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A Distributionally Robust Joint Chance Constrained Optimization 

Model for the Dynamic Network Design Problem under Demand 

Uncertainty 
 

Hua Sun • Ziyou Gao • W.Y. Szeto • Jiancheng Long • Fangxia Zhao• 

 
Abstract This paper develops a distributionally robust joint chance constrained 
optimization model for a dynamic network design problem (NDP) under demand 
uncertainty. The major contribution of this paper is to propose an approach to 
approximate a joint chance-constrained Cell Transmission Model (CTM) based System 
Optimal Dynamic Network Design Problem with only partial distributional information 
of uncertain demand. The proposed approximation is tighter than two popular benchmark 
approximations, namely the Bonferroni’s inequality and second-order cone programming 
(SOCP) approximations. The resultant formulation is a semidefinite program which is 
computationally efficient. A numerical experiment is conducted to demonstrate that the 
proposed approximation approach is superior to the other two approximation approaches 
in terms of solution quality. The proposed approximation approach may provide useful 
insights and have broader applicability in traffic management and traffic planning 
problems under uncertainty.  
Keywords Dynamic network design problem ∙ Distributionally robust joint chance 
constraints ∙ Worst-case conditional value-at-risk ∙ Semidefinite programming ∙ Demand 
uncertainty 

1 Introduction 
Traditionally, dynamic transportation network design problems assume that the input data 
demand and parameters are deterministic. However, in reality, the input data and 
parameters are usually uncertain. The evaluation of network performance without 
accounting for the uncertainty can potentially lead to suboptimal network design 
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decisions (Waller et al. 2001). Thus, it is of paramount importance to study the dynamic 
network design problem under uncertainty from a pragmatic perspective. Recently, 
chance-constrained programming (CCP) (Charnes et al. 1958) has been employed to 
formulate and analyze the dynamic NDP under uncertainty (Waller and Ziliaskopoulos 
2001; Ukkusuri and Waller 2008) or the core problem of dynamic NDPs, i.e., dynamic 
traffic assignment (DTA), (Waller and Ziliaskopoulos 2006; Yazici and Ozbay 2010; 
Chung et al. 2012). In these studies, except Chung et al. (2012), the exact probability 
distributions of uncertainty are assumed to be known perfectly. In fact, these distributions 
may be unavailable (inaccurate) as we may have no (insufficient) data to calibrate the 
distributions, but only the partial information on the distribution, such as its first and 
second moments and its support, may be available. Against this background, a 
distributionally robust chance-constrained approach has been introduced recently to 
formulate and approximate DTA (Chung et al. 2012). However, the approximation for 
distributionally chance constraints in Chung et al. (2012) is overly conservative.   
 In this paper, we propose a computationally tractable and less conservative 
approximation method for formulating the chance-constrained system optimal dynamic 
network design problem based on known mean and variance of the uncertain 
time-dependent traffic demand, aiming to provide a robust and tractable but less 
conservative framework for the dynamic traffic planning and control. A numerical 
example is presented in this paper to illustrate the value of our less conservative 
approximation scheme in the context of stochastic dynamic NDPs. Moreover, 
computational validity is also demonstrated in the proposed framework. This paper 
further enriches the body of knowledge in stochastic dynamic NDPs by considering the 
issues in relation to the robustness, conservatism and partial distributional information. 

2 Literature Review 
The transportation network design problem is at the core of many transportation 
applications. The models and algorithms have been extensively studied in the past three 
decades (Boyce 1984; Magnanti and Wong 1984; Minoux 1989; Yang and Bell 1998; 
Chen et al. 2011). However, the vast body of previous literature has focused only on the 
static NDPs. Lin et al. (2011) pointed out that static NDP models cannot capture realistic, 
time-varying demand whereas the dynamic NDP models can. Janson (1995) and Waller 
(2000) revealed that the DTA-based NDP models are more desirable than the static 
models. In order to overcome these deficiencies, a variety of recent papers focused more 
on the DTA-based NDPs (Waller et al. 2006; Ukkusuri and Waller 2008; 
Karoonsoontawong and Waller 2006). According to Lin et al. (2011), these DTA-based 
NDP models can be divided into two categories: 1) single-level models and 2) bi-level 
models.  

The single-level DTA-based NDP models are those based on the single-destination 
system-optimal (SO) (Ziliaskopoulos 2000) or user-optimal (UO) (Ukkusuri and Waller 
2008) dynamic traffic assignment models, including the single-level SO DTA-based NDP 
model formulated by Waller et al. (2006) and the single-level SO DTA-based NDP model 
formulated by Ukkusuri and Waller (2008). The common feature of the above-mentioned 
single-level models is that the cell transmission model (CTM) (Daganzo 1994, 1995) is 



used to model the dynamic traffic flow propagation, and the demand is assigned to the 
network by either the dynamic SO or UO principle. Moreover, these models are often 
formulated as a linear program, and therefore they are computationally tractable. 
 Similar to the static NDPs, the bi-level DTA-based NDPs can usually be modeled as  
leader-follower games, in which the transportation manager is the leader of each game 
who makes network design decisions and the users are the followers of the game who can 
freely choose their route (Boyce 1984; Yang and Bell 1998). Therefore, each of the 
bi-level DTA-based NDP models can be formulated as a bi-level linear program, in 
which the objective of the upper-level model is to minimize the total system travel time, 
whereas the lower-level characterizes the dynamic UO flow pattern. An example of the 
bi-level DTA-based NDP model is the model developed by Karoonsoontawong and 
Waller (2006). It is noted that although a bi-level DTA-based NDP model can be 
reformulated into a single-level model, the resultant formulation is a mathematical 
program with equilibrium constraints (MPEC) (or equivalently a mathematical program 
with complementarity constraints (MPCC)) rather than a linear program. Therefore, the 
bi-level models are more difficult to solve than the single-level models. Hence, heuristics 
are often developed to solve the bilevel models for general network settings. For example, 
Karoonsoontawong and Waller (2006) developed three meta-heuristics, namely 
simulation annealing, genetic algorithm, and random search, for solving the DTA-based 
NDPs over multi-destination large-size networks. Lin et al. (2011) and Lin (2011) further 
proposed two heuristic algorithms based on the Dantzig-Wolfe decomposition principle 
and the dual variable approximation for solving the bi-level DTA-based NDPs. 

On the other hand, uncertainty is inseparable from transportation problems. For 
example, travel demand is uncertain. Without an explicit and rigorous recognition of the 
uncertainty, any transportation network development plans and policies may take on 
unnecessary risk and even result in misleading outcomes (Zhao and Kockelman 2002). It 
is therefore important to capture uncertainty in NDPs. In this regard, a variety of recent 
papers introduced the uncertainty in the CTM-based NDP or DTA models.  

The general approaches of addressing uncertainty in CTM-based NDP or DTA studies 
include chance-constrained programming (CCP) (Waller and Ziliaskopoulos 2001; Waller 
and Ziliaskopoulos 2006; Ukkusuri and Waller 2008), two-stage stochastic linear 
programming with recourse (SLP2) (Waller and Ziliaskopoulos 2001; Karoonsoontawong 
and Waller 2007; Patil and Ukkusuri 2007; Ukkusuri and Waller 2008) and robust 
optimization (RO) (Karoonsoontawong and Waller 2006; Karoonsoontawong and Waller 
2007; Karoonsoontawong and Waller 2010; Chung et al. 2011; Ben-Tal et al. 2011). The 
first two approaches have been adopted since early 20s. For example, Waller and 
Ziliaskopoulos (2001) applied CCP and SLP2 to formulate the single-level CTM-based 
SO NDP with stochastic demands. Moreover, Ukkusuri and Waller (2008) introduced the 
single-level UO versions of CCP and SLP2 models, and compared them with the 
corresponding SO versions. Yazici and Ozbay (2010) further proposed a CTM-based 
DTA model with probabilistic demand and road capacity constraints. Karoonsoontawong 
and Waller (2007) applied SLP2 to formulate the bi-level CTM-based NDPs. 
Karoonsoontawong and Waller (2010) further extended their previous model to 
incorporate the signal setting design decision.  The above-mentioned CTM-based NDP 



models were, however, developed by the CCP or SLP2 approach and it is necessary for 
the model users to know the probability distributions of the uncertain input data and 
parameters in order to use these models. In fact, the distributions may be unavailable 
(inaccurate) as we may have no (insufficient) data to calibrate the distributions. Therefore, 
robust optimization (Mulvey et al. 1995; Ben-Tal et al. 2009; Bertsimas et al. 2011) have 
been introduced recently to address the limitations of CTM-based NDPs or DTA.  
 According to Chung et al. (2012), robust optimization can be roughly classified into 
two groups: 1) scenario-based robust optimization, and 2) set-based robust optimization. 
The scenario-based robust optimization approach represents uncertainty via a limited 
number of discrete scenarios associated with strictly positive probabilities of occurrence, 
and attempts to solve the optimization problem across these scenarios for solutions that 
are near-optimal with respect to the population of all possible realizations of uncertainty 
(Yin et al. 2009). Mulvey et al. (1995) developed a scenario-based RO approach for 
general linear programming (LP) problems. Karoonsoontawong and Waller (2006) 
adopted this approach to propose the CTM-based NDP bi-level linear programming 
formulation. Karoonsoontawong and Waller (2007) adopted the same approach to 
formulate the CTM-based single-level SO and UO NDP models and bi-level NDP model, 
and made comparison with SPL2 and deterministic approaches. Ukkusuri et al. (2007) 
adopted the bi-level programming approach to develop a scenario-based robust discrete 
network design model, in which the lower-level problem is the dynamic user equilibrium 
problem. Karoonsoontawong and Waller (2010) later presented a scenario-based robust 
bi-level model for the combined network capacity expansion and signal setting design 
problem. Meanwhile, Mudchanatongsuk et al. (2008) pointed out that the scenario-based 
robust optimization approach has the following three difficulties: 1) Similar to CCP and 
SLP2, the scenario-based robust optimization approach also requires that the probability 
distribution of each scenario is known in advance; 2) the numerous scenarios used in 
accurately representing the uncertainty can lead to large, computationally challenging 
problems, and; 3) the solution obtained may be sensitive to possible uncertainty outcomes. 
Therefore, more attention has been paid to the set-based robust optimization approach 
recently. 
 Unlike CCP, SLP2 and the scenario-based robust optimization approach, the 
set-based robust optimization approach (Kouvelis and Yu 1997; Ben-Tal and Nemirovski 
1998, 1999, 2000, 2002; Bertsimas and Sim 2004) does not require the assumption that 
the probability distributions of the uncertain input data and parameters are known. 
Therefore, the set-based robust optimization approach recently has not only been applied 
to the static NDPs (Yin and Lawpongpanich 2007, 2008; Yin et al. 2009; Lou et al. 2009; 
Lou et al. 2010) but also the CTM-based dynamic NDPs (Chung et al. 2011) or DTA (Yao 
et al. 2009). In these studies, the uncertain input data and parameters are assumed to be 
belonging to a bounded set. For example, Chung et al. (2011) assumed a box uncertain 
set for demand to formulate a single-level robust NDP model whereas Yao et al. (2009) 
adopted the polyhedral, box, and ellipsoid uncertain sets for demand to develop the 
CTM-based system-optimal DTA (SODTA) models. 
 The robust solutions obtained in the above-mentioned studies are, however, overly 
conservative. To alleviate the conservatism of the robust solutions, Ben-Tal et al. (2004) 



proposed the adjustable robust optimization approach for general linear programming 
models. Ben-Tal et al. (2011) used the adjustable robust optimization methodology to 
solve the CTM-based SODTA under demand uncertainty. The polyhedral set is used as 
the uncertain demand set and the affinely adjustable robust counterpart (AARC) is 
reformulated into a linear program by using the affine control rule. Recently, a new 
robust optimization approach for the chance constraints has been applied to formulate 
CTM-based SODTA. Chung et al. (2012) developed a CTM-based SODTA model under 
demand uncertainty with the distributionally robust joint chance constraints. Providing 
that only the partial distribution information (mean and variance) was available, the 
distributionally robust joint chance constraints were approximated by the linear constraint 
based on Bonferroni’s inequality. Nevertheless, the Bonferroni’s approximation may still 
be overly conservative. 
 In this paper, a new approximation approach for the distributionally robust joint 
chance constraints is proposed to formulate a single-level CTM-based system-optimal 
NDP (SONDP) under demand uncertainty where only the partial distributional 
information (i.e., mean and variance) of uncertain demand is available. The single-level 
structure is adopted because it can provide an easier way to approximate the 
distributional robust joint chance constraints and makes the resultant NDP model to be 
computationally tractable. We develop a less conservative approximation for the 
distributionally robust joint chance constraints in the context of CTM-based SONDP. The 
distributionally robust joint chance constraints in the model are firstly approximated by 
the Worst-Case Conditional Value-at-Risk (WCVaR) constraints, and then the approach 
proposed by Zymler et al. (2013) is adopted to reformulate the WCVaR constraint into 
the semidefinite programming (SDP) constraint. The numerical results are provided in the 
latter section to illustrate the improved solution quality offered by the SDP-based 
approximation over the two other approximations, i.e., Bonferroni’s approximation and 
the approximation by Chen et al. (2010). 
 The remainder of this paper is structured as follows. In Section 3, we present a 
deterministic CTM-based SONDP formulation and reformulate it into a robust joint 
chance-constrained program after incorporating the uncertain demand. Section 4 presents 
the Worst-Case CVaR approximation and the other two approximation approaches for the 
robust joint chance constraints. The solution algorithm for solving the resultant program 
derived from the SDP and SOCP approximations is presented in Section 5. In Section 6, 
the numerical experimental results are presented to demonstrate the effectiveness of the 
proposed approach. Finally, Section 7 concludes the paper and proposes the direction for 
future research. 

  
3 Deterministic and distributionally robust joint chance constraint 
model 

In this section, we firstly describe a deterministic CTM-based system-optimal NDP 
(SONDP) and then reformulate it into a robust joint chance-constrained program by 
introducing the uncertain demand. For ease of discussion, the notation used in these models 
is presented in Table 1. 
Table 1 Notations 



Sets Description 

ℑ  Set of time intervals {1,2,..., }T  

C  Set of cells 

RC  Set of source cells 

SC  Set of sink cells 

A  
Adjacent matrix, { }ijA a= ; if cell i  is connected to cell j , then 1ija = ，

otherwise 0ija =  

Parameters Description 
t
id  Demand generated at cell i  during time interval t , Ri C∈  

t
ic  Travel cost associated with a vehicle in cell i  during time interval t  

t
iN  Capacity of cell i  during time interval t  

t
iδ  Ratio of the free-flow speed to the backward wave speed associated with 

cell i  and time interval t  
t
iQ  Inflow/Outflow capacity of cell i  in time interval t  

ˆix  Initial number of vehicles in cell i  

Functions  Description 

iχ  Increase in t
iN  for a unit increase in ib  

iφ  Increase in t
iQ  for a unit increase in ib  

B  Total budget 
Variables Description 

ib  Budget spent on cell i  for improvement 

t
ix  Number of vehicles in cell i  in time interval t ,  

t
ijy  Number of vehicles that move from cell i  to cell j  during time interval 

t  

b Vector of budgets allocated to cells, (...., ,...)ib b=  

x Vector of the numbers of vehicles in cells, (..., ,...)t
ix x=  

y Vector of the numbers of vehicles moving between two adjacent cells, 



(..., ,...)t
ijy y=  

The CTM-based SONDP formulation aims to minimize the total cost, which is the sum 
of the product of the number of vehicles in each cell in each time interval and the 
corresponding travel cost. The travel cost of a vehicle in cell i  during time interval t , 

t
ic , is set as follows: 

1       \ , ,
    \ , ,

st
i

s

i C C t T
c

M i C C t T
∈ ≠

=  ∈ =
 

where M  is assumed to be a sufficiently large positive number, which can be 
interpreted as the cost of a vehicle that cannot arrive at the destination by the end of time 
horizon. Because the penalty cost M  is used in the objective function, the objective of 
the problem can be interpreted as minimizing the number of vehicles staying in the 
network by the end of the modeling horizon. By assuming a linear relationship between 
the budget spent on a cell and the additional capacity of that cell, the deterministic 
CTM-based SONDP can be formulated as the following linear program (Waller et al., 
2006): 

SONDP： 
, , \

min    ,
s

t t
i ix y b t i C C

c x
∈ℑ ∈
∑ ∑    

subject to     1 1 1 1t t t t t
i i ki ki ij ij i

k C j C
x x a y a y d− − − −

∈ ∈

− − + =∑ ∑  , ,Ri C t∀ ∈ ∈ℑ               (1) 

            1 1 1 0t t t t
i i ki ki ij ij

k C j C
x x a y a y− − −

∈ ∈

− − + =∑ ∑    \ , ,R Si C C C t∀ ∈ ∪ ∈ℑ        (2) 

t t
ij ij i

j C
a y x

∈

≤∑                     \ , ,Si C C t∀ ∈ ∈ℑ             (3) 

( )t t t t
ki ki i i i i i

k C
a y N b xδ χ

∈

≤ + −∑         \ , ,R Si C C C t∀ ∈ ∪ ∈ℑ          (4) 

t t
ki ki i i i

k C
a y Q bφ

∈

≤ +∑                \ , ,R Si C C C t∀ ∈ ∪ ∈ℑ         (5) 

t t
ij ij i i i

j C
a y Q bφ

∈

≤ +∑                 \ , ,Si C C t∀ ∈ ∈ℑ             (6) 

\
,

s

i
i C C

b B
∈

≤∑                                                 (7) 

0 ˆi ix x=                          \ ,Si C C∀ ∈                 (8) 

0 0,ijy =                          ( , ) ,i j C C∀ ∈ ×              (9) 

 0,t
ix ≥                          \ , ,Si C C t∀ ∈ ∈ℑ           (10) 

0,t
ijy ≥                          ( , ) , ,i j C C t∀ ∈ × ∈ℑ        (11) 

0,ib ≥                           \ .Si C C∀ ∈               (12) 



 The objective function of SONDP represents the total travel cost, which provides an 
optimistic estimate or lower bound of total cost as it simplifies the original CTM model 
by Daganzo (1994, 1995) and allows vehicle holding. Both constraints (1) and (2) are the 
flow conservation constraints in cell i  in time interval t . Because only the source cells 

generate demand, the right-hand-side of constraint (1) is set as 1t
id −  and the 

right-hand-side of constraint (2) is equal to zero. Constraint (3) bounds the total outflow 
rate of a cell by its current occupancy. Constraint (4) ensures that the total inflow rate of a 
cell is bounded by its remaining capacity. Constraints (5) and (6) state that the total 
inflow into and outflow rate from a cell are limited by the inflow and outflow capacities 
respectively. Constraint (7) is a budgetary constraint. The remaining constraints (8) to (12) 
represent the initial conditions and non-negativity conditions.  
 As the problem is a minimization problem and constraint (1) is the only set of 
constraints related to demand generation, constraint (1) can be reformulated into the 
following inequality constraint (Waller and Ziliaskopoulos 2006, Chung et al. 2012): 

1 1 1 1,  , .t t t t t
i i ki ki ij ij i R

k C j C
x x a y a y d i C t− − − −

∈ ∈

− − + ≥ ∀ ∈ ∈ℑ∑ ∑               (13) 

This model allows vehicle holding (Doan and Ukkusuri, 2012) because constraint (13) is 
always binding and equation (1) and constraint (13) are equivalent. When we incorporate 
the uncertain demand into the deterministic CTM-based SONDP model, we reformulate 
constraint (13) into the following joint chance constraint (14) with a confidence 
parameter (0,1)ε ∈ : 

      1 1 1 1   , ,t t t t t
i i ki ki ij ij i R

k C j C
x x a y a y d i C t ε− − − −

∈ ∈

 
− − + ≥ ∀ ∈ ∈ℑ ≥ 

 
∑ ∑ P         (14) 

where 1t
id −  denotes the random demand variable. The violation of constraint (14) 

implies that more demand is realized than is used for prediction. According to the 
assumption that the only partial distribution information of uncertain demand may be 
available, the joint chance constraint (14) can be reformulated as follows: 

1 1 1 1Inf   , ,t t t t t
i i ki ki ij ij i R

k C j C
x x a y a y d i C t ε− − − −

∈
∈ ∈

 
− − + ≥ ∀ ∈ ∈ℑ ≥ 

 
∑ ∑ 

P
P

P
      (15) 

where P  denotes the set of all probability distributions that are consistent with the 
know mean and variance of uncertain demand. Then, the CTM-based SONDP with the 
distributionally robust joint chance constraints can be rewritten as: 

SONDP-RJCCP：
, , \

min    ,
s

t t
i ix y b t i C C

c x
∈ℑ ∈
∑ ∑  

subject to   constraints (2)-(12) and (15). 

4 Approximation of distributionally robust joint chance constraints 
In this section, we start with using the approximation approach based on semidefinite 
programming (SDP) proposed by Zymler et al. (2013) to approximate the distributionally 
robust joint chance constraint (15), and then present the two benchmark approximations 



of constraint (15). One approximation is based on Bonferroni’s inequality and the other is 
based on second-order conic programming (SOCP) (Chen et al. 2010). Finally, we 
compare the three approximations for the distributionally robust joint chance constraints. 

4.1 The Worst-Case Conditional Value-at-Risk approximation  

Assume that the uncertain demand depends affinely on a random number 1ξ ∈ , i.e., 

t t t
i i id µ σ ξ= + , where t

iµ  and 2( )t
iσ  are denoted as the mean and variance of the 

demand, respectively. The mean and variance of the random number ξ  are, respectively, 

assumed to be 0 and 1, i.e., ( ) 0E ξ = , and ( ) 1Var ξ = . For notation purposes, we let the 

following be the second-order moment matrix ofξ : 

( ) ( ) ( ) 1 0
( ) 1 0 1

Var E E
E
ξ ξ ξ
ξ
+   

Ω = =   
   

. 

  Based on the above setting, Chen et al. (2010) proved that the joint chance constraint 
(15) can be reformulated into 

1 1 1 1 1

,
Inf  max 0  

R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

x x a y a yα µ σ ξ ε− − − − −

∈ ∈ ∈ℑ
∈ ∈

    − + − + + ≤ ≥        
∑ ∑P

P
P

,   (16) 

where | | | |{ | , (..., ,...) 0}RCt t
i iα α α α α×ℑ∈ = ∈ = >A  is called the scaling parameter. The 

choice of α ∈A  does not affect the feasible region of the chance constraint (15). 
Although these scaling parameters are seemingly redundant, it turns out that they can be 
tuned to improve the quality of approximation. Chen et al. (2010) indicated that 
constraint (16) represents a distributionally robust individual chance constraint, which 
can be approximated by a Worst-Case CVaR constraint. Thus, the feasible region of 
constraint (15) can be approximated by 

1 1 1 1 1
1 ,

( ) ( , ) : sup  CVaR max 0 ,
R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

x y x x a y a yεα α µ σ ξ− − − − −
− ∈ ∈ℑ∈ ∈ ∈

       = − + − + + ≤            
∑ ∑

P P
Z  

(17) 

Where 1 1 1 1 1
1 ,

CVaR max
R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

x x a y a yε α µ σ ξ− − − − −
− ∈ ∈ℑ

∈ ∈

    − + − + + =        
∑ ∑   

 

1 1 1 1 1

,

1inf max .
1 R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

x x a y a y
β

β α µ σ ξ β
ε

+

− − − − −

∈ ∈ ∈ℑ
∈ ∈

         + − + − + + −      −         
∑ ∑PR

E  

(18) 

β  is a decision variable in the chance constraint; ( )PE  denotes the expectation with 



respect to P , and { }( ) max ,0+• = • (Rockafellar and Uryasev 2000, 2002). In contrast to 

the chance constraint (16), ( , ) ( )x y α∈Z  depends on the choice of α ∈A . Because the 

max function in constraint (16) is not concave, the Worst-Case CVaR constraint (17) is 
not equivalent to constraint (16) (Chen et al. 2010).  
 Zymler et al. (2013) developed an approximation approach for distributionally robust 
chance constraints based on semidefinite programming (SDP). The first- and 
second-order moments with the supports of uncertain parameters are assumed to be 
known. Zymler et al. (2013) firstly approximated the distributionally chance constraints 
by the Worst-case Conditional Value-at-Risk (WCVaR) constraints, and then reformulated 
the WCVaR constraints into the SDP constraints using the theory of moment problems 
and conic duality arguments. They argued that this approximation is exact for robust 
individual chance constraints with concave or quadratic constraint functions and this 
approximation is tighter than the two other benchmark approximations for robust joint 
chance constraints. In this study, we adopt their approach to approximate constraint (15) 
and present the following theorem about the equivalent form of constraint (17). 
 

Theorem 1: If 1t
id −  follows an unknown probability distribution with the mean 1t

iµ
−  

and variance 1 2( )t
iσ
− , then the distributionally robust joint chance constraint (15) can be 

approximated by the following semidefinite programming constraint: 
2

1

1 1 1 1 1

 ( , )
1 , 0,  0

1( ) ( , ) : , , ,
0 / 2

0/ 2 ( )

Rt t
i i

t t t t t t t t
i i i i i ki ki ij ij i

k C j C

MM

MM MM
x y i C t

MM x x a y a y

β

β
εα

α σ
α σ α µ β

−

− − − − −

∈ ∈

 ∃ ∈ ×
 
 + Ω ≤
 −= ∀ ∈ ∈ℑ 

  
  − − + − + −    

∑ ∑

Z

R S

±

±

  (19) 
where 2S  denotes the space of real symmetric matrices of dimension two, 

, ( )A B trace AB=  is a trace scalar product of matrices A and B, and 0A ±  means that 

the matrix A  is semidefinite. 

Proof: We note that constraint (17) is equivalent to ( , , ) 0J x y α ≤ , where  

1 1 1 1 1
1 ,

( , , ) sup  CVaR max
R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

J x y x x a y a yεα α µ σ ξ− − − − −
− ∈ ∈ℑ∈ ∈ ∈

    = − + − + +        
∑ ∑

P P
 

1 1 1 1 1

,

1sup  inf max .
1 R

t t t t t t t
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  (20) 
According to the stochastic saddle point theorem (Shapiro and Kleywegt, 2002), we can 
interchange the maximization and minimization operations as below: 

1 1 1 1 1

,

1( , , ) inf sup  max .
1 R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

J x y x x a y a y
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α β α µ σ ξ β
ε

+

− − − − −

∈ ∈ ∈ℑ∈ ∈ ∈

         = + − + − + + −      −         
∑ ∑PR P

E
P

 (21) 
Next, we derive the dual problem of the following Worst-Case expectation problem: 

1 1 1 1 1

,
sup  max

R

t t t t t t t
i i i ki ki ij ij i ii C t k C j C

x x a y a yα µ σ ξ β
+

− − − − −

∈ ∈ℑ∈ ∈ ∈
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P
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P
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Using Lemma 1 in Zymler et al. (2013), we have: 

2
inf  , ,

MM
MM

∈
Ω

S
                                            (23) 

subject to  

[ ] [ ] 1 1 1 1 1

,
,1 ,1 max ,

R

T t t t t t t t
i i i ki ki ij ij i ii C t k C j C

MM x x a y a yξ ξ α µ σ ξ β− − − − −

∈ ∈ℑ
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   ≥ − + − + + −  
   

∑ ∑  ,ξ∀ ∈  (24) 

0.MM ±                                                   (25) 
We note that the above optimization problem represents a lossless reformulation of the 
worst-case expectation problem (22). The semi-infinite constraint (24) can be expanded 
into | | | |RC × ℑ  simpler semi-infinite constraints in the form of 

[ ] [ ] 1 1 1 1 1,1 ,1 , , , .T t t t t t t t
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∑ ∑   

(26) 
Constraint (26) can be equivalently expressed as 

1

1 1 1 1 1

0 / 2
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Therefore,    1( , , ) inf   + , ,
1

J x y MM
β

α β
ε∈

= Ω
−

                     (28) 

subject to 2 ,MM ∈S  0,MM ±                                           

1
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Thus, the claim follows.                                                       ■ 
 Using Theorem 1, the SONDP-RJCCP can be approximated to an SDP problem, 



formulated as follows. 
SDP model:    

, , , \
min  ,

s

t t
i ix y b t i C C

c x
α

∈ℑ ∈
∑ ∑  

subject to  ( , , ) 0,J x y α ≤                             (29) 

constraints (2)-(12). 

4.2 The Bonferroni Approximation 

A popular approximation for constraint (15) is based on Bonferroni’s inequality. We note 
that constraint (15) is equivalent to the following:  
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Moreover, according to Chung et al. (2012), Bonferroni’s inequality implies that  
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Thus, we have 

 1 1 1 1
,Inf  0  1 , , ,t t t t t

i i ki ki ij ij i i t R
k C j C

x x a y a y d i C tε− − − −

∈
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where the confidence level ,i tε  is required to satisfy the constraint ,,
1

R
i ti C t
ε ε

∈ ∈ℑ
≤ −∑ . 

Therefore, constraint (32) represents the conservative approximation for constraint (15). 
A major limitation of the Bonferroni approximation is that the approximation quality 

critically depends on the choice of confidence level ,i tε . Unfortunately, the problem of 

finding the best ,i tε  for constraint (15) is nonconvex and it is believed to be intractable 

(Nemirovski and Shapiro 2006). According to Nemirovski and Shapiro (2006), we set 

,
1

| | | |i t
RC

εε −
=

× ℑ
, where | |RC  is the number of source cells and | |ℑ  denotes the 

number of discrete time intervals. Thus, constraint (32) can be reformulated into the 
linear constraint as follows (Calafiore and Ghaoui 2006; Chung et al. 2012): 

1 1 1 1 1 | | | |+ 1 0 , ,
1
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Cx x a y a y i C tµ σ
ε

− − − − −
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× ℑ
− + − + − ≤ ∀ ∈ ∈ℑ

−∑ ∑ .      (33) 



Thus, the approximated SONDP-RJCCP can be formulated as following LP model: 
   LP model:   

, , \
min    ,

s

t t
i ix y b t i C C

c x
∈ℑ ∈
∑ ∑  

subject to   constraints (2)-(12) and (33). 
As shown in the above formulation, the model is still an LP model and can be computed 
efficiently. However, the Bonferroni approximation is overly conservative. Zymler et al. 
(2013) proved that the accuracy of the Bonferroni approximation diminishes with an 
increasing number of joint constraints if the inequalities in the joint chance constraints 
are positively correlated.  

4.3 The approximation by Chen et al. (2010) 
To minimize the over-conservatism of the Bonferroni approximation, Chen et al. (2010) 
proposed an approximation approach for the robust joint chance constraints based on 
second-order cone programming (SOCP) by using inequalities from the probability 
theory. Moreover, they also proved that their approximation is tighter than the Bofferroni 
approximation. In this subsection, we adopt their results to approximate constraint (15). 
Similar to the Worst-Case CVaR approximation, according to the above discussion, the 
robust joint constraint (15) can be approximated by 

1 1 1 1 1
1 ,
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where 1 1 1 1 1
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Chen et al. (2010) employed the results of Chen and Sim (2009) to provide an upper 

bound of [ ]( )+•PE . Thus, constraint (34) can be approximated by the following SOCP 

(Chen et al. 2010): 

ˆ( , , ) 0,J x y α ≤                                (35) 

where     
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0
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and ( ) ( )0 0 0

2

1 1, , .
2 2

z z z z zπ = +                                        (37) 

Then, the SONDP-RJCCP can be approximated by a second-order cone programming 



problem which can be formulated as follows. 
   SOCP model:    

, , , \
min    ,

s

t t
i ix y b t i C C

c x
α

∈ℑ ∈
∑ ∑  

subject to   constraints (2)-(12) and (35). 
It is noted that similar to the Bonferroni approximation, the approximation proposed by 
Chen et al. (2010) critically depends on the choice of α , and that the problem of finding 
the best α  for the robust joint chance constraint is nonconvex and therefore believed to 
be intractable. 

5 Solution algorithm 
We adopted the solution algorithm proposed by Chen et al. (2010) to solve the previous 
SDP and SOCP models. By Theorem 1, the original SONDP-RJCCP can be written as 

SDP:    
, , , \
min  ,

s

t t
i ix y b t i C C

c x
α

∈ℑ ∈
∑ ∑  

subject to  ( , , ) 0,J x y α ≤                              

constraints (2)-(12). 
Unfortunately, Zymler et al. (2013) proved that the Worst-Case CVaR functional 

( , , )J x y α  in constraint (29) is merely biconvex, but not jointly convex in ( , )x y  and 

α , and hence the SDP model is nonconvex. However, when the scaling parameters α  
are fixed, the problem becomes convex and tractable.  
  To explain the preceding point, we define the set 

,
: 1, , ,

R

t t
i R i

i C t
i C t Mα α α

∈ ∈ℑ

  = ≥ ∀ ∈ ∈ℑ = 
  

∑A= , where M  is a large number. Obviously, 

unlike A , the set A= is closed. When α ∈A= is fixed, the SDP problem is reduced to: 

   SDP1:      
, , \

min    ,
s

t t
i ix y b t i C C

c x
∈ℑ ∈
∑ ∑                             (38) 

                subject to  ( , , ) 0,J x y α ≤   

 constraints (2)-(12). 
 SDP1 is equivalent to a tractable SDP problem and the feasible solution of SDP1 is also 
feasible to the SONDP-RJCCP.  
  Chen et al. (2010) proposed an algorithm to improve the objective value by tuning 
the scaling parameters α . Consequently, they introduce the following tractable SDP 

problem where ( , )x y  is fixed: 

SDP2:   min   ( , , ),J x y
α

α                           (39) 

  subject to α ∈A .                                  (40) 

Let * * *( , , )x y b  be an optimal solution to SDP1 for a given α ∈A . Then, by the 



feasibility of * * *( , , )x y b  to SDP1, it is found that * *( , , ) 0J x y α ≤ . If * *( , )x y  is fixed, 
then the optimal scaling parameters *α  corresponding to * *( , )x y  can be obtained by 
solving SDP2. Then, we have 

* * * * *( , , ) ( , , ) 0.J x y J x yα α≤ ≤                           (41) 

This inequality implies that the optimal objective value of SDP1 with the input *α  is not 

larger than *

\ s

t t
i i

t i C C
c x

∈ℑ ∈
∑ ∑ . Thus, a sequence of monotonically decreasing objective values 

can be obtained by solving SDP1 and SDP2 in alternation. This method depends on the 

availability of an initial feasible solution ( , , )init init initx y b  to SDP1. The following is the 

procedure of their algorithm, referred to as Algorithm 5.1. 
Algorithm 5.1 

Step 1: Let ( , , )init init initx y b  be a feasible solution of problem SDP1. Set the iteration 

number 1,n ←  the current solution to 0 0 0( , , ) ( , , )init init initx y b x y b←  and the current 

objective function to 0 0

\ s

t t
i i

t i C C
f c x

∈ℑ ∈

←∑ ∑ .  

Step 2: Solve problem SDP2 with the input 1 1( , )n nx y− −  and obtain the optimal scaling 

parameters *α . Set *nα α← . 

Step 3: Solve problem SDP1 with the input nα  and obtain the optimal solution 
* * *( , , )x y b . Set *nx x← , *ny y←  and 

\ s

n t t n
i i

t i C C
f c x

∈ℑ ∈

←∑ ∑ . 

Step 4: If 1 1( ) /n n nf f f γ− −− ≤  (where γ  is a given small tolerance), then stop and 

output ( , , )n n nx y b . Otherwise, set 1n n← +  and return to step 2.  

  Zymler et al. (2013) proved that the objective values { }nf  generated by Algorithm 

5.1 is monotonically decreasing sequence if ( , , )init init initx y b  is feasible to SDP1 for some 

α ∈A . They also proved that if the feasible region of constraints (2)-(12) is bounded, 

then the sequence ( , )n nx y  is bounded while the sequence { }nf  converges to a finite 

limit. Zymler et al. (2013) indicated that Algorithm 5.1 does not necessarily obtain a 
global optimal solution to the SDP and SOCP models. However, the methods can perform 
well in practice. In the next section, we will confirm this point by presenting the 
numerical results. 



6 Numerical example 
The purpose of presenting the numerical example in this section is twofold: 1) to 
demonstrate the effectiveness of the Worst-Case CVaR approximation for distributionally 
robust joint chance constraints; and 2) to illustrate the advantage of the Worst-Case CVaR 
approximation approach by comparing with the two other approximation approaches. 
Under the assumption that the mean and variance of the uncertain demands is known, an 
example network shown in Figure 1 is selected to test the aforementioned approaches. 
This cell network is composed of 68 cells and 74 cell connectors. There are three source 
cells (cells 1, 2, 3) and one sink cell (cell 68).  The cells in the center represent the 
freeway, while the outer and cross cells represent arterial streets. Except the sink cell (cell 
68), all cells are considered for capacity expansion. The characteristics of the cells in the 
test network are shown in Table 2. 

 
Fig. 1 Test network (Lin et al. 2011) 

We assume that the length of a time interval is 1s, the planning horizon is 30s and M = 

10. The parameters  and  are assumed to be unity, i.e.,  

The mean and variance of the demand are assumed to equal four and one, respectively, 

i.e., . All second-order cone programs and 

semidefinite programs arising from the approximation by Chen et al. (2010) and the 
Worst-Case CVaR approximation were, respectively, solved by using Matlab 7.11 with 



the SeDuMi solver (Sturm 1999) and the YALMIP interface (Löfberg 2004), and the 
linear programs arising from the Bonferroni approximation was solved by Matlab 7.11 
with the GLPK solver and the YALMIP interface (Löfberg 2004). 

 
Table 2 Characteristic of the cells 

Cell t
iN   t

iQ   
iχ   ˆix  

1, 3 ∞  ∞  1 0 

2 ∞  12 1 0 

68 ∞  ∞  1 0 

Freeway 
Cell  

20 12 1 0 

Arterial 
Cell 

10 8 1 0 

 
 Table 3 presents the optimal budget allocations obtained by solving the CTM-based 
SONDP under the three approximations when 90%ε =  and 50B = . This table clearly 
shows that the total budget is allocated to each cell non-uniformly no matter which 
approximation method is used.  Table 4 describes the optimal objective values and the 
percentage improvements of the objective values obtained by the SDP approximation 
relative to the corresponding values obtained by the LP and SOCP approximations under 
different confidence levels and 50B = . As expected, the optimal objective value 
obtained by each of the three approximations increases with ε  because the joint chance 
constraint becomes more conservative as ε  grows. Moreover, the percentage 
improvements of the objective values obtained by the SDP approximation relative to 
those obtained by the LP and SOCP approximations increases with the confidence level 
ε . When the confidence level ε  approaches 99%, the SDP approximation outperforms 
the LP approximation by up to 87% and the SOCP approximation by up to 0.65%. 
Moreover, for the same conference level, the SDP approximation yields a smaller optimal 
objective value than the SOCP approximation, which in turns yields a smaller optimal 
objective value than the LP approximation. 
 Table 4 also reports the runtimes required by solving the mathematical programs 
derived from different approximations. It is obvious to notice that for a fixed conference 
level, the runtime for solving a linear programs is shorter than that for solving the 
corresponding second-order cone program, which in turn is shorter than that for solving 
the corresponding semidefinite program. It is because the problem structure of an LP 
problem is simpler than that of the corresponding SOCP problem, which is in turn 
simpler than and that of the corresponding SDP problem. This and the previous 
observations imply that the improved solution quality offered by the SDP approximation 
is obtained at the cost of longer computing time.  
 Table 5 shows the optimal objective values and the percentage improvements of the 
objective values obtained by the SDP approximation relative to the corresponding values 
obtained by the LP and SOCP approximations under the different budgets and 0.9ε = . It 



can be seen that the optimal objective value obtained by each of the three approximations 
decreases when the budget increases. It is because the feasible region of the CTM-based 
SONDP becomes larger as B  grows. The two percentage improvements also increase 
when the budget B  increases. When the budget B  approaches 70, the SDP 
approximation outperforms the LP approximation by up to 85%, and the SOCP 
approximation by up to 0.27%.  
 
Table 3 Optimal budget allocations to cells obtained by the CTM-based SONDP under 
the LP, SOCP, and SDP approximations when 90%ε =  and 50B = . 
 Cell number  LP  SOCP  SDP  

7 0 1.156 1.167 

9 0 1.156 1.167 

10 0 1.156 1.167 

11 5.556 5.170 5.167 

14 5.556 5.170 5.167 

26 5.556 5.170 5.167 

33 5.556 5.170 5.167 

39 5.556 5.170 5.167 

48 5.556 5.170 5.167 

52 5.556 5.170 5.167 

61 5.556 5.170 5.167 

64 5.556 5.170 5.167 

  

Table 4 The optimal objective values of the CTM-based SONDP under the LP, SOCP, 
and SDP approximations when 50B =  

ε  

(%) 

Optimal objective value LP SDP
LP
−  

(%) 

SOCP SDP
SOCP

−  

(%) 

Runtime 

LP SOCP SDP LP SOCP SDP 

50 31521.5361 6540.5259 6530.0127 79.28 0.1673 352.6791 764.3291 801.1855 

60 34836.3225 6877.0969 6865.3323 80.29 0.1710 348.9165 776.4275 827.3901 

70 39690.8952 7333.1484 7319.3851 81.56 0.1877 360.7921 791.4784 863.2471 

80 47829.9268 8125.9495 8107.3500 83.05 0.2289 367.2473 805.2914 882.9713 

90 66191.1903 10071.9018 10044.3549 84.83 0.2737 373.9417 823.3451 905.4637 

95 92147.7268 12798.5914 12759.6528 86.15 0.3042 380.6743 834.9186 917.7215 

99 201660.0676 24521.7782 24361.4188 87.92 0.6539 392.8234 855.1674 976.2471 

 



Table 5 The optimal objective values of the CTM-based SONDP under the LP, SOCP, 
and SDP approximations when 90%ε =   

B  

Optimal objective value LP SDP
LP
−  

(%) 

SOCP SDP
SOCP

−  

(%) 

Runtime 

LP SOCP SDP LP SOCP SDP 

10 66831.1903 10631.1680 10603.0215 84.13 0.2648 350.8145 712.2156 767.1963 

20 66671.1903 10472.8361 10444.7993 84.33 0.2677 374.9885 724.4762 771.8935 

30 66511.1903 10321.7046 10293.6882 84.52 0.2714 383.2667 735.6738 782.4568 

40 66351.1903 10185.2395 10157.6882 84.69 0.2705 397.2521 750.2473 789.3479 

50 66191.1903 10071.9242 10044.3549 84.83 0.2737 412.9876 776.5429 801.1855 

60 66031.1903 9958.5447 9931.0215 84.96 0.2764 434.3687 789.4792 824.5733 

70 65871.1903 9845.2362 9817.6882 85.10 0.2798 474.2434 803.3567 851.8935 

 
To compare the operating behaviors of the optimal solutions for the three approximations, 
we randomly generated 100 travel demand vectors, in which the demand of each O-D pair is 

uniform distributed between 4 3−  and 4 3+ . For each random demand vector, the 

optimal objective values associated with the optimal capacity expansion plans for the three 
approximations were computed. The mean, standard deviation, and maximum values of the 
optimal objective values were generated from the simulation experiment.  The results are 
shown and compared in Table 6. It can be seen that the mean, standard deviation, and 
maximum of the optimal objective values obtained by the Bonferroni (LP) approximation 
remain unchanged for all confidence levels. This is because that the optimal solutions of 
Bonferroni approximation are the same under the different confidence levels. Moreover, the 
mean, standard deviation, and maximum of the optimal objective values obtained by the 
approximation by Chen et al. (2010) (i.e., the SOCP approximation) and the Worst-Case 
CVaR approximation (i.e., the SDP approximation) increase with the confidence level ε . 
This is also because that the joint chance constraints become less restrictive as ε  grows. 
However, the mean, standard deviation, and maximum of the optimal objective value under 
the Worst-Case CVaR approximation outperforms the two other approximations. It is 
continuing to show that the Worst-Case CVaR approximation is less conservative. In 
addition, when the confidence level ε  increases to a threshold level, the three 
approximations yield the same mean, standard deviation and maximum of the optimal 
objective because the optimal solutions for the three approximations are equal. 
 

Table 6 Simulation results of numerical example 

ε  
Mean Standard Deviation Maximum 

LP SOCP SDP LP SOCP SDP LP SOCP SDP 

10B =           
0.5 5229.6119 5224.0954 5223.8976 153.6227 153.1981 153.1940 5606.2974 5599.8704 5599.6184 



0.6 5229.6119 5225.8138 5224.8386 153.6227 153.2804 153.2760 5606.2974 5602.1704 5601.1064 
0.7 5229.6119 5228.7442 5228.1800 153.6227 153.3224 155.3129 5606.2974 5604.4764 5602.3707 
0.8 5229.6119 5229.6119 5229.6119 153.6227 153.6227 153.6227 5606.2974 5606.2974 5606.2974 
0.9 5229.6119 5229.6119 5229.6119 153.6227 153.6227 153.6227 5606.2974 5606.2974 5606.2974 

0.95 5229.6119 5229.6119 5229.6119 153.6227 153.6227 153.6227 5606.2974 5606.2974 5606.2974 
0.99 5229.6119 5229.6119 5229.6119 153.6227 153.6227 153.6227 5606.2974 5606.2974 5606.2974 

20B =           
0.5 5210.0316 5200.4858 5200.3416 151.3377 149.8323 149.8181 5582.9654 5569.8614 5569.6304 
0.6 5210.0316 5203.2916 5202.0731 151.3377 150.2773 150.2498 5582.9654 5575.1294 5574.8434 

0.7 5210.0316 5206.8949 5205.9276 151.3377 150.7059 150.6093 5582.9654 5580.5474 5579.5894 

0.8 5210.0316 5209.5312 5208.5483 151.3377 151.3260 151.3159 5582.9654 5582.7604 5581.7864 
0.9 5210.0316 5210.0316 5210.0316 151.3377 151.3377 151.3377 5582.9654 5582.9654 5582.9654 
0.95 5210.0316 5210.0316 5210.0316 151.3377 151.3377 151.3377 5582.9654 5582.9654 5582.9654 
0.99 5210.0316 5210.0316 5210.0316 151.3377 151.3377 151.3377 5582.9654 5582.9654 5582.9654 

30B =           
0.5 5193.5155 5182.6046 5182.5076 148.5266 146.1546 146.1342 5560.1585 5542.8488 5542.6398 
0.6 5193.5155 5190.4235 5190.2698 148.5266 147.8264 147.7942 5560.1585 5556.6945 5556.4475 
0.7 5193.5155 5191.2481 5190.3737 148.5266 147.9351 147.8379 5560.1585 5558.0589 5557.0989 
0.8 5193.5155 5192.2688 5191.2938 148.5266 148.1455 148.0500 5560.1585 5559.3389 5558.3789 

0.9 5193.5155 5193.5155 5193.5155 148.5266 148.5266 148.5266 5560.1585 5560.1585 5560.1585 
0.95 5193.5155 5193.5155 5193.5155 148.5266 148.5266 148.5266 5560.1585 5560.1585 5560.1585 
0.99 5193.5155 5193.5155 5193.5155 148.5266 148.5266 148.5266 5560.1585 5560.1585 5560.1585 

40B =           
0.5 5180.8740 5172.0522 5172.0101 145.7070 142.9784 142.9637 5549.7958 5528.7775 5528.7295 
0.6 5180.8740 5176.0302 5175.9367 145.7070 144.3672 144.3426 5549.7958 5532.8504 5532.7384 
0.7 5180.8740 5177.4635 5176.2974 145.7070 144.6887 144.6515 5549.7958 5540.5148 5539.2448 
0.8 5180.8740 5178.5191 5177.5539 145.7070 145.1691 145.0771 5549.7958 5544.4868 5543.5448 
0.9 5180.8740 5180.4647 5179.4983 145.7070 145.6553 145.3628 5549.7958 5549.4688 5548.5480 

0.95 5180.8740 5180.8740 5180.8740 145.7070 145.7070 145.7070 5549.7958 5549.7958 5549.7958 
0.99 5180.8740 5180.8740 5180.8740 145.7070 145.7070 145.7070 5549.7958 5549.7958 5549.7958 

50B =           
0.5 5172.7950 5151.2526 5150.9999 143.2113 140.3553 140.5882 5529.3615 5524.4337 5523.5655 
0.6 5172.7950 5168.3943 5168.3544 143.2113 141.5858 141.5655 5529.3615 5526.1495 5526.0975 
0.7 5172.7950 5170.1610 5169.8288 143.2113 142.4167 142.0926 5529.3615 5526.3135 5526.2495 
0.8 5172.7950 5171.1289 5170.8262 143.2113 142.9165 142.7945 5529.3615 5527.4928 5526.5288 
0.9 5172.7950 5172.3447 5171.3646 143.2113 143.0314 142.9383 5529.3615 5528.9916 5528.0096 

0.95 5172.7950 5172.7950 5172.7950 143.2113 143.2113 143.2113 5529.3615 5529.3615 5529.3615 
0.99 5172.7950 5172.7950 5172.7950 143.2113 143.2113 143.2113 5529.3615 5529.3615 5529.3615 

 
To illustrate the effect of the means and standard deviations of the uncertain demand on 

the optimal objective function values under the three approximations, Figure 2 is plotted. The 
mean and standard deviation of the uncertain demand were set in the range between 4 and 40 
and between 1 and 10, respectively and 50B =  and 90%ε = . Figure 2 clearly depicts the 



sensitivity of the optimal objective values obtained under the three approximations to the 

changes in the mean µ  and the standard deviation σ . In particular, the optimal objective 

values obtained by the three approximations are all in increasing trend with the mean µ  

and the standard deviation σ . However, the optimal objective values under the Worst-Case 
CVaR approximation are smaller than the two other approximations under various 

combinations of the mean µ  and standard deviation σ .  
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(a) LP approximation                                         b)  SOCP approximation  
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c)   SDP approximation 

Fig 2 The optimal objective values of the CTM-based SONDP under the LP, SOCP, and 
SDP approximations under various combinations of the mean and standard deviation of the 
demand when 50B =  and 90%ε = . 

Figure 3 further illustrates the percentage improvements of the objective values 
obtained by the SDP approximation relative to those by the LP and SOCP approximations in 
the range of the mean and standard deviation used in Figure 2. The percentage improvements 
increase with an increasing value of the standard deviation σ , but decrease with an 

increasing value of the mean µ . This implies that a larger standard deviation yields a larger 

percentage improvement of the SDP approximation. Thus, the results precisely show that the 



Worst-Case CVaR approximation is more robust and less conservative. 
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              a)  SDP vs LP                             b) SDP vs SOCP   
Fig 3 The percentage improvements of the optimal objective values obtained by the SDP 
approximation relative to those obtained by the LP and SOCP approximations when 50B =  
and 90%ε = . 

6 Conclusions and future research 
This paper applies the approximation approach for distributionally robust joint chance 
constraints proposed by Zymler et al. (2013) to the CTM-based SONDP, in which the 
flow conservation constraint may be violated within a given confidence level due to 
uncertain demand. Under the assumption that the only partial distribution information, 
i.e., the mean and variance of the demand, are known, the distributionally robust joint 
chance constraint of the CTM-based SONDP is approximated by the Worst-Case CVaR 
constraint, and then reformulated the resultant constraint into the SDP constraint by using 
the theory of moment problems and conic duality.  This paper also presents the two 
other benchmark approximation approaches and compared the Worst-Case CVaR 
approximation approach with them. The numerical experiment shows that the Worst-Case 
CVaR approximation approach outperforms the other two approximation approaches in 
terms of solution quality.  

There are some possible further research directions. Firstly, the classic cell-based 
SONDP exists holding-back phenomenon (Doan and Ukkusuri, 2012) which may be 
unrealistic. The Worst-Case CVaR approximation can be applied to the alternative 
deterministic mathematical formulation (Zhu and Ukkusuri, 2013) to overcome this 
problem. Secondly, the classic cell-based SONDP only considers demand uncertainty. 
One possible extension is to replace the CTM by the stochastic CTM (Sumalee et al. 
2011) to consider both demand and supply uncertainties and to develop an approximation 
approach. Thirdly, the Worst-Case CVaR approximation has only been applied to the 
studied SONDP, which is a single-level optimization problem. How to apply Worst-Case 
CVaR approximation to the dynamic user equilibrium NDP is another challenging 
research direction because the problem is bi-level by nature. Lastly, the assumption that 
the mean and variance of the demand are known can be relaxed. The approach proposed 
by Delage and Ye (2010) may be used to solve the CTM-based NDP when the mean and 
variance of the demand are unknown but bounded. 
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