4294
175 1285.336 1.198 1307.70 -0.518 7200 1300.92 1.570 27 115 115 24.88 4198
200 1505.106 1.187 1527.85 -0.306 7200 1523.18 2.877 22 119 119 22.30 3682
225 1759.620 1.102 1845.61 -3.597 7200 1779.22 2.443 25 117 117 19.34 3952
250 1979.037 1.047 - - 7200 1999.98 3.872 24 121 121 17.67 3474
275 2143.107 1.140 - - 7200 2167.81 4.134 24 118 118 16.46 3840
300 2363.469 1.251 - - 7200 2393.41 6.962 27 116 116 15.22 4078
325 2618.046 1.003 - - 7200 2644.56 6.417 28 121 121 14.17 3468
350 2840.673 0.991 - - 7200 2869.10 4.612 28 120 120 13.05 3598
375 3003.741 0.807 - - 7200 3028.17 6.594 24 124 124 12.85 3120
400 3237.359 0.734 - - 7200 3261.30 5.554 26 126 126 12.21 2852

Avg 1.173 3.851

heuristic may vary from instance to instance which results in different computing times.

Table 14 shows how imbalanced each instance of the second set is. Ideal denotes the objective
value to an instance at its balanced state, while Initial denotes the objective value to an instance
before repositioning takes place. Every instance is highly imbalanced initially, and according to
Tables 4-11, only a fraction of the imbalance can be covered. In particular, the larger the network
is, the smaller fraction of the imbalance can be covered. This is because under the restrictions in
vehicle capacity and operating hours, the vehicle can only visit very limited stations to reduce
their shortages. Hence, even if the network is larger, the number of stations visited and the
total number of bikes picked up are about the same. Hence, the fraction of the imbalance to
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Table 8: Results of the second set of instances, T = 9000 and k = 30

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 755.698 0.384 757.55 0.140 7200 758.61 0.671 13 60 60 22.02 1788
125 1012.685 0.641 1017.36 0.183 7200 1019.22 0.919 11 60 60 16.45 1790
150 1239.010 0.493 1244.57 0.047 7200 1245.15 1.167 13 59 59 13.83 1904
175 1397.390 0.854 1409.70 -0.020 7200 1409.42 1.275 12 59 59 12.49 1894
200 1621.292 0.930 1636.25 0.016 7200 1636.51 1.925 12 57 57 10.94 2156
225 1876.554 0.741 1897.06 -0.342 7200 1890.57 1.873 12 58 58 9.74 2030
250 2102.415 0.675 2158.91 -1.955 7200 2116.71 2.176 13 59 59 8.68 1878
275 2263.941 0.775 - - 7200 2281.62 2.006 13 59 59 8.17 1916
300 2486.033 0.631 - - 7200 2501.83 5.239 12 63 63 7.95 1424
325 2743.667 0.709 - - 7200 2763.25 3.111 12 60 60 7.02 1798
350 2968.320 0.581 - - 7200 2985.68 4.230 10 60 60 6.56 1790
375 3133.110 0.599 - - 7200 3151.99 4.301 13 60 60 6.23 1796
400 3368.221 0.449 - - 7200 3383.40 4.334 13 62 62 6.09 1506

Avg 0.651 2.256

Table 9: Results of the second set of instances, T = 18000 and k = 30

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 650.735 1.964 662.06 0.258 7200 663.77 0.767 23 113 113 41.20 4418
125 901.479 1.824 916.74 0.163 7200 918.23 1.544 20 116 116 31.64 4072
150 1126.147 1.286 1137.96 0.251 7200 1140.82 1.683 24 118 118 26.85 3836
175 1281.509 1.420 1305.91 -0.455 7200 1299.97 1.922 24 114 114 24.98 4316
200 1499.720 1.266 - - 7200 1518.95 1.875 24 120 120 22.72 3600
225 1754.574 1.366 1787.79 -0.498 7200 1778.88 2.978 25 116 116 19.37 4078
250 1978.997 0.900 - - 7200 1996.96 5.150 27 121 121 17.91 3478
275 2137.996 1.233 - - 7200 2164.69 4.580 28 119 119 16.69 3694
300 2358.116 0.986 - - 7200 2381.61 4.837 25 124 124 16.01 3118
325 2613.583 0.881 - - 7200 2636.80 5.280 27 125 125 14.63 2996
350 2835.486 0.955 - - 7200 2862.84 6.257 27 124 124 13.39 3110
375 2998.819 0.869 - - 7200 3025.11 6.015 28 125 125 13.01 2988
400 3234.315 0.754 - - 7200 3258.89 4.778 26 127 127 12.33 2752

Avg 1.208 3.667

be covered is smaller for larger networks. Tables 4-11 also show that when the operating hours
(or the vehicle capacity) is reduced, the fraction of the imbalance to be covered is decreased
because the number of stations visited (or the number of bikes picked up or dropped off at
visited stations) is reduced in general.

Regarding the third set of instances, CPLEX could not find the optimal solution to any of the
30 instances. Feasibility was achieved for four of the instances within the 2-hour limit of CPU
time (see Tables 15-16). Our heuristic managed to find better bounds than those provided
by CPLEX. The average gaps (from LBs) are 2.927% and 3.878% for short planning horizon
instances and long planning horizon instances, respectively. These gaps are further reduced to
2.668% and 3.43% when the heuristic runs a little longer (e.g., β = 30).
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Table 10: Results of the second set of instances, T = 9000 and k = 40

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 755.229 0.668 755.88 0.586 7200 760.31 0.713 11 57 57 21.68 2148
125 1011.117 0.944 1019.15 0.157 7200 1020.75 0.918 13 60 60 16.22 1796
150 1237.474 0.619 1244.79 0.031 7200 1245.18 1.654 12 60 60 13.83 1798
175 1394.505 0.772 1423.98 -1.308 7200 1405.35 2.015 14 60 60 12.96 1794
200 1619.833 0.722 - - 7200 1631.62 2.000 10 59 59 11.43 1898
225 1876.497 0.621 - - 7200 1888.23 2.583 10 60 60 9.94 1786
250 2099.115 1.099 - - 7200 2122.44 3.114 17 55 55 8.24 2370
275 2263.230 0.602 - - 7200 2276.93 2.357 12 60 60 8.51 1794
300 2486.304 0.627 - - 7200 2502.00 3.136 11 61 61 7.94 1662
325 2743.351 0.689 - - 7200 2762.38 2.603 12 62 62 7.07 1542
350 2968.040 0.594 - - 7200 2985.77 5.541 11 60 60 6.55 1798
375 3131.912 0.595 - - 7200 3150.66 4.780 13 60 60 6.30 1792
400 3368.217 0.377 - - 7200 3380.95 7.955 13 64 64 6.22 1302

Avg 0.687 3.028

Table 11: Results of the second set of instances, T = 18000 and k = 40

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

100 648.455 2.237 661.68 0.243 7200 663.29 0.987 24 115 115 41.30 4188
125 899.603 2.602 913.45 1.116 7200 923.64 1.267 25 114 114 30.83 4320
150 1124.078 1.434 1138.24 0.192 7200 1140.43 1.776 27 115 115 26.90 4172
175 1279.517 1.533 1296.87 0.198 7200 1299.44 2.003 27 118 118 25.05 3816
200 1499.273 1.241 1521.71 -0.237 7200 1518.11 1.923 29 125 125 22.81 2998
225 1753.076 1.279 1792.08 -0.909 7200 1775.79 3.521 25 119 119 19.64 3698
250 1977.671 1.418 - - 7200 2006.12 4.657 25 116 116 17.20 4064
275 2136.965 1.348 - - 7200 2166.17 4.098 27 116 116 16.58 4074
300 2358.169 1.023 - - 7200 2382.55 5.316 25 125 125 15.94 2994
325 2612.708 0.885 - - 7200 2636.03 7.554 26 126 126 14.68 2864
350 2835.190 1.150 - - 7200 2868.17 7.901 23 123 123 13.10 3238
375 2998.582 0.996 - - 7200 3028.76 5.721 27 123 123 12.82 3224
400 3233.586 0.772 - - 7200 3258.75 7.149 24 125 125 12.34 2980

Avg 1.378 4.144

5 Conclusion

In this paper, we present an iterated tabu search heuristic for the static bike repositioning
problem. The implemented heuristic makes use of specialized neighborhood structures and per-
turbation to obtain diversification in the search. Experiments were conducted on 156 instances.
Computational results show that this simple iterated tabu search heuristic produces high quality
solutions using very short computing times.

The contributions of this paper to the literature include the following. 1) This paper proposes
a modification to the existing bike reposition problem to improve its realism and to reduce the
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Table 12: Summary of the results of the second set of instances, β = 5

T k Avg gap Avg CPU

9000 10 0.721 3.373
9000 20 0.691 2.530
9000 30 0.651 2.556
9000 40 0.687 3.028
18000 10 1.286 5.268
18000 20 1.173 3.851
18000 30 1.208 3.667
18000 40 1.378 4.144

Table 13: Summary of the results of the second set of instances, β = 30

T k Avg gap Avg CPU

9000 10 0.672 16.219
9000 20 0.660 13.505
9000 30 0.584 12.645
9000 40 0.644 12.443
18000 10 1.068 22.716
18000 20 1.079 16.487
18000 30 1.128 15.469
18000 40 1.125 15.865

Table 14: Initial and optimal objective values of the second set of instances

|N0| Ideal Initial

100 372.95 867.63
125 463.60 1128.64
150 554.70 1355.99
175 642.69 1518.88
200 748.06 1745.64
225 843.91 2003.53
250 931.94 2229.28
275 1020.99 2393.74
300 1128.29 2620.45
325 1219.47 2879.75
350 1306.56 3103.54
375 1397.85 3268.56
400 1509.45 3505.00

solution space. 2) This paper develops an efficient and novel heuristic to obtain high quality
solutions to solve the proposed problem. 3) The specific operators developed can also be in-
corporated in other heuristics to solve the same repositioning problem or other repositioning
problems with different objective functions.

In the future, we extend our method to solve the static repositioning problem with multiple
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Table 15: Results of the third set of instances, T = 9000 and k = 20

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

200 4705.242 2.590 5027.60 -3.924 7200 4830.33 1.996 19 46 46 24.18 3476
200 4627.208 5.379 - - 7200 4890.28 1.861 15 45 45 24.17 3570
200 4569.509 1.599 - - 7200 4643.78 2.152 18 52 52 25.70 2758
200 4060.484 3.006 - - 7200 4186.33 2.075 22 49 49 26.78 3082
200 4644.023 3.182 - - 7200 4796.63 2.028 17 48 48 25.15 3202
300 6708.367 3.167 - - 7200 6927.74 2.520 21 47 47 17.58 3338
300 7689.757 2.926 - - 7200 7921.54 3.820 19 51 51 17.63 2864
300 7059.826 3.455 - - 7200 7312.46 3.731 19 53 53 19.65 2636
300 7896.429 2.899 - - 7200 8132.14 3.626 16 47 47 17.89 3348
300 7810.430 3.312 - - 7200 8077.99 3.548 18 46 46 17.68 3464
400 9867.310 2.469 - - 7200 10117.10 5.263 16 51 51 16.36 2870
400 9464.528 2.616 - - 7200 9718.80 4.450 17 54 54 17.01 2504
400 10450.917 2.491 - - 7200 10717.90 5.785 24 48 48 15.50 3228
400 11064.190 1.938 - - 7200 11282.90 6.584 22 50 50 14.45 2992
400 9294.085 2.876 - - 7200 9569.30 5.460 15 49 49 16.88 3114

Avg 2.927 3.660

Table 16: Results of the third set of instances, T = 18000 and k = 20

|N0| LB Gap UB Gap CPU Heuristic CPU η ψ φ Done ς

200 3878.686 2.793 4501.27 -11.355 7200 3990.14 2.418 40 101 101 43.65 5830
200 3755.538 4.299 - - 7200 3924.25 2.992 36 100 100 46.02 5994
200 3806.262 3.289 3943.67 -0.202 7200 3935.71 2.964 41 108 108 42.74 5034
200 3346.358 4.498 - - 7200 3503.97 3.166 47 98 98 45.79 6192
200 3784.330 4.204 4401.57 -10.250 7200 3950.41 4.617 37 104 104 44.70 5516
300 5789.674 4.088 - - 7200 6036.42 5.532 45 103 103 33.57 5636
300 6641.535 4.118 - - 7200 6926.79 5.327 43 109 109 32.30 4920
300 6001.242 4.527 - - 7200 6285.83 5.092 39 104 104 36.22 5510
300 6754.097 3.647 - - 7200 7009.76 3.342 42 110 110 33.78 4792
300 6657.507 4.434 - - 7200 6966.41 5.121 39 102 102 33.61 5740
400 8773.665 3.187 - - 7200 9062.52 7.726 43 104 104 28.92 5504
400 8336.122 4.224 - - 7200 8703.79 11.255 42 104 104 30.11 5520
400 9237.014 3.412 - - 7200 9563.27 8.909 40 101 101 28.70 5862
400 9806.238 4.129 - - 7200 10228.60 8.175 53 98 98 25.64 6228
400 8144.318 3.324 - - 7200 8424.37 5.840 39 109 109 31.75 4918

Avg 3.878 5.498

vehicles. We will also develop an efficient heuristic that allows a station to be visited more than
once.
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