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Time-Dependent Discrete Road Network Design with both 

Tactical and Strategic Decisions 

 

 

 

Abstract 

This paper aims to model and investigate the discrete urban road network design problem, using a 

multi-objective time-dependent decision making approach. Given a base network made up with 

two-way links, candidate link expansion projects, and candidate link construction projects, the 

problem determines the optimal combination of one-way and two-way links, the optimal 

selection of capacity expansion projects, and the optimal lane allocations on two-way links over a 

dual time scale. The problem considers both the total travel time and the total CO emissions as 

the two objective function measures. The problem is modeled using a time-dependent approach 

which considers a planning horizon of multiple years and both morning and evening peaks. 

Under this approach, the model allows determining the sequence of link construction, the 

expansion projects over a predetermined planning horizon, the configuration of street 

orientations, and the lane allocations for morning and evening peaks in each year of the planning 

horizon. This model is formulated as a mixed-integer programming problem with mathematical 

equilibrium constraints. In this regards, two multi-objective metaheuristics, including a modified 

non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective B-cell algorithm, are 

proposed to solve the above-mentioned problem. Computational results for various test networks 

are also presented in this paper. 

 

Keywords: Urban road network design; Time-dependent; Dual time scale; Multi-objective; 

Evolutionary metaheuristics; Vehicle emissions 

 

1. Introduction 

The Network Design Problem or NDP in short refers to the decision making problem that 

involves the determination of the optimal planning and the management decisions for transport 

networks. The NDP was extensively reviewed by several authors (e.g., Yang and Bell 1998, 

Farahani et al. 2013).  

The NDP ideally fits to the class of Stackelberg (or leader-follower) games. In the NDP, the 

authority is the leader in the game and responsible to plan and manage the road network, while 

the network users are the followers and they respond to the decision made by the leader. The 
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problem can be expressed mathematically as a bi-level-programming problem, where the upper 

level problem describes the decision-making problem of the leader who takes into account the 

user response, and the lower level problem describes the user response to network design 

scenarios. The problem can be reformulated into a single-level problem by expressing the lower 

level problem as the constraints. 

More than one way can be used to classify the NDP. Magnanti and Wong (1984) proposed 

that the NDP could be classified into strategic (e.g., street expansions or constructions), tactical 

(e.g., street orientations and lane allocations), and operational (e.g., signal setting and toll setting) 

decision levels, in which the strategic, tactical, and operational levels deal with the long-term, 

mid-term, and short-term issues, respectively. Another way to classify the NDP is based on the 

decisions made for network topology and network parameters. Under this classification, there are 

three forms of the problem, namely the Continuous Network Design Problem (CNDP), the 

Discrete Network Design Problem (DNDP), and the Mixed Network Design Problem (MNDP). 

The CNDP (e.g., Meng and Yang, 2002) takes the network topology as a given, and determines 

the network parameters (e.g., signal timing setting, toll setting, and capacity expansion) that only 

involves continuous decision variables. The DNDP (e.g., Drezner and Wesolowsky, 1997) 

considers the network topology (e.g., street constructions and street orientations) and only 

involves discrete design decision variables. The MNDP (e.g., Cantarella and Vitetta, 2006) deals 

with the network topology and parameterization and involves both discrete and continuous 

network design variables.  

An observation found in the current NDP literature is that the combination of two or more 

strategic and tactical decisions has been addressed in a number of DNDPs and MNDPs (e.g., 

Cantarella and Vitetta, 2006; Miandoabchi and Farahani, 2011; Miandoabchi et al., 2012, 2013). 

These decisions have been modeled in the form of conventional single time period models. 

However, the nature of strategic decisions is different from tactical ones. The strategic decisions 

are of long-term nature and are implemented in a period of 10 years or even longer. In fact, the 

set of decisions such as new street construction and street expansion projects are usually planned 

to be implemented in an interval of many years rather than a single year in the future. On the 

other hand, tactical decisions such as street orientations and lane allocations are mid-term 

decisions which are usually made and implemented for a short period of time (e.g., one year). 

Therefore, these decisions could be made more than one time within a period of multiple years. 

Thus, a more desirable approach to model such combination of decisions is to model them in a 

planning horizon with multiple years or periods (i.e., using the time-dependent approach) which 

allows considering of both long-term and mid-term decisions in a single problem. Nevertheless, 
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the time-dependent approach has never been adopted for combined strategic and tactical 

decisions. 

The second observation on the current NDP literature is that most of the NDP studies consider 

a single demand matrix as the input to the problem which is usually based on the peak hour 

estimation. However, it is necessary to identify the morning and the evening peak demand 

patterns, in particular for work trips, because most of the work trips are designated in the central 

business district during the morning (AM) peak period while most of these trips are leaving the 

central business district during the evening (PM) peak period. Moreover, different demand 

patterns imply different lane allocations. Thus, the lane allocations may need to be changed for 

both the morning and evening peak periods. This concept has only been addressed in a few 

studies (e.g., Cantarella and Vitetta, 2006). 

The third observation on the NDP literature is that until nowadays, most of the papers only 

investigated the single-objective NDPs, and only a few studies have investigated the multi-

objective NDPs (e.g., Friesz et al., 1993; Meng and Yang, 2002; Cantarella and Vitetta, 2006). 

Apparently, the nature of the urban transportation related problems is multi-objective which 

covers a wide range of evaluation criteria. It is therefore essential to consider multiple objectives 

in NDPs.  

The fourth observation is that the most widely used objective functions in single and multiple 

objective NDPs are total travel time/cost and very few of multi-objective NDPs with strategic and 

tactical decisions consider vehicle emissions (e.g., Cantarella and Vitetta, 2006, Yin and 

Lawphongpanich, 2006). In fact, vehicle emissions are harmful to human health (Szeto et al., 

2012). Moreover, minimizing travel time is not equivalent to minimizing vehicle emissions 

because the emission rate (such as the CO emission rate) changes nonlinearly and non-

monotonically with the increase in speed and hence travel time. Other than travel time/cost, 

vehicle emissions should be minimized.  

In the light of the above observations, this study addresses the combination of strategic and 

tactical decisions within a multi-objective time-dependent framework of a discrete network 

design problem. Specifically, this paper considers the following decisions: 

(1) adding lanes to the existing network streets,  

(2) constructing new streets, 

(3) alteration of some two-way streets to one-way streets, and 

(4) lane allocations in two-way streets. 

The first two are the strategic decisions and the last two are tactical decisions in the NDP 

context. Based on our observations as discussed above, a model with the combination of the four 
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decisions using the time-dependent approach is conducted. In this problem, strategic decisions are 

sequenced to be implemented within multiple years, where tactical decisions are made and 

implemented once for each year. In other words, the values of tactical decision variables are 

recomputed at the beginning of each year and remained fixed within that year. Also, this problem 

considers both the AM and PM peak period demand matrices, which implies that the two patterns 

of tactical decision scenarios are designed for each year. This problem is more realistic, but has a 

higher degree of complexity as compared to the other similar problems in the literature which 

arises from the inclusion of various dimensions in the problem. Two objectives are considered for 

the problem; 1) the minimization of the total travel time and 2) the minimization of total CO 

emissions, which is one of the major emissions indicator commonly used in the literature 

(Cantarella and Vitetta, 2006; Yin and Lawphongpanich, 2006). The first objective accounts for 

traveler’s mobility and consumer surplus, and the second accounts for the air pollution exposed 

by the community (including users and non-users).  

The problem is modeled as a mathematical program with equilibrium constraints (MPEC) 

which regarding to its nature is a bi-level Stackelberg game model. Due to the intrinsic 

complexity and non-convexity of the proposed problem, we propose two multi-objective 

evolutionary algorithms as the solution methods to obtain the set of Pareto-optimal solutions. 

They are the improved versions of NSGA-II and B-cell algorithm. In particular, we develop an 

improved version of NSGA-II algorithm that uses a different density measure and an improved 

evolution strategy, and develop a novel version of B-cell algorithm that captures the multi-

objective nature of the problem. To the best of our knowledge, this B-cell algorithm version is the 

first multi-objective version. 

Table 1 compares the attributes of the proposed problem with the most similar previous 

studies. ANN stands for Artificial Neural Network. The DNDP-T, CNDP-T, and MNDP-T are, 

respectively, the time-dependent extensions of the DNDP, the CNDP and the MNDP. According 

to this table, it can be concluded that the proposed problem is more complicated than the others in 

the literature because more realistic decisions and objectives are considered.  
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Table 1. Comparison of the proposed problems in this study with the previous studies 
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This paper DNDP-T -      -   -  

Directly solving 

lower level 

problem 

Miandoabchi 

et al. (2013) 
DNDP  -     - - - 

Reserve 

capacity, two 

travel time 

related functions 

- 

Directly  

solving 

lower level 

problems 

Miandoabchi 

et al. (2012) 

Bi-modal 

DNDP 
 -     

Allocating  

bus lanes 
- - 

Total user 

benefit, Bus 

demand share 

- 

Directly  

solving 

lower level 

problems 

Miandoabchi 

and Farahani 

(2011) 

DNDP  -    - - - - 
Reserve 

capacity 
- 

Directly  

solving 

lower level 

problems 

Szeto et al. 

(2010) 
DNDP-T       Toll setting   

Change in social 

surplus 
 

Directly solving 

the whole 

problem 

Lo and Szeto 

(2009) 
CNDP-T       Toll setting   

Consumer 

surplus 
 

Directly solving 

the whole 

problem 

Szeto and Lo 

(2008) 
CNDP-T       Toll setting   Social Surplus  

Directly solving 

the whole 

problem 

O’Brien and 

Szeto (2007) 
DNDP-T -  - -  - Toll setting - - 

Consumer 

surplus 
- 

Directly solving 

the whole 

problem 

Cantarella and 

Vitetta (2006) 
DNDP  -   - - 

Signal setting 

parking space 
  

Bus, pedestrian 

and people 

related 

 

Directly  

solving 

lower level 

problems 

Lo and Szeto 

(2004) 
CNDP-T -  - -  - - - - 

Consumer 

surplus 
- 

Directly solving 

the whole 

problem 

Wei and 

Schonfeld 

(1993) 

DNDP-T -  - -  - -  - - - 
Approximating 

by ANN 

 

To summarize, the paper provides contributions to the literature in three aspects:  

1. Propose a new time-dependent model for determining both strategic and tactical decisions 

in road network design, which allows more realistic modeling of the combined decisions 

with the joint consideration of the different time horizons for each decision type and 

demand patterns for both morning and evening peaks; 

2. Develop an improved version of NSGA-II algorithm which uses a different density 
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measure and an improved evolution strategy, and 

3. Develop a novel version of B-cell algorithm that captures the multi-objective nature of the 

problem. 

The remainder of the paper is organized as follows. The next section provides the problem 

definitions. Section 3 is dedicated to the notations and mathematical formulation of the proposed 

problem. Section 4 discusses the approach used to solve the problem. Section 5 depicts the 

similarities and differences between the proposed algorithms. Sections 6-7 describe the two 

proposed solution procedures separately. Section 8 contains the computational results and a 

performance comparison of the algorithms. Finally, conclusions and future research suggestions 

are made in Section 9. 

 

2. Problem Definition 

The problem under consideration is to design an urban road network, by determining the optimal 

combination of one-way and two-way links, link and lane additions, and lane allocations on two-

way links under a multi-objective decision making framework. Link expansions are considered as 

adding extra lanes to the existing road network. Indeed, this problem is a DNDP as all the 

decisions involved can be represented by discrete values. Before proceeding to the problem 

definition, it is necessary to provide a clear definition of the network elements. In this paper, all 

types of streets and roads in the network are referred to as “link”, as the counterpart of the term 

“edge” in the mathematical definition of the network. Each link consists of two “arcs” if it is two-

way and one arc if it is one-way. Each arc on a link is characterized by a set of lanes, where the 

number of lanes on an arc defines the flow capacity of the arc. If a movement is not allowed in 

one direction of a link, then no arc will be found exist in that direction.  

 

2.1. Assumptions 

The main assumptions for the studied problem are listed below: 

 A basic network with all two-way links exists in advance; 

 The travel demand matrices for the AM and PM peak periods of each year are known and 

fixed; 

 The sequences of the strategic decisions are determined over multiple year periods and the 

tactical decisions are determined for each year, one for the AM peak period and the other 

for the PM peak period; 

 A lane addition or street construction project starts and ends at the same year;  

 The user flows are assigned to the network according to the user equilibrium principle.  
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2.2. Inputs 

After describing the problem and the related assumptions, we present the following required 

inputs for the problem: 

 Estimated travel demand matrices for each year;  

 Attributes of network links such as capacities, investment costs, and travel time functions. 

 Candidate link construction projects (a link construction project refers to the construction 

of a new street between a pair of nodes in the network). The candidate link construction 

projects consist of a set of possible street constructions that has been defined by the 

network authority; 

 Candidate lane addition projects (a lane addition project refers to the construction of new 

lanes adjacent to the existing lanes on the streets). The candidate lane addition projects are 

determined by the network authority; 

 Maximum number of possible lanes added to the existing network links, which depends 

on the availability of vacant land adjacent to the existing streets, and  

 Yearly budget available for lane addition and link construction projects. 

 

2.3. Outputs 

The following are the outputs obtained from the problem: 

 The set of lane addition projects to be executed in each year, 

 The set of new street construction projects to be implemented in each year, 

 Orientation of one-way links during both AM and PM peak periods for each year, and 

 The number of lanes allocated to each direction of each of the two-way links during both 

the AM and PM peak periods for each year. 

Two objective functions are considered for the problem. The first objective function is 

defined by the conventional total travel time of all travelers. It is the sum of total travel times 

over the planning horizon. The total travel times for each year is obtained by summing up the AM 

and PM peak hour travel times of that year. The second objective function measures the total CO 

emissions over the planning horizon, which is obtained by summing up the CO emissions for 

each peak period and each planning year. 

 

3. Mathematical model and notations for DNDP-T 

The following are the notations used in the model formulation. 
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3.1. Sets 

N: set of network nodes 

A: set of existing network arcs  

A': set of candidate network arcs  

L: set of existing network links  

L': set of candidate network links  

Sl: set of arcs corresponding to existing network link l 

S'l': set of arcs corresponding to candidate network link l' 

W: set of all origin-destination (OD) pairs 

U: set of design years, τ = 1,…,Τ 

V: set of daily peak periods (i.e., morning and evening periods) 

 

3.2. Variables 

y
τ
l: number of lanes added to existing link l in year τ 

u
τ
l': binary variable, which equals 1 if link l' is built in year τ, and zero otherwise 

𝑧𝑖𝑗
𝜏𝜔: binary variable, which equals 1 if arc (i, j) is built or present (i.e., traffic is allowed in that 

direction) during daily peak period ω in year τ, and zero otherwise 

𝑘𝑖𝑗
𝜏𝜔: number of lanes allocated to arc (i, j) during daily peak period ω in year τ 

𝑥𝑖𝑗
𝜏𝜔 , 𝑥𝑖𝑗

𝜏𝜔∗: traffic flow and user equilibrium traffic flow on arc (i, j) during daily peak period ω 

in year τ 

𝑋𝑟
𝜏𝜔: user equilibrium flow on route rR during daily peak period ω in year τ 

υ
τω

: vector of design variables representing a design scenario during daily peak period ω in 

year τ, υ
τω

 = [𝑦𝑙
𝜏,𝑢𝑙′

𝜏 , 𝑧𝑖𝑗
𝜏𝜔 , 𝑥𝑖𝑗

𝜏𝜔] 

Rτ: cumulative budget that has not yet been spent in year τ and is ready to use for year τ+1 

𝛿𝑖𝑗𝑟
𝜏𝜔: binary variable during daily peak period ω in year τ, which equals 1 if route r uses arc (i, 

j), and zero otherwise 

𝜎𝑜𝑜′𝑖𝑗
𝜏𝜔 : binary variable, which equals 1 if arc (i, j) is on a route between nodes o and o' during 

daily peak period ω in year τ, and zero otherwise. 

 

3.3. Parameters 

𝑑𝑝𝑞
𝜏𝜔: travel demand between OD pair (p, q) during daily peak period ω in year τ 

D
τω 

= [dpq
τω]: matrix of travel demands during daily peak period ω in year τ 

B: annual budget available for lane addition and link construction projects 

𝑦𝑙
max: maximum allowable number of lanes added to each side of existing link l 
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λl: length of arc (i, j) 

𝐾𝑙
𝜏: current number of lanes on existing link l in year τ 

𝐾𝑙′
𝜏 : number of lanes on new link l' in year τ 

M: a large positive number 

 

3.4. Functions 

gl
τ(yl): investment cost function for the expansion of existing link l in year τ, when yl lanes are 

added to both sides of the link 

g'
l'
τ(yl'): investment cost function for the construction of new link l' in year τ 

cij
τω(kij

τω): capacity of arc (i, j) during daily peak period ω in year τ (which equals the product 

of the number of lanes kij on the arc and the capacity of a lane) 

tij
τω(xij

τω, cij
τω): travel time function of arc (i, j) during daily peak period ω in year τ 

eij
τω(tij

τω): vehicular CO emission function of arc (i, j) during daily peak period ω in year τ 

Z1: the first objective function - the total travel time over the planning horizon 

Z2: the second objective function - the total CO emissions over the planning horizon 

 

3.5. Mathematical model 

The DNDP-T is a bi-level programming problem with an upper and a lower level problem. The 

upper level problem is a bi-objective mixed integer mathematical problem, and the lower level 

problem is the conventional deterministic user equilibrium problem. Mathematically, the DNDP-

T can be formulated as follows: 

Min𝑍1 = ∑∑ ∑ 𝑡𝑖𝑗
𝜏𝜔

(𝑖,𝑗)∈𝐴∪𝐴′𝜔∈𝑉𝜏∈𝑈

𝑥𝑖𝑗
𝜏𝜔∗ (1) 

Min𝑍2 = ∑∑ ∑ 𝑒𝑖𝑗
𝜏𝜔𝑥𝑖𝑗

𝜏𝜔∗

(𝑖,𝑗)∈𝐴∪𝐴′𝜔∈𝑉𝜏∈𝑈

 (2) 

Subject to 

∑𝑔𝑙
1(𝑦𝑙) + ∑ 𝑔′𝑙′

1 (𝑦𝑙′)

𝑙′∈𝐿′𝑙∈𝐿

+ 𝑅1 = 𝐵 (3) 

∑𝑔𝑙
𝜏(𝑦𝑙) + ∑ 𝑔′𝑙′

𝜏 (𝑦𝑙′)

𝑙′∈𝐿′𝑙∈𝐿

+ 𝑅𝜏 = 𝑅𝜏−1 + 𝐵         ∀𝜏 > 1 (4) 

0 ≤ ∑𝑦𝑙
𝜏

𝜏∈𝑈

≤ 𝑦𝑙
max              ∀𝑙 ∈ 𝐿 (5) 

𝑘𝑖𝑗
𝜏𝜔 + 𝑘𝑗𝑖

𝜏𝜔 = 𝐾𝑙
𝜏 + 2𝑦𝑙

𝜏     ∀𝑙 ∈ 𝐿, ∃! (𝑖, 𝑗) ∈ 𝑆𝑙 , 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (6) 

𝑘𝑖𝑗
𝜏𝜔 + 𝑘𝑗𝑖

𝜏𝜔 = 𝐾𝑙′
𝜏 . 𝑢𝑙′

𝜏           ∀𝑙′ ∈ 𝐿′, ∃! (𝑖, 𝑗) ∈ 𝑆′𝑙′ , 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (7) 
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𝑧𝑖𝑗
𝜏𝜔 ≤ 𝑘𝑖𝑗

𝜏𝜔                             ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴′, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (8) 

𝑘𝑖𝑗
𝜏𝜔 ≤ 𝑀. 𝑧𝑖𝑗

𝜏𝜔                        ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴′, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (9) 

𝑧𝑖𝑗
𝜏𝜔 + 𝑧𝑗𝑖

𝜏𝜔 ≥ 1                     ∀(𝑖, 𝑗) ∈ 𝐴, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (10) 

𝑧𝑖𝑗
𝜏𝜔 + 𝑧𝑗𝑖

𝜏𝜔 ≥ 𝑢𝑙′
𝜏                    ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑙′ ∈ 𝐿′, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (11) 

𝑧𝑖𝑗
𝜏𝜔 + 𝑧𝑗𝑖

𝜏𝜔 ≤ 𝑀. 𝑢𝑙′
𝜏              ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑙′ ∈ 𝐿′, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (12) 

𝐾𝑙
𝜏+1 = 𝐾𝑙

𝜏 + 2𝑦𝑙
𝜏                ∀𝑙 ∈ 𝐿, 𝜏 ∈ 𝑈, 𝜏 > 1 (13) 

𝑢𝑙′
𝜏+1 ≥ 𝑢𝑙′

𝜏                                ∀𝑙′ ∈ 𝐿′, 𝜏 ∈ 𝑈, 𝜏 > 1 (14) 

∑ 𝜎𝑝𝑞𝑝𝑗
𝜏𝜔

(𝑝,𝑗)∈𝐴∪𝐴′

= 1     ∀(𝑝, 𝑞) ∈ 𝑊, 𝜏 ∈ 𝑈, 𝜔 ∈ 𝑉 (15) 

∑ 𝜎𝑝𝑞𝑖𝑞
𝜏𝜔

(𝑖,𝑞)∈𝐴∪𝐴′

= 1     ∀(𝑝, 𝑞) ∈ 𝑊, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (16) 

∑ 𝜎𝑝𝑞𝑖𝑗
𝜏𝜔

(𝑖,𝑗)∈𝐴∪𝐴′,𝑖≠𝑗

= ∑ 𝜎𝑝𝑞𝑗𝑞
𝜏𝜔

(𝑗,𝑞)∈𝐴∪𝐴′,𝑗≠𝑞

     ∀𝑗 ∈ 𝑁, (𝑝, 𝑞) ∈ 𝑊, 𝜏 ∈ 𝑈, 𝜔 ∈ 𝑉 (17) 

𝜎𝑝𝑞𝑖𝑗
𝜏𝜔 ≤ 𝑀. 𝑧𝑖𝑗

𝜏𝜔       ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴′, (𝑝, 𝑞) ∈ 𝑊, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (18) 

𝑘𝑖𝑗
𝜏𝜔, 𝑦𝑙

𝜏 ≥ 0,  are integers       ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴′, 𝑙 ∈ 𝐿, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (19) 

𝑧𝑖𝑗
𝜏𝜔 , 𝑢𝑙′

𝜏 , 𝜎𝑝𝑞𝑖𝑗
𝜏𝜔 ∈ {0,1}               ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴′, (𝑝, 𝑞) ∈ 𝑊, 𝑙′ ∈ 𝐿′, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (20) 

∑ 𝑡𝑖𝑗
𝜏𝜔(𝑥𝑖𝑗

𝜏𝜔∗, 𝑐𝑖𝑗
𝜏𝜔). (𝑥𝑖𝑗

𝜏𝜔 − 𝑥𝑖𝑗
𝜏𝜔∗)

(𝑖,𝑗)∈𝐴∪𝐴′

≥ 0      ∀𝑥𝑖𝑗
𝜏𝜔 ∈ 𝛺, 𝜏 ∈ 𝑈,𝜔 ∈ 𝑉 (21) 

𝛺 =

{
  
 

  
 

𝑥𝑖𝑗
𝜏𝜔

|

|

∑ 𝑋𝑟
𝜏𝜔

𝑟∈𝑅𝑝𝑞
𝜏𝜔

= 𝑑𝑝𝑞
𝜏𝜔     ∀(𝑝, 𝑞) ∈ 𝑊; 𝜏 ∈ 𝑈;𝜔 ∈ 𝑉;

𝑥𝑖𝑗
𝜏𝜔 = ∑ ∑ 𝑋𝑟

𝜏𝜔. 𝛿𝑖𝑗𝑟
𝜏𝜔

𝑟∈𝑅𝑝𝑞
𝜏𝜔

  ∀(𝑖, 𝑗) ∈ 𝐴 ∪ 𝐴′

(𝑝,𝑞)∈𝑊

; 𝜏 ∈ 𝑈;𝜔 ∈ 𝑉;

𝑋𝑟
𝜏𝜔 ≥ 0 }

  
 

  
 

 (22) 

 

The model considers two objectives: the first objective is to minimize the total travel time and 

the second objective is to minimize total CO emissions. Constraints (3)-(4) impose a yearly 

budget limit on the sum of construction costs during each design year. It is assumed that the 

unspent budget of each year will be available to be spent in the next years. Thus, except for the 

base year in which only yearly budget is available, for other years, the cumulative budget left 

after a year is added to the yearly budget of the following year. Constraint (5) implies that the 

total number of lanes to be added on each side of an existing link during the design years is 

restricted by a maximum number of lanes allowed to be built. Constraints (6)-(7) allocate the total 

number of lanes on each existing link and new link for two daily peak periods in each year, in 

which the numbers of lanes added to both directions are the same. Note that ∃! means ‘there 

exists exactly one’ and in these constraints, for any l or l', there is exactly one pair of nodes (i, j) 

corresponding to l or l'. Constraints (8)-(9) avoid allocating lanes to the arcs that are not present 
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in the network. Constraint (10) ensures that traffic is not blocked on both directions of the 

existing links. Constraints (11)-(12) assure that traffic is not blocked on both directions of the 

new links. Constraint (13) implies the number of links on an existing link in year τ+1 is equal to 

that in year τ plus the number of lanes added in year τ. Constraint (14) ensures that if a new link is 

added in year τ, it remains available in the following years. 

The set of constraints (15)-(18) ensures the connectivity of the design scenario, by ensuring 

the existence of a route between each OD pair in the network for each peak hour period and each 

year. Constraints (15) and (16) ensure that the first and the last arcs of the route start from and 

ends at the origin and destination nodes, respectively. Constraint (17) defines the inner parts of 

the route, by finding a sequence of connected arcs between the first and last arcs. Constraint (18) 

ensures that no route can pass a non-existing arc. For a feasible design scenario, constraints (15)-

(18) must be satisfied for all OD pairs, both peak hour periods, and all years.  

Constraints (19)-(20) define the variable domains. Constraints (21)-(22) are the variational 

inequalities formulations for the user equilibrium traffic assignment problems.  

The functional form of eij
τω  in (2) is adopted from the literature (e.g., Yin and 

Lawphongpanich, 2006): 

𝑒𝑖𝑗
𝜏𝜔(𝑡𝑖𝑗

𝜏𝜔) = 0.2038. 𝑡𝑖𝑗
𝜏𝜔. 𝑒0.7962.(𝜆𝑖𝑗/𝑡𝑖𝑗

𝜏𝜔) (23) 

Equation (23) is equivalent to the function used in TRANSYT-7F (e.g., Rilett and Benedek, 

1994), but the coefficients are computed in kilometer and minutes instead of feet and seconds. 

Vehicular CO emissions associated with a particular arc (i, j) with the length λij is in grams per 

vehicle and the total CO emissions is in grams per hour. 

 

4. The Solution Approach and the Proposed Algorithms 

We develop efficient solution methods to find a good and nearly global optimal solution rather 

than an exact and global optimal solution for the present DNDP-T mathematical model due to the 

following reasons: 

 Bi-level programming problems in general are NP-hard. A study conducted by Ben-Ayed et 

al. (1988) showed that even a simple linear bi-level programming problem is still NP-hard;  

 Many bi-level programming problems are non-convex. Even if both of the upper and lower 

level problems are convex, it is not guaranteed that the whole problem is convex;  

 Though the Branch and Bound algorithms or the enumerative algorithms can be applied to get 

global optimal solutions to the two problems with small size networks, they are not able to 

solve real size network problems, and  

 There has been an increasing interest recently in solving NDPs by metaheuristics.  
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In particular, two multi-objective population-based metaheuristics are proposed to solve the 

problem: an improved version of Non-dominated Sorting Genetic Algorithm (NSGA-II) and a 

new multi-objective version B-cell Algorithm (mBCA). To the best of our knowledge, the B-cell 

algorithm has never been applied to solve the urban transportation network design problems. The 

proposed versions of both algorithms are novel. The proposed NSGA-II employs a new solution 

density measure, and the mBCA is novel in the sense that it is the first multi-objective version for 

this algorithm and it consists of novel features compared with the original one. In the following 

sections, the similarities and comparisons of the two algorithms are presented in Section 5 and the 

illustrations on the two proposed algorithms are detailed in Sections 6-8. 

 

5. Comparisons of the Proposed Algorithms 

The two algorithms are similar in the view of checking for the strong connectivity of networks, 

obtaining the objective function values, initial population generation, and Pareto-optimal solution 

set generation. 

 

5.1. Checking the Feasibility of Solutions 

A solution is considered feasible if it satisfies two criteria. The first criterion is the budget 

feasibility of the solution which means that its expansion and construction project execution plan 

satisfies constraints (3)-(4). The second criterion is the strong connectivity of OD pairs in all of 

its design scenarios for each peak period and each design year. A solution is considered to be 

infeasible in terms of connectivity if at least one OD pair of at least one of the 2T networks is 

disconnected. The strong connectivity of each network is checked in two stages: 

Stage 1: 

 Perform test 1: Check if all nodes have at least one outgoing and one incoming lanes 

(necessary condition of network connectivity). 

Stage 2: 

 If the solution passes test 1, perform test 2: check if there is a (shortest) path between each 

OD pair using Dijkstra's algorithm; 

 If the solution passes test 2, accept the solution; otherwise reject the solution. 

Indeed, if at least one of the OD pairs is disconnected, i.e., no shortest path can be found between 

them, then the created network is rejected because of its disconnectedness. The two phase 

connectivity checking helps to avoid the unnecessary use of the shortest path algorithm which is 

time consuming for medium and large sized networks.  

If the solution is proved to be feasible, the algorithms will proceed to solve the lower level 
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problem to obtain the user equilibrium flows and then the objective function values. 

 

5.2. Obtaining the Objective Function Values 

Calculating the objective function values requires solving the deterministic user equilibrium 

lower level problems. Many studies on NDPs are single time period problems which require 

solving one to two lower level problems. However, for time-dependent NDPs such as the 

problem under this study, the number of lower level problems tends to be very large depending 

on the specific dimensions of the problem.  

For the problem in this paper, there are two time dimensions, namely daily peak and year. For 

each solution, it is required that the deterministic user equilibrium problem is solved for each 

design scenario in each year and for each peak period. This implies that 2T lower level problems 

are solved for each solution. This can be done by separately solving the user equilibrium traffic 

assignment problem (21)-(22) for a specific design scenario. The traffic assignment problem 

(21)-(22) is in fact a nonlinear convex problem which can be solved by many different methods, 

such as a common convex-combination-based algorithm called the Frank-Wolfe (FW) method 

(see Sheffi (1985) for the details). It should be noted that although the path flow variables are 

used in the lower level problem (21)-(22), the FW method is a link-based algorithm which is 

based on finding the shortest path between OD pairs. The use of the path flow variables in the 

lower level problem is adopted in this paper, and is for demonstration and modeling purposes 

only. 

 

5.3. Initial Population Generation 

Initial population members are constructed randomly based on a heuristic procedure. The 

procedure consists of two phases: 1) In the first phase, a feasible plan of expansion and 

construction projects is generated. 2) In the second phase, with the total number of lanes on each 

link, a random but feasible lane allocation scenario is built for both AM and PM peak periods and 

each design year τ. The initial solution generation procedure is described below:  

Phase 1 (Project planning):  

- Select the possible expansion and construction projects randomly, until the construction 

cost reaches the defined budget for the whole planning horizon, i.e., 𝐵 ∙ 𝑇. 

- Execute a random plan for the implementation of the projects: 

o Define all possible combinations of implementation years for the selected set of 

projects. 

o Select a set of combinations randomly (e.g., 100 combinations) and check their 
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budget feasibility according to constraints (3)-(4). 

o Select a random implementation plan from the feasible options. 

o Construct new links and expand existing links in particular year according the 

selected plan. 

Phase 2 (Lane allocation): 

- From the available network lanes, allocate the minimum number of lanes to ensure the 

presence of at least one outgoing and one incoming lanes for all nodes: 

 For each node, add a lane with a random direction on one of its connected links. 

 For nodes with zero incoming lanes, add an incoming lane on one of its 

connected links. 

 For nodes with zero outgoing lanes, add an outgoing lane on one of its 

connected links. 

- Randomly allocate the remaining lanes to each side of their corresponding link. 

The lane allocation procedure can help avoid generating a large number of infeasible solutions 

and save computational time. Any generated solution which has at least one disconnected 

network is discarded. Then, the procedure is repeated until the desired number of solutions is 

generated. 

 

5.4. Pareto-Optimal Solution Set Generation 

Because the two developed algorithms are multi-objective, it is required to maintain a set of 

Pareto-optimal solutions during their solution procedure. Each algorithm handles the Pareto-

optimal solutions in different ways. For example, NSGA-II maintains the Pareto-optimal 

solutions inside the population using a specific mechanism, so that the Pareto-optimal set can be 

extracted from the population at the end of the solution process. In the mBCA, a separate list of 

Pareto-optimal solutions is generated and updated throughout the solution procedure. After being 

checked for non-dominance by other solutions, each of the solutions is added to the Pareto-

optimal set, and the dominated solutions are omitted from the Pareto-optimal set if necessary. 

 

5.5. Comparison of the Proposed Algorithms 

In order to provide an overall view to the developed algorithms and illustrate their differences, 

Table 2 shows the comparison of the developed algorithms and their general structural 

characteristics. The details will be described in later sections. 
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Table 2. Comparison of the developed algorithms 

Algorithm Modified NSGA-II mBCA 

Number of iterations G generations C cycles 

Solution generation  

method 

Select two parents and apply mutation and 

crossover 

Generate clones for each solution and 

apply hypermutation 

Evolution strategy 

Use a sorting mechanism to select 

solutions to form a new population from 

the combination of offspring and the 

current population 

Replace the solution with one of its 

selected mutated clones 

 

6. Modified Non-dominated Sorting Genetic Algorithm II 

Genetic algorithm was first introduced by Holland (1975). It is a population-based nature-

inspired metaheuristic which simulates the process of genetic evolution. Among the existing 

metaheuristics, GA and its hybrid extensions have been widely used and have successfully solved 

NDPs (e.g., Cantarella et al., 2006; Cantarella and Vitetta, 2006; Szeto and Wu, 2011). The well-

known multi-objective genetic algorithm (NSGA-II) was introduced by Deb et al. (2002). This 

algorithm has not been used to solve NDPs until recently and is served as a benchmark algorithm. 

The whole procedure of the algorithm is presented below and the details will be described in later 

sections. 

Phase 1: Generate a population of P solutions and rank them. Then, set their fitness values to be 

equal to their ranks. 

Phase 2: Repeat the following procedure for G generations: 

- Select a pair of parent solutions using the binary tournament selection and the parent 

selection operator. 

- Merge the selected parents by applying a merging process to produce an offspring set. 

- Apply the mutation operator on the offspring set. 

- Check the connectivity of each offspring solution and discard the solution if it is 

infeasible. 

- Check the budget feasibility of each offspring and apply the budget reduction sub-

routine if it is needed. 

- Calculate the objective function values for the feasible offspring solutions. 

- Form a combined population using the current population and the offspring set. 

- Select P solutions from the combined population by applying the evolution mechanism. 

- Set the P solutions as the new population, and then assign their ranks as their fitness 

values.  

Phase 3: Return the set of solutions with rank 1 from the latest population as the Pareto-optimal 
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set. 

 

6.1. Solution Encoding 

Chromosome representation is designed in a way such that it encodes the complete configuration 

of the network over the planning horizon with T design years. Each chromosome is represented 

by a 4-row matrix as shown in Table 3, in which each column corresponds to one network link 

for a particular design year and each row corresponds to the lane allocation of a particular arc 

belonging to a particular link during a particular peak period and a particular design year. |L|+|L'| 

is the total number of existing and candidate links for each design year in the planning horizon. 

𝑘𝑖𝑗
𝜏1 and 𝑘𝑗𝑖

𝜏1 represent the AM peak lane allocations of arcs (i, j) and (j, i) in year τ, respectively 

while 𝑘𝑖𝑗
𝜏2 and 𝑘𝑗𝑖

𝜏2 represent the PM peak lane allocations of these arcs in the same year. The total 

length of each chromosome equals 4T(|L|+|L'|), and each solution consists of 2T network 

configurations as there are two peak periods for each of the T years. 

 

Table 3. The chromosome representation 

 

 

Figure 1 illustrates a typical 7-node and 12-link network and its chromsome representation for the 

AM and PM peak periods in year τ is presented in Table 4. It is assumed that the network has two 

candidiate new links, namely links 6-2 and 4-7, which are indicated by thick lines in Figure 1 and 

in gray columns in Table 4. The dotted and dashed line for link 4-7 indicates that it is NOT 

constructed in the current network configuration, while the solid line for link 6-2 indicates that it 

is constructed in the current network configuration. The one-head arrows are one-way links and 

the two-head arrows are the pairs of one-way arcs. For illustration purposes, the PM network 

design is obtained by reversing links 1-2 and 3-7 and converting link 6-2 into a two-way link. The 

complete chromosome repersentation of the network can be obtained by combining all T design 

scenario chromosomes.  

 year 1 year 2 … year T 

1 2 … |L|+|L'| 1 2 … |L|+|L'| 1 2 … |L|+|L'| 1 2 … |L|+|L'| 

𝑘𝑖𝑗
𝜏1 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

𝑘𝑗𝑖
𝜏1 … … … ... … … … ... … … … ... … … … ... 

𝑘𝑖𝑗
𝜏2 … … … ... … … … ... … … … ... … … … ... 

𝑘𝑗𝑖
𝜏2  … … … ... … … … ... … … … ... … … … ... 
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Figure 1. Typical design for AM (left) and PM (right) peak hours in year τ 

  

Table 4. The chromosome representation of design scenarios in Fig. 1 

 

6.2. Calculation of Fitness Value 

In this algorithm, the fitness value of a solution is equal to its rank among all the solutions in the 

population. The ranks of the solutions are determined by sorting the population using the fast 

non-dominated sorting approach. The sorting mechanism divides the population into non-

domination levels. The first non-domination level consists of the solutions which are not 

dominated by any other solutions in the population and these are called Pareto-optimal solutions. 

The second non-domination level includes the solutions which are not dominated by any other 

solutions except by their higher non-domination level (i.e., first level). The rest of the non-

domination levels can be defined in the same way. The last non-domination level includes the 

solutions which are dominated by their higher non-domination level and do not dominate any 

solutions. In this way, each solution can be assigned a fitness value that equals the non-

domination level it belongs to. For instance, the first non-domination level solutions take the rank 

(or fitness value) 1; the second non-domination level takes the rank 2, etc. The maximum fitness 

value is equal to the total number of non-domination levels. The detailed explanation of the fast 

non-dominated sorting can be referred to Deb et al. (2002). 

 

6.3. Parent Selection Operator 

In the NSGA-II, the parent selection is performed using the binary tournament selection operator. 

According to this operator, a random pair of solutions is selected and one of them is chosen as the 

 year τ 

 1 2 3 4 5 6 7 8 9 10 11 12 

𝑘𝑖𝑗
𝜏1 0 1 0 1 1 1 1 1 0 0 1 0 

𝑘𝑗𝑖
𝜏1 2 1 2 1 1 1 1 1 0 2 1 2 

𝑘𝑖𝑗
𝜏2 2 1 1 1 1 1 1 1 0 2 1 0 

𝑘𝑗𝑖
𝜏2 0 1 1 1 1 1 1 1 0 0 1 2 
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parent. In the original version of the algorithm, the operator uses two types of information for 

each solution to make the comparison, namely the fitness value (rank) and the crowding-distance.  

When comparing two solutions obtained from the same non-domination level, the one from a less 

crowded region is preferred to be chosen. For this purpose, the crowding-distance measure is 

used to estimate the density of the solutions surrounding a specific solution, by computing the 

average distance of its two nearest neighbor solutions on the same front located before and after it. 

For a concerned solution, the value of this measure is computed by summing up the side lengths 

of the cuboid formed by its neighbor solutions. For the boundary solutions  (solutions with the 

largest and smallest objective function values) of a front, the crowding-distance value is defined 

as infinity. For a solution 𝛄𝑝, the crowding distance measure is calculated by formula (24):  

𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔 (𝛄
𝑝
) = ∑

|𝑍𝑚 (𝛄𝑝𝑏) − 𝑍𝑚 (𝛄𝑝𝑎)|

𝑍𝑚
𝑚𝑎𝑥 − 𝑍𝑚

𝑚𝑖𝑛
𝑚=1,..,𝑀

 (24) 

where 𝑍𝑚
𝑚𝑎𝑥 and 𝑍𝑚

𝑚𝑖𝑛 are the maximum and minimum values of the mth objective function in a 

specific front, respectively, and 𝛄
𝑝𝑏

 and 𝛄
𝑝𝑎

 are the neighbor solutions before and after 

𝛄
𝑝
 respectively. 

Regarding this measure, a solution with a higher crowding distance value is considered to be 

in a less crowded region, and is more preferable to the others. However, a solution with a higher 

crowding distance value does not necessarily mean that the solution is in a low density region 

because formula (24) does not consider the distance of 𝛄
𝑝

 itself from its neighbor solutions. In 

other words, although 𝛄
𝑝

 may have a large 𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔(𝛄
𝑝
) value, it may be too close to one of its 

neighbor solutions which means it may be located near a high density region.  

Suppose two solutions, 𝛄𝑝 and 𝛄𝑝′, from the same front are compared with each other. Figure 

2 illustrates them in a bi-objective solution space. It is observed that 𝛄𝑝 has a larger crowding 

distance value but it is too close to one of its neighbor solutions. In contrast, although 𝛄𝑝′ has a 

smaller crowding distance value, it is well located between its neighbor solutions, being not close 

to any of them. It is evident that 𝛄𝑝′ is more desirable in terms of density. 
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Figure 2. Comparison of two typical solutions for crowding-distance 

 

Given the drawback of the crowding distance measure, in this paper, a new and simple 

density measure is used to address this issue. The density measure Den computes the minimum 

distance between a solution 𝛄𝑝  and other solutions in the same front. The mathematical 

expression is given below: 

𝐷𝑒𝑛(𝛄𝑝) = min
𝑞
(𝐷𝑖𝑠𝑡(𝛄𝑝, 𝛄𝑞)) (25) 

where Dist is calculated using the following normalized Manhattan distance equation: 

𝐷𝑖𝑠𝑡(𝛄
𝑝
,𝛄
𝑞
) = ∑

|𝑍𝑚(𝛄𝑝) − 𝑍𝑚(𝛄𝑞)|

𝑍𝑚
𝑚𝑎𝑥 − 𝑍𝑚

𝑚𝑖𝑛
𝑚=1,..,𝑀

 (26) 

The selection rules are as follows: 

 If the two solutions γp and γq belong to different non-domination levels: if Rank(γp) < 

Rank(γq), γp is chosen; otherwise, γq is selected. 

 If γp and γq belong to the same non-domination level: if Den(γp) > Den(γq), γp is chosen; 

otherwise, γq is selected. 

 

6.4. Crossover and Mutation 

The crossover operator adopted in this paper is a modified form of the operator and was 

introduced by Drezner and Wesolowsky (1997, 2003), which is a successful merging process that 

exploits the structure of the problem. The operator attempts to merge their parents in a way that 

the set of links are taken from each parent and forms a connected set. Such a connected set is 

built using a "pivot" node. For a pivot node, a link count is calculated for each link of the 

network, including the set of new links. Then, the link counts are used to construct the offspring. 

Each node is selected once as the pivot node. In this way, a partitioning scheme is defined for 

each pivot node. In this paper, the partitioning scheme obtained for each of the N nodes as the 

pivot node is applied to all 2T networks to generate 2N solutions as the offspring set. Using a 

unique partitioning scheme for all 2T networks is particularly necessary because it allows the 

uniform selection of expansion and construction projects from each parent. The following 

procedure is repeated for each pivot node: 

 Assign a count Cnt = 1 to the links that are directly connected to the pivot node 

 Repeat until all links are assigned a count: 

o Select a set of links connected to the links with the count Cnt. 

o For each selected link, find the minimum count value (Cntmin) among its 

connected links, and assign it a count Cnt = Cntmin+1. 
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 Compute the median of all link counts, Cntmed. 

 For each peak period of each design year: 

o Construct the corresponding network of the first offspring solution: 

 Select the design of links with Cnt < Cntmed from parent 1. 

 Select the design of links with Cnt > Cntmed from parent 2. 

 Select the design of links with Cnt = Cntmed randomly from one parent. 

o Construct the corresponding network of the second offspring solution by reversing 

the direction of one-way links with Cnt > Cntmed in the first offspring. 

To decide whether a new link is included or not, the procedure checks whether the new link is 

present in the selected parents or not. It is noted that in the original version, a link with Cnt = 

Cntmed can be taken independently from either of the parents, but in this paper the whole set of 

such links are randomly taken from only one parent. The rationale for using this rule is to 

minimize the possibility of having disconnected solutions. Figure 3 demonstrates an example of 

link count assignment in a typical network. The pivot node here is 3. 

 

Figure 3. A typical network and its link count assignment 

 

Each generated offspring is exposed to mutation with a specific probability which is a 

parameter for the algorithm. The mutation operator randomly selects a design year in the solution, 

and changes the lane allocations of four links (two links in the AM peak network and two in the 

PM peak network) in that design year randomly.  

When changing the allocation of lanes on a link between nodes i and j, a feasibility interval is 

used to reduce the possibility of generating disconnected networks. The network can become 

disconnected in two ways: 1) the presence of zero outgoing or incoming lanes for node i or j, and 

2) the non-existence of a path between some pairs of nodes even if the first case does not occur. 

The former can be handled by using a feasibility interval, whereas the latter is not easy to predict 

and therefore it is not considered in this paper. Because the lane allocation on a link is defined by 

the number of lanes on arcs (i, j) and (j, i), it suffices to define the interval [LBij', UBij'] for arc (i, 

j). By selecting a feasible number of lanes on arc (i, j), the remaining lanes can be allocated to arc 
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(j, i). In order to compute the interval, the following relations are used: 

𝑘𝑖𝑗 + ∑ 𝑘′𝑖𝑤 ≥ 1

𝑤∈𝛷𝑖,𝑤≠𝑗

 (27) 

𝑘𝑗𝑖 + ∑ 𝑘′𝑤𝑖 ≥ 1

𝑤∈𝛷𝑖,𝑤≠𝑗

 (28) 

𝑘𝑖𝑗 + ∑ 𝑘′𝑤𝑗 ≥ 1

𝑤∈𝛷𝑗,𝑤≠𝑖

 (29) 

𝑘𝑗𝑖 + ∑ 𝑘′𝑗𝑤 ≥ 1

𝑤∈𝛷𝑗,𝑤≠𝑖

 (30) 

𝑘𝑖𝑗 + 𝑘𝑗𝑖 = 𝑘
′
𝑖𝑗 + 𝑘

′
𝑗𝑖  (31) 

where k'iw, k'wi, k'wj, k'jw, k'ij, and k'ji are the current values of the related lanes allocations, while kij 

and kji are the lane allocation variables for arcs (i, j) and (j, i), respectively. Φi and Φj are 

correspondingly the sets of adjacent nodes to nodes i and j. The second terms in (27) and (28) 

equal the total numbers of outgoing lanes from nodes i and j except the lanes on arcs (i, j) and (j, 

i), respectively. Similarly, the second terms in (29) and (30) equal the total numbers of incoming 

lanes to nodes i and j except the lanes on arcs (i, j) or (j, i), respectively. Inequality pair (27)-(28) 

ensures that at least one outgoing and one incoming lanes remain for node i whereas inequality 

pair (29)-(30) ensures that at least one outgoing and one incoming lane remains for node j. 

Equation (31) is the lane allocation constraint. The upper and lower bounds of the interval for kij 

are calculated by (32) and (33), which are deduced from conditions (27) and (29) and conditions 

(28), (30), and (31), respectively. A random value for kij is chosen from the interval, and then the 

value of kji is obtained from the total number of lanes on the link. 

𝐿𝐵𝑖𝑗
′ = max{0,max {1 − ∑ 𝑘′𝑤𝑗

𝑤∈𝛷𝑗,𝑤≠𝑖

, 1 − ∑ 𝑘′𝑖𝑤
𝑤∈𝛷𝑖,𝑤≠𝑗

}} (32) 

𝑈𝐵𝑖𝑗
′ = min{𝑘′𝑖𝑗 + 𝑘′𝑗𝑖, min{∑ 𝑘′𝑗𝑤 + 𝑘′𝑖𝑗

𝑤∈𝛷𝑗

− 1,∑ 𝑘′𝑤𝑖
𝑤∈𝛷𝑖

+ 𝑘′𝑖𝑗 − 1}} (33) 

 

After applying the mutation operator, all offspring solutions are examined for their feasibility; 

if the offspring is infeasible in terms of the network connectivity of any of the 2T networks, it is 

discarded. After this process, the offspring is checked for the total construction cost. Once the 

budget constraints (3)-(4) are violated, a budget reduction sub-routine is applied to repair the 

infeasibility. The sub-routine is shown below: 

 Check whether the current projects can be omitted from the solution. 
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 If there is at least one feasible omission in terms of network connectivity, repeat the 

following steps until the budget constraint is not violated or the network becomes 

disconnected: 

o Omit the project with the maximum cost. 

o If the network becomes disconnected, stop and report as infeasibility. If not, repeat 

the whole procedure. 

 

6.5. Evolution Mechanism 

The evolution process of NSGA-II adopts the non-dominated sorting and the crowded-

comparison operator to sort the combined set that is formed by the old population and the 

offspring set, and to obtain a set of P solutions for the new population. The variation of NSGA-II 

proposed in this paper is a procedure that aims to select a diverse set of solutions from the last 

front (if required) using the defined density measure instead of computing the crowding-distance 

values. The procedure of this evolution mechanism is described as follows:  

 Sort all the combined solution sets using non-dominated sorting, and set P' = P as the 

remaining spaces in the new population. 

 Repeat the process until P' becomes zero (i.e., P solutions are inserted into the new 

population): 

o Select the next best non-dominated front Fi  

o If |Fi | ≤ P', add all the solution in Fi to the population and set P' = P' - |Fi |; 

otherwise, select P' solutions from Fi.  

The procedure continues to add the solutions belonging to the best remaining non-dominated 

fronts until the new population is filled with P solutions. If the last front to be selected has less 

members than the remaining spaces, the required P' solutions are selected from it to include in the 

population. In the original NSGA-II, such selection is performed by choosing members with 

maximum crowding-distance values.  

In this paper, a new procedure is devised based on the proposed density measure. It guides the 

algorithm such that a required number of solutions with the largest separation among them is 

chosen from the last front with a reasonable computational effort. The devised method repeatedly 

omits the solutions in the front until P' solutions are remained. The basic idea of this method is to 

omit the solutions that are close to the other solutions so that the remaining P' solutions can be as 

far as possible to each other at the end. The details of the procedure are given below: 

 Calculate the distance between each pair of front solutions using equation (26): 

 Repeat until P' solutions are remained in the front: 
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o Select the solutions pair with the minimum Dist value. 

o From the pair, select the solution with the minimum Dist value to solutions not in 

the pair, and omit it. 

o Update the Dist values for the remaining solutions. 

Figure 4 illustrates the procedure for the first iteration of the devised method for a typical front 

with 10 solutions. Experiments with 200-300 random samples for each test problem indicate that 

the new method leads to a 110% better Den value and even a 6.5% better minimum crowding-

distance value on average compared to the original method.  

      
Figure 4(a). 1

st
 iteration: select the closest pair      Figure 4(b). 2

nd
 iteration: select for omission 

 

7. Multi-objective B-Cell Algorithm 

The B-Cell algorithm which was first proposed by Kelsey and Timmis (2003) and belongs to the 

group of artificial immune systems. This group encloses a family of algorithms which mimic the 

behavior of natural immune systems in defending disease-causing organisms. Like all the 

algorithms of the same category, the B-Cell algorithm procedure relies on the clonal selection 

principle. This principle is derived from the clonal selection theory which explains how an 

immune system is stimulated when it is exposed the undesired organisms, how it defeats them, 

and how to improve its capability by learning from previous fights. According to this principle, 

when the immune system encounters a disease agent which is generally known as "antigen"', the 

system at first selects the most appropriate lymphocytes (B-cells) to defeat the agent. In this 

selection procedure, the system selects the B-cells with their receptors that match the antigens 

most (i.e., with the highest affinity value). The next procedure is to clone (replicate) the selected 

B-cells to form an army to fight the invaders. Finally, the B-cell clones undergo contiguous 

somatic hypermutation and are targeted to enhance their response to the newer antigens. The 

immune system enhances its defeating capability by repeating the described procedure.  

The B-cell algorithm deploys the aforementioned principle, but with some differences in the 

details. The algorithm maintains a population consisting of a set of solutions (called B-cells) and 

the solution procedure is repeated for a number of cycles as if other population-based 

25000

25200

25400

25600

25800

26000

26200

26400

26600

26800

27000

22000 27000 32000 37000 42000

Dist=0.047

25000

25200

25400

25600

25800

26000

26200

26400

26600

26800

27000

22000 27000 32000 37000 42000

Dist=0.364

Dist=0.198

omit



24 

metaheuristics. Each cycle of the algorithm comprises of P iterations, each corresponding to one 

of the population members. In each iteration, one of the population members is chosen and 

replicated into a specified number to form the set of so called "cloned solutions". Afterwards, a 

random solution is inserted in the obtained set. Then, all the cloned solutions plus the inserted 

solution undergo hypermutation one-by-one to create the set of "mutated clone solutions". The 

population update is implemented by deciding to replace the concerned population member with 

the best mutated clone solution, or to maintain it.  

The distinct feature of this algorithm is its specific mutation operator which is called 

"contiguous somatic hypermutation". As stated in Kelsey and Timmis (2003), the algorithm is 

based on the idea that the cell mutations occur in a cluster of regions in the real immune systems. 

This paper develops a multi-objective version of the B-cell algorithm (mBCA) to solve the 

proposed bi-objective problem. The multi-objective nature of the problem is considered in two 

features of the algorithm: 1) The algorithm maintains an archive for Pareto-optimal solutions, and 

2) the decision to replace each population member with one of its mutated clone solutions is 

performed by using a set of rules which use the dominance concept and the cooling scheme of the 

simulated annealing algorithm. The overall procedure of the algorithm is shown below: 

Phase 1: Generate a population with P solutions; then, compute the objective function values for 

the population. Initialize the temperature. 

Phase 2: Repeat the following procedure for C cycles: 

- For each solution 𝛄
𝑝
, repeat the following procedure: 

 Build the cloned solution set of 𝛄
𝑝
 by replicating it into a number of solutions equal 

to the value calculated by the affinity based cloning method.  

 Add a random solution to the generated cloned solution set. 

 Apply contiguous somatic hypermutation on each member of the obtained set. 

 Calculate the objective function values for the obtained mutated cloned solutions. 

 Find the Pareto-optimal solutions among the mutated clone solutions and update the 

Pareto-optimal solutions set. 

 Decide to replace 𝛄
𝑝

 with one of its mutated clone solutions according to the 

evolution mechanism. 

- Reduce the temperature 

 

7.1. Affinity Based Cloning Method 

The original B-Cell Algorithm employs a fixed clone size for each solution 𝛄
𝑝
 of the population, 

preferably equal to the size of the population. In the multi-objective version of the algorithm 
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developed in this paper, each solution is set to be cloned proportional to its fitness. In other 

words, the clone size for each solution in this algorithm is not fixed. In order to control the 

computational complexity of the algorithm, in each cycle the sum of the number of cloned 

solution size for each population solution 𝛄
𝑝
 is set to be a fixed value, say Nc. The clone size for 

each solution is defined such that the fixed total clone size of Nc is achieved. To capture the bi-

objective nature of the algorithm, the non-domination levels of the solutions are used as a 

parameter to define the individual clone sizes. The non-domination level of solution 𝛄
𝑝
 which is 

denoted by 𝑅𝑎𝑛𝑘(𝛄
𝑝
)𝜖[1, 𝑅𝑎𝑛𝑘𝑚𝑎𝑥], where 1 and Rank

max
 are the highest and the lowest non-

domination levels in the population. To compute the clone size 𝐶𝑙𝑜𝑛𝑒(𝛄
𝑝
) for each solution 𝛄

𝑝
, 

first, a weight 𝐶𝑊(𝛄𝑝) is obtained for each solution 𝛄
𝑝
 according to its position among the non-

domination levels using equation (34), in which lower 𝑅𝑎𝑛𝑘(𝛄
𝑝
) values result in higher weights.  

𝐶𝑊(𝛄𝑝)  = ∑  (𝑤)
𝑅𝑎𝑛𝑘𝑚𝑎𝑥

𝑤=𝑅𝑎𝑛𝑘(𝛄𝑝)
∑  (𝑤)

𝑅𝑎𝑛𝑘𝑚𝑎𝑥

𝑤=1
⁄   (34) 

Next, the following formula is used to obtain the clone size of solution 𝛄
𝑝
 using the normalized 

weight values, such that ∑ 𝐶𝑙𝑜𝑛𝑒(𝛄𝑤)
𝑃
𝑤=1 ≅ 𝑁𝑐. 

𝐶𝑙𝑜𝑛𝑒(𝛄𝑝) = 𝑁𝑐 ×
𝐶𝑊(𝛄𝑝)

∑ 𝐶𝑊(𝛄𝑤)
𝑃
𝑤=1

  (35) 

Finally, the obtained clone sizes are rounded to their nearest integers. Our preliminary results 

indicated that using the preceding method to determine clone size results in better algorithmic 

performance than using the fixed clone size. 

 

7.2. Contiguous Somatic Hypermutation Operator  

As mentioned in above section, contiguous somatic hypermutation is a unique feature of the B-

cell algorithm. The operator devised for the mBCA uses two methods to generate neighbor 

solutions, namely the perturbation in lane allocations and the perturbation in expansion or 

construction projects. The lane allocation perturbation is performed on randomly selected 

contiguous links (or equivalently a contiguous region according to the BCA terminology), rather 

than randomly selected individual links. The project perturbation is performed by omitting an 

existing project and the inclusion of another project in the same design year.  

In order to select contiguous links, according to the notions originally defined in the B-cell 

algorithm, it is necessary to define the hotspot and the so-called the length of the contiguous 

regions. In the original BCA, the hotspot and length of the contiguous region are correspondingly 

defined as a random component chosen from the solution vector and a random number of 
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adjacent components selected from the vector with the first component to be the hotspot. In this 

study, due to the network structure of the solutions, these concepts are defined in a different way. 

Here, the hotspot is a random node on the network and the contiguous region is the set of 

adjacent links around the selected random node. The concept used in the crossover operator of 

NSGA-II properly complies with the above definition. The counts that are assigned to each link 

corresponding to the selected pivot node can be used to determine the region of connected links. 

A random count value indicates the extent to which the adjacent links around a random node are 

to be chosen, which simply translates into the length of the contiguous region. Thus, in a single 

network, one can randomly define a pivot node and randomly define the size (i.e., length) of the 

region of links connected to it by selecting a random link count.  

Based on the above explanation, the two-stage hypermutation operator is designed as follows: 

Phase1 (Lane allocation perturbation): for each design year, randomly decide to apply 

hypermutation. If the answer is yes, repeat the following steps for each peak’s network: 

- Randomly select a node in the network. 

- Find the link counts, considering the selected node as the pivot node. 

- Select a random link count number between 1 and the maximum link count number. 

- Choose the links with counts between 1 and the selected count number. 

- Perform lane allocation perturbation on the selected links. 

 Compute the feasibility interval for lane allocations of the link (as in Section 6.4). 

 If the feasibility interval is not null, apply a random lane allocation perturbation 

according to it. 

Phase 2 (Project perturbation):  

- Check every possible swap of lane addition or link construction projects; i.e., omission 

of an existing project and inclusion of another project at the same design year. 

- If there is at least one feasible swap in terms of the budget level and the network 

connectivity, select a random swap and apply it. 

Any infeasible solution resulting in a disconnected network is discarded and the solution 

generation procedure is repeated again. 

 

7.3. Evolution Mechanism 

In the original version of the BCA, a mutated clone solution substitutes the associated solution in 

the population if the mutated solution is better in terms of its fitness value. The multi-objective 

nature of the mBCA implies the use of an evolution strategy which adopts the concept of the 

dominance status of the clone solutions with respect to their corresponding solution 𝛄
𝑝
 of the 



27 

population. The first step is to identify the clones which can be candidates to substitute the 

solution 𝛄
𝑝
 of the population. The next step is to decide whether to allow the clones to substitute 

the solution and to decide which of the solutions is most suitable for substitution. The evolution 

mechanism is designed such that it always accepts the substitution of a dominating or a non-

dominated clone with its associated solution 𝛄
𝑝
, and it accepts the substitution of a dominated 

clone with a probability. This mechanism allows the diversification in the algorithm by accepting 

the inferior solutions in some cases. This probability is defined using a cooling scheme similar to 

that of simulated annealing algorithm, so such that the dominated clones are more likely to be 

accepted at the beginning and less likely to be accepted at the end of cycles. 

The procedure is performed as below: 

 Find the Pareto-optimal clones in the set of mutated clones. 

 Divide the Pareto-optimal clones into three sub-sets: (a) clones dominating solution 𝛄
𝑝
, 

(b) clones that are not dominated by solution 𝛄
𝑝
, and (c) clones dominated by solution 𝛄

𝑝
. 

 If sub-set (a) is not null, select the solution with the largest distance to 𝛄
𝑝
 to substitute it. 

Otherwise if sub-set (b) is not null, randomly select a solution to substitute 𝛄
𝑝
. 

Otherwise, select a solution from (c) with the smallest distance to 𝛄
𝑝
 to substitute it with 

the transition probability 𝑒−∆/𝑇𝑒𝑚𝑝. 

The distance between solution 𝛄
𝑝

 and a clone solution 𝛄𝑞 , 𝐷𝑖𝑠𝑡(𝛄𝑝, 𝛄𝑞)  is computed using 

relation (26), where 𝑍𝑚
𝑚𝑎𝑥 and 𝑍𝑚

𝑚𝑖𝑛 are the maximum and minimum  values of the mth objective 

function in the generated clone. The transition criterion ∆ is based on the average cost criterion 

concept in the Multi-Objective Simulated Annealing (MOSA) (e.g., Nam and Park, 2000). In this 

study, a modified form of this criterion is adopted, which employs the normalized distances 

between the objective function values as in relation (36). 

∆=
1

|𝑀|
∗ ∑

|𝑍𝑚(𝛄𝑝) − 𝑍𝑚(𝛄𝑞)|

𝑍𝑚
𝑚𝑎𝑥 − 𝑍𝑚

𝑚𝑖𝑛
𝑚=1,..,𝑀

 (36) 

The temperature value in the probability function decreases in each cycle of the algorithm, such 

that the probability of accepting the dominated solutions is reduced gradually. The same 

temperature level is used for each 𝛄𝑝 solution in a single cycle. 

 

8. Computational Results 

8.1. Test Problems and Data 

The problem addressed in this paper has a number of features similar to the previous published 
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works (i.e., Miandoabchi et al., 2013). Therefore, we have used the test problems adopted in 

those works and have customized or added the required attributes for the problem under this 

study. The examples include three small, three medium, and one large network as shown in Table 

5. The test networks have been adopted from the previous literature and have been modified to 

include the necessary parameters for the DNDP under the study in that paper. The figures of the 

test networks are illustrated in the Appendix. 

 

Table 5. Testing networks 

Network 

Size 
Network adopted Notation 

No. of 

nodes 

No. of 

links 

No. of 

OD pairs 

Small The Harker and Friesz (1984) 

network 
HF 6 8 2 

The Nguyen and Dupuis (1984) 

network 
ND 13 19 4 

A reduced Sioux Falls network 

used in LeBlanc et al. (1975)  
SF1 14 19 176 

Medium The Nagurney (1984) network NA1 20 28 8 

The Nagurney (1984) network NA2 22 36 12 

The basic Sioux Falls network 

used in LeBlanc et al. (1975) 
SF2 24 38 528 

Large The Nagurney (1984) network NA3 40 66 6 

 

The length of the planning horizon is fixed to 3 years for all problems (i.e., T = 3). For all 

networks, all links are assumed to be two-way in the base network configuration. Construction 

costs are assumed to have linear functions of the lane numbers. All travel time functions tij are 

assumed to have the form of the Bureau of Public Roads (BPR) function, with α equal to 0.15 and 

β equal to 4. The function form is indicated below where 𝑡𝑖𝑗
0  is the free flow travel time on arc (i, 

j). 

𝑡𝑖𝑗
𝜏𝜔(𝑥𝑖𝑗

𝜏𝜔 , 𝑐𝑖𝑗
𝜏𝜔) = 𝑡𝑖𝑗

0 (1 + 𝛼 (
𝑥𝑖𝑗
𝜏𝜔

𝑐𝑖𝑗
𝜏𝜔)

𝛽

) (37) 

 

8.2. Parameter Setting 

The parameter values of the two algorithms were set by using a series of experiments and 

searching for the parameter ranges in similar algorithms from related papers. Moreover, the 

parameter values were set so that the computational efforts of the two algorithms were as close as 

possible to each other and the comparison of the solution qualities obtained by them is relatively 

fair. To achieve this purpose, the computational efforts were considered as the functions of the 

number of the network design scenarios to be evaluated in each solution. This can be obtained by 
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multiplying the total number of solutions generated by the algorithm by the number of design 

scenarios in each solution. The total number of generated solutions in turn depends on the values 

of the algorithm parameters. Table 6 describes the parameter settings and the approximate 

computational efforts with their explanations. 

 

Table 6. Parameter settings for the algorithms 

Algorithm Main parameters Approximate computational effort 

Modified 

NSGA-II 

Population size (P): 60 

No. of generations for small examples (G): 1890 

No. of generations for other examples (G):1100 

Mutation rate: 0.2 

G×2N×2T 

In each generation, 2N solutions are 

generated, and each solution has 2T design 

scenarios 

mBCA 

Population size (P): 25 

No. of cycles (C): 45, 98, 106, 88, 97, 106, and 

176 for HF to NA40 respectively 

Total cloning number (Nc): 18 

Start temperature: 10 

Stop temperature: 1 

C×P×(Nc+2)×2T 

In each cycle, for all P solutions, 1 random 

clone solution and Nc+1 mutated clone 

solutions are generated, and each solution 

has 2T design scenarios 

 

The start and stop temperatures for the mBCA were defined such that they provide a reasonable 

range of acceptance reduction rates throughout the algorithm. Since the temperature reduction 

rate for the mBCA depends on the number of cycles C, it was obtained for each test problem 

separately. 

The population size, the number of generations for the modified NSGA-II, and the mutation 

rate for the modified NSGA-II were set by considering the parameter values used in similar 

papers and carrying out a series of experiments. For the mBCA, the parameters were set by 

performing extensive experiments with different parameter settings and algorithm attributes so as 

to ensure that computational effort for the two algorithms were about the same. 

 

8.3. Software and Hardware 

All algorithms were coded and run in the Matlab version R2011b without using any of the 

existing tool boxes. The tests have been carried out using a laptop with a Core i5-2450M @ 

2.5GHz CPU and a 6G RAM. Each algorithm ran 10 times for small examples and 5 times for the 

others. 

 

8.4. Performance Evaluation 

In order to evaluate the capability of the algorithms in achieving the optimal or nearly optimal 
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values in reasonable time, four effectiveness measures are used. Three of the measures are used 

to investigate the quality of the Pareto-optimal sets generated by the algorithms, along with the 

run time as the fourth measure: 

 M1: The size of the Pareto-optimal set 

 M2: The set coverage measure proposed in Zitzler et al. (2000) 

 M3: The diversity measure of the Pareto-optimal set adopted from Deb et al. (2002) 

M2 is used for the pair-wise comparison of the algorithms in terms of the fraction of Pareto-

optimal solutions obtained by one algorithm that dominates the solutions obtained from another 

algorithm. The measure can be mathematically written as follows: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑋𝑖 , 𝑋𝑗) =
|{𝑎𝑗 ∈ 𝑋𝑗; ∃𝑎𝑖 ≽ 𝑎𝑗}|

|𝑋𝑗|
 (38) 

where ai ≽ aj means that the solution ai dominates or equal to the solution aj. Formula (38) is 

used to calculate the fraction of the solutions in set Xj that is covered by set Xi. In other words, the 

formula is used to compute the fraction of solutions in set Xj that is dominated by or equal to at 

least one solution in Xi. It must be noted that Coverage(Xi,Xj) is not necessarily equal to 1- 

Coverage(Xj, Xi).  

M3 is used to investigate the diversity of Pareto-optimal sets obtained by the algorithms. This 

measure computes the spread of the Pareto-optimal set members over the solution space. In this 

paper, a revised form of this measure is used: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦(𝑋𝑖) =
∑ |𝐸𝑖,𝑖+1 − 𝐸̅|𝑖=1,…,|𝑋𝑖|−1

|𝑋𝑖| − 1
    (39) 

where Ei,i+1 is the normalized Euclidean distance between two consecutive solutions in the 

Pareto-optimal set defined as formula (40), in which the solutions are sorted by one of the 

objective function values, and 𝐸̅ is the average of those distances.  

𝐸𝑖,𝑖+1 = ( ∑ (
𝑍𝑚
𝑖 − 𝑍𝑚

𝑖+1

𝑍𝑚
𝑚𝑎𝑥 − 𝑍𝑚

𝑚𝑎𝑥)

2

𝑚=1,…,𝑀

)

1
2⁄

 (40) 

𝑍𝑚
𝑚𝑎𝑥 and 𝑍𝑚

𝑚𝑖𝑛 are the maximum and minimum values of the mth objective function in set Xi. 

If all solutions in Xi are uniformly spread between the two boundary solutions of the set, then the 

measure becomes zero, because all distances will be equal to the average distance. Thus, a lower 

value of the measure implies a better diversity among its solutions. 

The summary for the average values of the measures are presented in Table 7. The runtimes 

are reported in minutes. The total number of best values obtained by each algorithm in each 

measure is counted and put in the second last column. A larger value of the count means that the 

algorithm performs better in terms of the measure concerned. The last row concludes whether the 
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algorithm is the best performing algorithm under the measure concerned.  

 

Table 7. Summary of computational results 

Example 
“Modified” NSGA-II mBCA 

M1 M2 M3 Runtime M1 M2 M3 Runtime 

HF 51.8 0.97 0.051 5 2.6 0.00 0.608 9 

ND 59.9 1.00 0.029 21 6.1 0.00 0.111 50 

SF1 59.9 1.00 0.024 109 10.6 0.00 0.109 229 

NA1 60.0 1.00 0.024 97 8.8 0.00 0.134 176 

NA2 60.0 0.91 0.026 82 6.0 0.00 0.142 156 

SF2 60.0 1.00 0.021 188 9.4 0.00 0.122 657 

NA3 60.0 1.00 0.026 261 11.2 0.00 0.075 996 

No. of Better Values in the 

Column 
7 7 7 7 0 0 0 0 

Best Performing Algorithm     - - - - 

 

According to the obtained results, the modified NSGA-II clearly outperforms the second 

algorithm in terms of the Pareto-optimal set size, quality, and diversity of the solutions with a 

significantly lower runtime. As shown in Table 7, almost all the population members of the 

modified NSGA-II are Pareto-optimal. Furthermore, all M1 values are close to 1 for this 

algorithm which implies that nearly all the Pareto-optimal solutions of the modified NSGA-II 

dominate or at least are equal to that of the mBCA. However, because true Pareto-optimal 

solutions for the test networks are not known, it is not possible to investigate the ability and 

reliability of the algorithms in achieving exact solutions. 

Although the computational efforts of the two algorithms were set to be in the same range in 

terms of the number of generated solutions, the higher runtimes of mBCA is due to the higher 

computational effort to produce the new solutions using contiguous hypermutation. Indeed, the 

mBCA performed additional computations for checking feasible project swaps (i.e., the 

connectivity and budget feasibility) in contiguous hypermutation. In the modified NSGA-II, the 

solution was generated by crossover and mutation which did not require additional computational 

effort, except for budget feasibility checking and omitting one of the projects. 

In order to evaluate the effect of new proposed density measure and the evolution mechanism 

on the performance of NSGA-II, the original and modified versions of the algorithm were 

compared for small test problems with the same number of runs. Table 8 compares the two 

versions of NSGA-II for measures M1 to M3. 

 

Table 8. Comparison of the two versions of NSGA-II  

Example 
“Modified” NSGA-II “Original” NSGA-II 

M1 M2 M3 M1 M2 M3 
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HF 51.8 0.42 0.051 48.6 0.68 0.063 

ND 59.9 0.50 0.029 60.0 0.08 0.046 

SF1 59.9 0.39 0.024 59.6 0.15 0.035 

No. of Better Values in the Column 2 2 3 1 1 0 

 

As it is observed from the table, the modified version of NSGA-II achieved lower M3 values 

in the Pareto-optimal sets in all three problems, and higher M2 and M1 values in ND and SF1. 

On average, the modified NSGA-II has achieved a 214% better quality, a 29% higher 

diversity, and a 2% larger set size compared to the original version of the algorithm. Therefore, it 

can be deduced that using the new density measure and the evolution strategy in NSGA-II yields 

better results from the quality and diversity aspects of the solutions set. The advantage of the 

modified NSGA-II is particularly notable in terms of diversity, which was primarily intended to 

be improved by proposing new features for the algorithm. 

 

9. Conclusions and Future Research Directions 

This paper investigated a multi-objective time-dependent discrete network design problem. Four 

types of decisions are considered in this problem, including adding lanes to the existing network 

links, constructing new links, determining the lane allocations on two-way links, and converting 

some two-way links to one-way links. The model is in fact a new formulation for the combined 

decision making for tactical and strategic decisions, which is developed based on the time-

dependent modeling concept. The model determines the decisions within the planning horizon 

with multiple years and two daily peak periods in each year. The two objective functions of this 

model are the total travel time and the total CO emissions. 

The model is formulated as a mathematical problem with equilibrium constraints, which is bi-

level in nature. Due to the intrinsic complexity and the non-convexity of the model, two multi-

objective evolutionary algorithms, namely the improved non-dominated sorting algorithm II 

(NSGA-II) and a multi-objective novel version of B-cell algorithm, have been developed to solve 

for good rather than exact solutions. Both algorithms give a set of Pareto-optimal solutions as 

their outputs. The performance of the two algorithms was tested using a set of test problems taken 

from the previous studies. The resulted Pareto-optimal sets were compared using three measures: 

the size of the sets, and the set coverage, and the diversity measures. The results precisely show 

that the proposed NSGA-II have achieved a better result in all cases with lower run times. In 

addition, the results indicate that the new feature of the proposed NSGA-II have improved its 

performance in terms of quality and the diversity of the solutions. 
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As mentioned earlier, the problem addressed in this paper is NP-hard and it is much more 

complex than many of the existing conventional or time-dependent NDPs proposed in the 

literature. Therefore, any extension to this problem will make it even more complex. This 

increase in complexity may occur either in the upper or lower level problem in various 

dimensions such as an increase in: the size of the solution space, the number of problem 

constraints, the number of times to solve the lower level problem for each design scenario, and 

the complexity of the lower level problem itself. The complexity increases directly and depends 

on the nature of the extension. If the extension involves other road network designs such as signal 

settings, turning restrictions at intersections, or parking space allocation, it may lead to a larger 

solution space and have more constraints. With a larger solution space, the algorithms need to 

evaluate much more solutions, but at the same time the runtime need to be faster, leading to a 

trade-off between speed and quality; otherwise the computational burden will be inhibitive in 

solving large or even medium networks. On the other hand, more constraints imply more 

difficulties in building feasible solutions, which may bring additional computational burden to the 

algorithms. Extensions relating to the transit (i.e., bus, metro, etc.) network design decisions 

involve another dimension of complexity in addition to the aforementioned issues. This makes 

the problem multi-modal that requires the mode-split/ traffic assignment problem as the lower 

level problem, which is more complex than the simple traffic assignment problem. Extensions 

relating to time intervals of the decisions also affect the number of times required solving the 

lower level problem. Besides, many of the above extensions require more complex solution 

encoding (e.g., chromosomes with many layers or multi-part chromosomes) and algorithm 

operators. 

Therefore, any extension to the time-dependent network design problem must be proposed 

with the consideration of the complexity of the resulting problem. The NP-hard nature of the 

problem implies exponential growth in the computational effort with the size of the problem. 

Thus, even the fastest computers may not be able to solve larger (real world sized) sized 

problems in reasonable time. To tackle this issue, more sophisticated and efficient solution 

strategies need to be devised. One possible approach is to use parallel metaheuristics to benefit 

from distributed computing capabilities. Another approach is to find fast and accurate equilibrium 

traffic flow approximation methods. The latter is a great challenge because common 

approximation methods such as artificial neural networks seem not to be able to predict the flows 

or objective function values with desirable accuracy for NDPs. 
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Appendix 

The network topologies of the test problems are as follows: 
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Figure a. Test network HF 
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Figure b. Test network ND 
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Figure c. Test network SF1 
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Figure d. Test network NA1 

 

1 

 
5 

9 

 

11 

12 

10 

 

6 

 
2 

 

15 

16 

18 

14 

 

19 

21 

 
13 

 

4 

 
8 

17 

7 

 
3 

 

22 

 

20 

 

Figure e. Test network NA2 
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Figure f. Test network SF2 


